# Involutive factorisation systems \& Dold-Kan correspondences 

## Clemens Berger ${ }^{1}$

University of Nice

$$
\text { CT } 2019
$$

Edinburgh, July 11, 2019
${ }^{1}$ joint with Christophe Cazanave and Ingo Waschkies
(1) Introduction
(2) Simplicial objects
(3) Involutive factorisation systems
(4) Dold-Kan correspondences
(5) Joyal's categories $\Theta_{n}$

Involutive factorisation systems \& Dold-Kan correspondences
Introduction

Theorem (Bold 1958, Kan 1958)

$$
M: \mathrm{Ah}^{\Delta^{\mathrm{op}}} \sim \mathrm{Ch}(\mathbb{Z}): K
$$

## Corollary

There is a simplicial abelian group $K(A, n)$ such that $\pi_{n}(K(A, n))=A$ and $\pi_{i}(K(A, n))=0$ for $i \neq n$.

## Proof.

$K \cdot \mathrm{Ch}(\mathbb{T}.) \rightarrow \mathrm{Ab}^{\triangle^{\text {op }}}$ takes homology into homotopy. $K(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots$

## Purpose of the talk

Categorical structure of $\Delta$ inducing Dold-Kan correspondence.

## Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

## Corollary

There is a simplicial abelian group $K(A, n)$ such that $\pi_{n}(K(A, n))=A$ and $\pi_{i}(K(A, n))=0$ for $i \neq n$.

## Proof.

$K: \mathrm{Ch}(\mathbb{\pi}) \rightarrow \mathrm{Ab}^{\triangle^{\circ p}}$ takes homology into homotopy. $K(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow{ }^{n} A \leftarrow 0 \leftarrow$

Purpose of the talk

## Categorical structure of $\Delta$ inducing Dold-Kan correspondence.

## Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

## Corollary

There is a simplicial abelian group $K(A, n)$ such that $\pi_{n}(K(A, n))=A$ and $\pi_{i}(K(A, n))=0$ for $i \neq n$.

## Proof.

$K: C h(\mathbb{Z}) \rightarrow \underline{A b}^{\triangle^{\text {op }}}$ takes homology into homotopy. $K(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \hat{A} \leftarrow 0 \leftarrow$

Purpose of the talk
Categorical structure of $\Delta$ inducing Dold-Kan correspondence

## Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

## Corollary

There is a simplicial abelian group $K(A, n)$ such that $\pi_{n}(K(A, n))=A$ and $\pi_{i}(K(A, n))=0$ for $i \neq n$.

## Proof.

$K: \operatorname{Ch}(\mathbb{Z}) \rightarrow \underline{A b}^{\Delta^{\mathrm{op}}}$ takes homology into homotopy. $K(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots$

## Purpose of the talk

Categorical structure of $\Delta$ inducing Dold-Kan correspondence

## Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

## Corollary

There is a simplicial abelian group $K(A, n)$ such that $\pi_{n}(K(A, n))=A$ and $\pi_{i}(K(A, n))=0$ for $i \neq n$.

## Proof.

$K: \operatorname{Ch}(\mathbb{Z}) \rightarrow \underline{A b}^{\Delta^{\mathrm{op}}}$ takes homology into homotopy. $K(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots$

## Purpose of the talk

Categorical structure of $\Delta$ inducing Dold-Kan correspondence.

Involutive factorisation systems \& Dold-Kan correspondences Simplicial objects

## Definition (simplex category $\triangle$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

## Remark (epi-mono factorisation system)

The category $\Delta$ is generated by elementary

## Definition (simplex category $\Delta$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

## Remark (epi-mono factorisation system)

The category $\Delta$ is generated by elementary

## Definition (simplex category $\Delta$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$
Remark (epi-mono factorisation system)
The category $\Delta$ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Fvery simnlicial onerator $\phi:[m] \rightarrow[n]$ factors as

and every epi (resp. mono)morphism in $\Delta$ is a canonical composite of elementary degeneracy (resp. face) operators.

