Dold-Kan categories \& Catalan monoids

Clemens Berger ${ }^{1}$

Toulouse, 20-24 Juin, 2022
CATS60 - celebrating Carlos Simpson's 60th birthday
${ }^{1}$ joint with Christophe Cazanave and Ingo Waschkies
(1) Introduction
(2) The simplex category Δ
(3) Generalised Dold-Kan correspondence

4 Joyal's categories Θ_{n}
(5) Catalan monoids

Theorem (Bold 1958, Kan 1958)

$$
M: \mathrm{Ah}^{\Delta^{\mathrm{op}}} \sim \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=(0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=(0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=\left(0 \leftarrow \cdots \leftarrow 0 \leftarrow A_{n} \leftarrow 0 \leftarrow \cdots\right)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=\left(0 \leftarrow \cdots \leftarrow 0 \leftarrow A_{n} \leftarrow 0 \leftarrow \cdots\right)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for $K(A, n)$'s via Joyal's cell categories Θ_{n} - Catalan monoids

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=\left(0 \leftarrow \cdots \leftarrow 0 \leftarrow A_{n} \leftarrow 0 \leftarrow \cdots\right)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for $K(A, n)$'s via Joyal's cell categories Θ_{n} - Catalan monoids

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=\left(0 \leftarrow \cdots \leftarrow 0 \leftarrow A_{n} \leftarrow 0 \leftarrow \cdots\right)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for $K(A, n)$'s via Joyal's cell categories Θ_{n}
- Catalan monoids

Theorem (Dold 1958, Kan 1958)

$$
M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K
$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n)=\left(0 \leftarrow \cdots \leftarrow 0 \leftarrow A_{n} \leftarrow 0 \leftarrow \cdots\right)$ is a simplicial model for an Eilenberg-MacLane space of type $K(A, n)$.

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for $K(A, n)$'s via Joyal's cell categories Θ_{n}
- Catalan monoids

The simplex category Δ

Definition (simplex category \triangle)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

Definition (simplex category Δ)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

Definition (simplex category Δ)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Fvery simnlicial onerator $\phi:[m] \rightarrow[n]$ factors as

Definition (simplex category Δ)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators η_{i}^{n}

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as

Definition (simplex category Δ)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as

Definition (simplex category Δ)

$\mathrm{Ob} \Delta=\{[n]=\{0,1 \ldots, n\}, n \geq 0\}$, Mor $\Delta=\{$ monotone maps $\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_{i}^{n}:[n-1] \rightarrow[n], 0 \leq i \leq n$, and
- degeneracy operators $\eta_{i}^{n}:[n+1] \rightarrow[n], 0 \leq i \leq n$.

Every simplicial operator $\phi:[m] \rightarrow[n]$ factors as

Definition (Milnor 1957 - geometric realisation)

The functor $\Delta \rightarrow$ Top : $[n] \mapsto \Delta_{n}$ vields by left Kan extension geometric realisation $|-|_{\Delta}:$ Sets $^{\Delta^{\text {op }}} \rightarrow$ Top.

Definition (Eilenberg 1944 - simplicial homology)

$$
\begin{aligned}
& \text { Sets }^{\wedge \mathrm{OP}} \longrightarrow \mathrm{Ab}^{\wedge^{\mathrm{OP}} \quad \mathrm{C}} \mathrm{Ch}^{(\mathbb{Z})} \longrightarrow \mathrm{Ab}^{\mathrm{DT}} \\
& X_{0} \longmapsto \mathbb{Z}_{\left[X_{0}\right]}\left(C_{0}(X), d_{0}\right) \longmapsto H_{0}(X)
\end{aligned}
$$

There are canonical isomorphisms

Definition (Milnor 1957 - geometric realisation)