## Definition (simplex category $\Delta$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

## Remark (epi-mono factorisation system)

The category $\Delta$ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}$

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as


## Definition (simplex category $\Delta$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

## Remark (epi-mono factorisation system)

The category $\Delta$ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as

and every epi (resp. mono)morphism in $\Delta$ is a canonical composite of elementary degeneracy (resp. face) operators.

## Definition (simplex category $\Delta$ )

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

## Remark (epi-mono factorisation system)

The category $\Delta$ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as

and every epi (resp. mono)morphism in $\Delta$ is a canonical composite of elementary degeneracy (resp. face) operators.

Involutive factorisation systems \& Dold-Kan correspondences Simplicial objects

## Definition (geometric realisation, Milnor 1957)

$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

$$
1-\left.\right|_{\Delta}: \operatorname{Sets}^{\wedge \mathrm{op}} \rightarrow \text { Top. }
$$

## Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

## Definition (simplicial homology, Eilenberg 1944)

$$
\begin{aligned}
\text { Sets }^{\wedge 0 \mathrm{p}} & \longrightarrow \mathbb{A b}^{\wedge^{\text {op }} \xrightarrow{N} \mathrm{Ch}(\mathbb{Z}) \longrightarrow \mathbb{A}^{\mathbb{N}}} \begin{aligned}
X_{0} \longmapsto & \mathbb{Z}\left[X_{0}\right]
\end{aligned}+\left(N 0(X), d_{0}\right) \longmapsto H_{0}(X)
\end{aligned}
$$

where

## Definition (geometric realisation, Milnor 1957)

$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

## Theorem (Quillen 1968)

## Geometric realisation is left part of a Quillen equivalence

Definition (simplicial homology, Eilenberg 1944)

where

Definition (geometric realisation, Milnor 1957)
$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

Theorem (Quillen 1968)
Geometric realisation is left part of a Quillen equivalence.

## Definition (simplicial homology, Eilenberg 1944)


where

## Definition (geometric realisation, Milnor 1957)

$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

## Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.
Definition (simplicial homology, Eilenberg 1944)


$$
X_{\bullet} \longmapsto \mathbb{Z}\left[X_{\bullet}\right] \longmapsto\left(N_{\bullet}(X), d_{\bullet}\right) \longmapsto H_{\bullet}(X)
$$

where $\square$
is isomorphic to the


Definition (geometric realisation, Milnor 1957)
$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

## Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.
Definition (simplicial homology, Eilenberg 1944)


$$
X_{\bullet} \longmapsto \mathbb{Z}\left[X_{\bullet}\right] \longmapsto\left(N_{\bullet}(X), d_{\bullet}\right) \longmapsto H_{\bullet}(X)
$$

where $\left(N_{n}(X)=\mathbb{Z}\left[X_{n}\right] / \mathbb{Z}\left[D_{n}(X)\right], d_{n}=\sum_{k}(-1)^{k} X\left(\epsilon_{k}^{n}\right)\right)$
is isomorphic to the

Definition (geometric realisation, Milnor 1957)
$\Delta \hookrightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension along Yoneda

## Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.
Definition (simplicial homology, Eilenberg 1944)


$$
X_{\bullet} \longmapsto \mathbb{Z}\left[X_{\bullet}\right] \longmapsto\left(N_{\bullet}(X), d_{\bullet}\right) \longmapsto H_{\bullet}(X)
$$

where $\left(N_{n}(X)=\mathbb{Z}\left[X_{n}\right] / \mathbb{Z}\left[D_{n}(X)\right], d_{n}=\sum_{k}(-1)^{k} X\left(\epsilon_{k}^{n}\right)\right)$
is isomorphic to the
Moore chain complex $\left(M_{n}(X)=\bigcap_{0 \leq k<n} \operatorname{ker} X\left(\epsilon_{k}^{n}\right), d_{n}=X\left(\epsilon_{n}^{n}\right)\right)$.

Involutive factorisation systems \& Dold-Kan correspondences Simplicial objects

## Proposition (Dold 1958)

Moore normalisation $M$ admits a left adjoint $K$ assigning to a chain complex $\left(C_{\bullet}, d_{\bullet}\right)$ the simplicial abelian group

$$
K\left(C_{\bullet}, d_{\bullet}\right)_{n}=\bigoplus_{[n] \rightarrow[k]} C_{k} \text { with }
$$

## Remark (unit/counit for (K, M)-adjunction)

## Proposition (Dold 1958)

Moore normalisation $M$ admits a left adjoint $K$ assigning to a chain complex $\left(C_{\bullet}, d_{\bullet}\right)$ the simplicial abelian group

$$
K\left(C_{0}, d_{\mathbf{0}}\right)_{n}=\bigoplus_{[n] \rightarrow[k]} C_{k} \text { with }
$$



0 otherwise

## Remark (unit/counit for (K, M)-adjunction)

## Proposition (Dold 1958)

Moore normalisation $M$ admits a left adjoint $K$ assigning to a chain complex $\left(C_{\bullet}, d_{\bullet}\right)$ the simplicial abelian group

$$
K\left(C_{0}, d_{0}\right)_{n}=\bigoplus_{[n] \rightarrow[k]} C_{k} \text { with } K(\phi): \bigoplus_{[n] \rightarrow[k]} C_{k} \rightarrow \bigoplus_{[m] \rightarrow[j]} C_{j}
$$

$$
\left(d_{k} \text { if }[m] \xrightarrow{\phi}[n]\right.
$$

$$
\text { where } K(\phi)_{a b}=\left\{\begin{array}{l}
\quad{ }^{\downarrow} \\
{[k-1]_{\epsilon_{k}^{k}}^{\longrightarrow}} \\
\\
k k]
\end{array}\right.
$$

0 otherwise

## Remark (unit/counit for ( $K, M$ )-adjunction)

one has


## Proposition (Dold 1958)

Moore normalisation $M$ admits a left adjoint $K$ assigning to a chain complex $\left(C_{\bullet}, d_{0}\right)$ the simplicial abelian group

$$
K\left(C_{0}, d_{0}\right)_{n}=\bigoplus_{[n] \rightarrow[k]} C_{k} \text { with } K(\phi): \bigoplus_{[n] \rightarrow[k]} C_{k} \rightarrow \bigoplus_{[m] \rightarrow[j]} C_{j}
$$

$$
\text { where } K(\phi)_{a b}=\left\{\begin{array}{cc}
d_{k} \text { if } & {[m] \xrightarrow{\phi}[n]} \\
& \\
& \\
& {[k-1]_{\epsilon_{k}^{k}}} \\
& \\
& \\
& k]
\end{array}\right.
$$

0 otherwise

## Remark (unit/counit for ( $K, M$ )-adjunction)

- unit: $\forall C_{\bullet} \in \operatorname{Ch}(\mathbb{Z})$ one has $C_{\bullet} \cong M K C_{\bullet} \rightsquigarrow$ easy



## Proposition (Dold 1958)

Moore normalisation $M$ admits a left adjoint $K$ assigning to a chain complex $\left(C_{\bullet}, d_{0}\right)$ the simplicial abelian group

$$
K\left(C_{0}, d_{0}\right)_{n}=\bigoplus_{[n] \rightarrow[k]} C_{k} \text { with } K(\phi): \bigoplus_{[n] \rightarrow[k]} C_{k} \rightarrow \bigoplus_{[m] \rightarrow[j]} C_{j}
$$

0 otherwise

## Remark (unit/counit for ( $K, M$ )-adjunction)

- unit: $\forall C_{\bullet} \in \operatorname{Ch}(\mathbb{Z})$ one has $C_{\bullet} \cong M K C_{\bullet} \rightsquigarrow$ easy
- counit: $\forall A_{\bullet} \in \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}}$ one has $K M A_{\bullet} \cong A_{\bullet} \quad \rightsquigarrow$ difficult

Involutive factorisation systems \& Dold-Kan correspondences
Involutive factorisation systems

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{C}}(A) \cong$ Quot $_{\mathcal{C}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$.

## Remark (Involutive factorisation system for $\Delta$ )

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$.

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.

$$
\begin{aligned}
& e e^{*}=1 \text { (the split idempotent } e^{*} e \text { is called an } \mathcal{E} \text {-projector); } \\
& \text { the morphisms } f^{*} e \text { form a subcategory of } \mathcal{C} \text {; } \\
& \forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m ; \\
& \operatorname{Proj}_{\mathcal{E}}(A) \text { is finite. Primitive } \mathcal{E} \text {-projectors can be linearly } \\
& \text { ordered such that if } \phi \text { precedes } \psi \text { then } \psi \phi \text { is an } \mathcal{E} \text {-projector. }
\end{aligned}
$$

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$

Remark (Involutive factorisation system for $\Delta$ )


## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth. (I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);


## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$

Remark (Involutive factorisation system for $\Delta$ )
Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth. (I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector); (I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;


Remark (primitive $\mathcal{E}$-projectors)
$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$

Remark (Involutive factorisation system for $\Delta$ )
Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.
(I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);
(I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;
(I3) $\forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m$;
ordered such that if $\phi$ precedes $\psi$ then $\psi \phi$ is an $\mathcal{E}$-projector.

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$

Remark (Involutive factorisation system for $\triangle$ )
Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.
(I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);
(I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;
(I3) $\forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m$;
(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive $\mathcal{E}$-projectors can be linearly ordered such that if $\phi$ precedes $\psi$ then $\psi \phi$ is an $\mathcal{E}$-projector.

## Remark (primitive $\mathcal{E}$-projectors) <br> $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$.

## Remark (Involutive factorisation system for $\triangle$ )

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.
(I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);
(I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;
(I3) $\forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m$;
(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive $\mathcal{E}$-projectors can be linearly ordered such that if $\phi$ precedes $\psi$ then $\psi \phi$ is an $\mathcal{E}$-projector.

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$.

## Remark (Involutive factorisation system for $\triangle$ )

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.
(I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);
(I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;
(I3) $\forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m$;
(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive $\mathcal{E}$-projectors can be linearly ordered such that if $\phi$ precedes $\psi$ then $\psi \phi$ is an $\mathcal{E}$-projector.

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong$ Quot $_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$.

## Remark (Involutive factorisation system for $\Delta$ )

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$.

## Definition (Involutive factorisation system)

A factorisation system $(\mathcal{E}, \mathcal{M})$ on $\mathcal{C}$ is called involutive if there is a specified faithful, identity-on-objects functor $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ sth.
(I1) $e e^{*}=1$ (the split idempotent $e^{*} e$ is called an $\mathcal{E}$-projector);
(I2) the morphisms $f^{*} e$ form a subcategory of $\mathcal{C}$;
(I3) $\forall(A \xrightarrow{m} B) \in \mathcal{M} \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B): m \phi=\psi m$;
(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive $\mathcal{E}$-projectors can be linearly ordered such that if $\phi$ precedes $\psi$ then $\psi \phi$ is an $\mathcal{E}$-projector.

## Remark (primitive $\mathcal{E}$-projectors)

$\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive $\mathcal{E}$-projectors are covered by $1_{A}$.

## Remark (Involutive factorisation system for $\Delta$ )

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive $\mathcal{E}$-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i \leq n$.

## Definition（essential $M$－maps）

An $\mathcal{M}$－map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$－projector of $B$ fixing $m$ ．

## Remark（essential $\mathcal{M}$－maps of $\Delta$ ）

are precisely the＂last＂face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$ ．

## Lemma（quotienting out inessential $\mathcal{M}$－maps）

By axiom（I3）the inessential $\mathcal{M}$－maps form an icleal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$ ． In particular，there is a locally pointed category $\bar{E}_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$ ．

## Remark（description of $\Xi_{\Delta}$ ）



## Definition (essential $\mathcal{M}$-maps)

An $\mathcal{M}$-map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$-projector of $B$ fixing $m$.

## Remark (essential $\mathcal{M}$-maps of $\boldsymbol{\Delta}$ )

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$.

Lemma (quotienting out inessential $\mathcal{M}$-maps)
By axiom (I3) the inessential $\mathcal{M}$-maps form an icleal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$
In particular, there is a locally pointed category $\bar{\Xi}_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$

## Remark (description of $\Xi_{\Delta}$ )



## Definition (essential $\mathcal{M}$-maps)

An $\mathcal{M}$-map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$-projector of $B$ fixing $m$.

## Remark (essential $\mathcal{M}$-maps of $\Delta$ )

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

## Lemma (quotienting out inessential $\mathcal{M}$-maps) <br> By axiom (13) the inessential $\mathcal{1}$-maps form an ideal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$ In particular, there is a locally pointed category $\bar{\Xi}_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

## Remark (description of $\bar{\Xi}_{\Delta}$ )



## Definition (essential $\mathcal{M}$-maps)

An $\mathcal{M}$-map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$-projector of $B$ fixing $m$.

## Remark (essential $\mathcal{M}$-maps of $\Delta$ )

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

## Lemma (quotienting out inessential $\mathcal{M}$-maps)

By axiom (I3) the inessential $\mathcal{M}$-maps form an ideal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$. In particular, there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.


## Definition (essential $\mathcal{M}$-maps)

An $\mathcal{M}$-map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$-projector of $B$ fixing $m$.

## Remark (essential $\mathcal{M}$-maps of $\Delta$ )

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

## Lemma (quotienting out inessential $\mathcal{M}$-maps)

By axiom (I3) the inessential $\mathcal{M}$-maps form an ideal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$. In particular, there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Remark (description of $\Xi_{\Delta}$ )


## Definition (essential $\mathcal{M}$-maps)

An $\mathcal{M}$-map $m: A \rightarrow B$ is called essential if $1_{B}$ is the only $\mathcal{E}$-projector of $B$ fixing $m$.

## Remark (essential $\mathcal{M}$-maps of $\Delta$ )

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

## Lemma (quotienting out inessential $\mathcal{M}$-maps)

By axiom (I3) the inessential $\mathcal{M}$-maps form an ideal $\mathcal{M}_{\text {iness }}$ in $\mathcal{M}$. In particular, there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Remark (description of $\Xi_{\Delta}$ )


Involutive factorisation systems \& Dold-Kan correspondences Dold-Kan correspondences

## Theorem (generalised Dold-Kan correspondence, BCW 2019)

## Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ ) <br> Denote $i: \mathcal{M} \hookrightarrow \mathcal{C}$ and $a: \mathcal{M} \rightarrow \Xi_{c}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

## Examples

# Theorem (generalised Dold-Kan correspondence, BCW 2019) <br> For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence <br> $$
M_{C}:\left[C^{\circ \mathrm{op}}, \mathcal{A}\right] \simeq\left[\overline{\underline{E}}_{C}^{+0}, \mathcal{A}\right]_{*}: K_{C}
$$ 

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

## Examples

Theorem (generalised Dold-Kan correspondence, BCW 2019)
For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \Xi_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$

## Examples

## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.


## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\overline{\mathcal{C}}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{j!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Examples

- 「 (Pirashvili 2000) and FIG (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukasc-Weiss 2011) and $\Omega$ (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)


## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{j!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Examples

- 「 (Pirashvili 2000) and FI (Church-Ellenberg-Farb 2015)



## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\overline{\mathcal{C}}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Examples

- 「 (Pirashvili 2000) and FIL (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukasc-Weiss 2011) and $\Omega$ (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)


## Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category $\mathcal{C}$ with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category $\mathcal{A}$ there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C}$ )
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\overline{\mathcal{C}}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

## Examples

- 「 (Pirashvili 2000) and FIL (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukasc-Weiss 2011) and $\Omega$ (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Involutive factorisation systems \& Dold-Kan correspondences Joyal's categories $\Theta_{n}$

## Definition (categorical wreath product over $\triangle$ )

For any small category $\mathcal{A}$ the category $\Delta$ ? $\mathcal{A}$ is defined by

Definition (Joyal 1997, B 2007)

$$
\text { Put } \Theta_{1}=\Delta \text { and for } n>1: \Theta_{n}=\Delta 2 \Theta_{n-1}
$$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into nCat, i.e. there is a fully faithful functor

$$
N_{\Theta_{n}}: \text { neat } \rightarrow \text { Sets }^{\Theta_{n}^{\circ p}}
$$

## Definition (categorical wreath product over $\triangle$ )

For any small category $\mathcal{A}$ the category $\Delta \mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta \imath \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$


Definition (Joyal 1997, B 2007)
Put $\Theta_{1}=\Delta$ and for $\left.n>1: \Theta_{n}=\Delta\right\} \Theta_{n-1}$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into nCat, i.e. there is a fully faithful functor


## Definition (categorical wreath product over $\Delta$ )

For any small category $\mathcal{A}$ the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$



## Definition (Joyal 1997, B 2007)

Put $\Theta_{1}=\Delta$ and for $n>1: \Theta_{n}=\Delta \zeta \Theta_{n-1}$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into nCat, i.e. there is a fully faithful functor


## Definition (categorical wreath product over $\Delta$ )

For any small category $\mathcal{A}$ the category $\Delta \zeta \mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (Joyal 1997, B 2007)
Put $\Theta_{1}=\Delta$ and for $n>1: \Theta_{n}=\Delta \zeta \Theta_{n-1}$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into $n C a t$, i.e. there is a fully faithful functor

## Definition (categorical wreath product over $\Delta$ )

For any small category $\mathcal{A}$ the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (Joyal 1997, B 2007)
Put $\Theta_{1}=\Delta$ and for $n>1: \Theta_{n}=\Delta \imath \Theta_{n-1}$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into nCat, i.e. there is a fully faithful functor

## Definition (categorical wreath product over $\Delta$ )

For any small category $\mathcal{A}$ the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (Joyal 1997, B 2007)
Put $\Theta_{1}=\Delta$ and for $n>1: \Theta_{n}=\Delta \imath \Theta_{n-1}$

## Theorem (Makkai-Zawadowski 2003, B 2003)

$\Theta_{n}$ embeds densely into $n C a t$, i.e. there is a fully faithful functor

$$
N_{\Theta_{n}}: \text { nCat } \rightarrow \text { Sets }^{\Theta_{n}^{\mathrm{op}}}
$$

Involutive factorisation systems \& Dold-Kan correspondences
Joyal's categories $\Theta_{n}$

## Definition (elegant Reedy category=strict EZ-category)

A Reedy category $\mathcal{C}$ has a strict $(\mathcal{E}, \mathcal{M})$-factorisation system, a grading deg: ObC $\rightarrow \mathbb{N}$ such that $\mathcal{E}$ (resp. $\mathcal{M}$ )-maps lower (resp. increase) degree. $\mathcal{C}$ is elegant if $\mathcal{E}$ has absolute pushouts in $\mathcal{C}$.

Lemma (gen. Eilenberg-Zilber for EZ-category, B-Moerdijk 2011)
For any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi: c \rightarrow d$ in $\mathcal{E}$ and "non-degenerate" $y \in X(d)$.

## Proposition (Bergner-Rezk 2017)

If $\mathcal{A}$ is an elegant Reedy category then so is $\triangle 2 \mathcal{A}$.
In particular, $\Theta_{n}$ is an elegant Reedy category.

## Proposition (BCW 2019)

If $\mathcal{A}$ has an involutive Reedy factorisation then so has $\triangle$ ? $\mathcal{A}$.
In particular, $\Theta_{n}$ has an involutive Reedy factorisation system.

> Definition (elegant Reedy category=strict EZ-category)
> A Reedy category $\mathcal{C}$ has a strict $(\mathcal{E}, \mathcal{M})$-factorisation system, a grading deg: ObC $\rightarrow \mathbb{N}$ such that $\mathcal{E}$ (resp. $\mathcal{M}$ )-maps lower (resp. increase) degree. $\mathcal{C}$ is elegant if $\mathcal{E}$ has absolute pushouts in $\mathcal{C}$.

> Lemma (gen. Eilenberg-Ziber for EZ-category, B-Moerdijk 2011) For any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi: c \rightarrow d$ in $\mathcal{E}$ and "non-degenerate" $y \in X(d)$

> Proposition (Bergner-Rezk 2017)
> If $\mathcal{A}$ is an elegant Reedy category then so is $\Delta$ ? $\mathcal{A}$ In particular, $\Theta_{n}$ is an elegant Reedy category.

## Proposition (BCW 2019)

If $\mathcal{A}$ has an involutive Reedy factorisation then so has $\Delta \mathcal{A}$ In particular, $\Theta_{n}$ has an involutive Reedy factorisation system

## Definition (elegant Reedy category=strict EZ-category)

A Reedy category $\mathcal{C}$ has a strict $(\mathcal{E}, \mathcal{M})$-factorisation system, a grading deg: ObC $\rightarrow \mathbb{N}$ such that $\mathcal{E}$ (resp. $\mathcal{M}$ )-maps lower (resp. increase) degree. $\mathcal{C}$ is elegant if $\mathcal{E}$ has absolute pushouts in $\mathcal{C}$.

## Lemma (gen. Eilenberg-Zilber for EZ-category, B-Moerdijk 2011)

For any presheaf $X: \mathcal{C}^{\mathrm{op}} \rightarrow$ Sets, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi: c \rightarrow d$ in $\mathcal{E}$ and "non-degenerate" $y \in X(d)$.

[^0]
## Proposition (BCW 2019)

If $\mathcal{A}$ has an involutive Reedy factorisation then so has $\triangle$ ? In particular, $\Theta_{n}$ has an involutive Reedy factorisation system

## Definition (elegant Reedy category=strict EZ-category)

A Reedy category $\mathcal{C}$ has a strict $(\mathcal{E}, \mathcal{M})$-factorisation system, a grading deg: ObC $\rightarrow \mathbb{N}$ such that $\mathcal{E}$ (resp. $\mathcal{M}$ )-maps lower (resp. increase) degree. $\mathcal{C}$ is elegant if $\mathcal{E}$ has absolute pushouts in $\mathcal{C}$.

## Lemma (gen. Eilenberg-Zilber for EZ-category, B-Moerdijk 2011)

For any presheaf $X: \mathcal{C}^{\mathrm{op}} \rightarrow$ Sets, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi: c \rightarrow d$ in $\mathcal{E}$ and "non-degenerate" $y \in X(d)$.

## Proposition (Bergner-Rezk 2017)

If $\mathcal{A}$ is an elegant Reedy category then so is $\Delta \imath \mathcal{A}$. In particular, $\Theta_{n}$ is an elegant Reedy category.
$\square$
Proposition (BCW 2019)
If $\mathcal{A}$ has an involutive Reedy factorisation then so has $\Delta$ ? In particular, $\Theta_{n}$ has an involutive Reedy factorisation system

## Definition (elegant Reedy category=strict EZ-category)

A Reedy category $\mathcal{C}$ has a strict $(\mathcal{E}, \mathcal{M})$-factorisation system, a grading deg: ObC $\rightarrow \mathbb{N}$ such that $\mathcal{E}$ (resp. $\mathcal{M}$ )-maps lower (resp. increase) degree. $\mathcal{C}$ is elegant if $\mathcal{E}$ has absolute pushouts in $\mathcal{C}$.

Lemma (gen. Eilenberg-Zilber for EZ-category, B-Moerdijk 2011)
For any presheaf $X: \mathcal{C}^{\mathrm{op}} \rightarrow$ Sets, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi: c \rightarrow d$ in $\mathcal{E}$ and "non-degenerate" $y \in X(d)$.

## Proposition (Bergner-Rezk 2017)

If $\mathcal{A}$ is an elegant Reedy category then so is $\Delta 乙 \mathcal{A}$. In particular, $\Theta_{n}$ is an elegant Reedy category.

## Proposition (BCW 2019)

If $\mathcal{A}$ has an involutive Reedy factorisation then so has $\Delta$ l $\mathcal{A}$. In particular, $\Theta_{n}$ has an involutive Reedy factorisation system.

Involutive factorisation systems \& Dold-Kan correspondences
Joyal's categories $\Theta_{n}$

## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{=}}_{\Theta_{n}}^{\mathrm{op}}, \mathrm{Ab}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

## Example (cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)$ for $n=1,2,3$ )

| \# cells in dim | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 2)$ | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 3)$ | 1 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 |

Involutive factorisation systems \& Dold-Kan correspondences
Joyal's categories $\Theta_{n}$

## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

## Example (cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)$ for $n=1,2,3$ )

| \# cells in $\operatorname{dim}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 2)$ | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 3)$ | 1 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 |

Joyal's categories $\Theta_{n}$

## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

- For each abelian group $A$ there is an abelian group object $B^{n} A$ in nCat with one $k$-cell for $0 \leq k<n$;
- $\left|N_{O_{n}}\left(R^{n} A\right)\right|$ is a cellular model for $K(A n)$
- Its cellular chain complex is the "totalisation" of corresponding $\bar{\Xi}_{\Theta_{n}}^{\text {op }}$-complex.


## Example (cels of $K(\mathbb{Z} / 2 \mathbb{Z}, n$ ) for $n=1,2,3)$

| \# cells in dim | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 2)$ | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 3)$ | 1 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 |

## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{=}}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

- For each abelian group $A$ there is an abelian group object $B^{n} A$ in nCat with one $k$-cell for $0 \leq k<n$;

- Its cellular chain complex is the "totalisation" of corresponding $\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}$-complex.



## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{=}}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

- For each abelian group $A$ there is an abelian group object $B^{n} A$ in nCat with one $k$-cell for $0 \leq k<n$;
- $\left|N_{\Theta_{n}}\left(B^{n} A\right)\right|$ is a cellular model for $K(A, n)$
- Its cellular chain complex is the "totalisation" of corresponding $\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}$-complex.



## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{=}}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

## Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

- For each abelian group $A$ there is an abelian group object $B^{n} A$ in nCat with one $k$-cell for $0 \leq k<n$;
- $\left|N_{\Theta_{n}}\left(B^{n} A\right)\right|$ is a cellular model for $K(A, n)$
- Its cellular chain complex is the "totalisation" of corresponding $\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}$-complex.



## Theorem (BCW 2019)

$$
\underline{\mathrm{Ab}}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}, \underline{\mathrm{Ab}}\right]_{*}
$$

Remark ( $\Theta_{n}$-set model for Eilenberg-MacLane spaces)

- For each abelian group $A$ there is an abelian group object $B^{n} A$ in nCat with one $k$-cell for $0 \leq k<n$;
- $\left|N_{\Theta_{n}}\left(B^{n} A\right)\right|$ is a cellular model for $K(A, n)$
- Its cellular chain complex is the "totalisation" of corresponding $\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}$-complex.

Example (cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)$ for $n=1,2,3$ )

| \# cells in dim | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 2)$ | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 |
| $K(\mathbb{Z} / 2 \mathbb{Z}, 3)$ | 1 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 |


[^0]:    Proposition (Bergner-Rezk 2017)
    If $\mathcal{A}$ is an elegant Reedy category then so is $\Delta \imath \mathcal{A}$ In particular, $\Theta_{n}$ is an elegant Reedy category.