The functor $\Delta \rightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension geometric realisation $|-|_{\Delta}:$ Sets $^{\Delta^{\mathrm{op}}} \rightarrow$ Top. Each $|X|$ is a
CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 - simplicial homology)

$$
\begin{aligned}
& \operatorname{Sets}^{\Lambda^{\circ p}} \longrightarrow \mathrm{Ab}^{\Lambda^{\mathrm{op}}} \xrightarrow{C} \mathrm{Ch}(\mathbb{Z}) \longrightarrow \mathrm{Ab}^{\mathbb{N}} \\
& X_{0} \longmapsto \mathbb{Z}\left[X_{0}\right] \longmapsto\left(C_{0}(X), d_{0}\right) \longmapsto H_{0}(X)
\end{aligned}
$$

There are canonical isomorphisms

Definition (Milnor 1957 - geometric realisation)

The functor $\Delta \rightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension geometric realisation $|-|_{\Delta}:$ Sets $^{\Delta^{\mathrm{op}}} \rightarrow$ Top. Each $|X|$ is a $C W$-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 - simplicial homology)

There are canonical isomorphisms

Definition (Milnor 1957 - geometric realisation)

The functor $\Delta \rightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension geometric realisation $|-|_{\Delta}:$ Sets $^{\Delta^{\mathrm{op}}} \rightarrow$ Top. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 - simplicial homology)

$$
\begin{aligned}
& \operatorname{Sets}^{\Delta^{\mathrm{op}} \longrightarrow \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \xrightarrow{C} \mathrm{Ch}(\mathbb{Z}) \longrightarrow \underline{\mathrm{Ab}}^{\mathbb{N}}} \\
& X_{\bullet} \longmapsto \mathbb{Z}\left[X_{\bullet}\right] \longmapsto\left(C_{\bullet}(X), d_{\bullet}\right) \longmapsto H_{\bullet}(X)
\end{aligned}
$$

There are canonical isomorphisms

Definition (Milnor 1957 - geometric realisation)

The functor $\Delta \rightarrow$ Top : $[n] \mapsto \Delta_{n}$ yields by left Kan extension geometric realisation $|-|_{\Delta}:$ Sets $^{\Delta^{\mathrm{Op}}} \rightarrow$ Top. Each $|X|$ is a $C W$-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 - simplicial homology)

$$
\begin{aligned}
& \operatorname{Sets}^{\Delta^{\mathrm{op}} \longrightarrow \underline{A b}^{\Delta^{\mathrm{op}}} \xrightarrow{C} \mathrm{Ch}(\mathbb{Z}) \longrightarrow \underline{\mathrm{Ab}}^{\mathbb{N}}} \\
& X_{\bullet} \longmapsto \mathbb{Z}\left[X_{\bullet}\right] \longmapsto\left(C_{\bullet}(X), d_{\bullet}\right) \longmapsto H_{\bullet}(X)
\end{aligned}
$$

There are canonical isomorphisms

$$
C_{n}^{\text {cell }}(|X|) \cong C_{n}(X)=\mathbb{Z}\left[X_{n}\right] / \mathbb{Z}\left[D_{n}(X)\right] \cong \bigcap_{0 \leq k<n} \operatorname{ker}\left(\epsilon_{k}^{n}\right)=M_{n}(X)
$$

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.

Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible.
Definition (essential and inessential \mathcal{M}-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
> $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector); (2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C}; (3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
> (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

Definition (primitive \mathcal{E}-projectors $\epsilon^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible
Definition (essential and inessential M-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
> (2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E})$ form a subcategory of \mathcal{C}; (3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
> (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

> Definition (primitive \mathcal{E}-projectors $\epsilon^{*} e$)
> Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible.

Definition (essential and inessential M-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
(2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};

Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
$\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated
in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible.

Definition (essential and inessential \mathcal{M}-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
(2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
(3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};

> Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible

Definition (essential and inessential \mathcal{M}-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
(2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
(3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
(4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

> Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible

Definition (essential and inessential \mathcal{M}-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
(2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
(3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
(4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible.

Definition (essential and inessential M-maps)
An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only
\mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Definition (Dold-Kan category)

$\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is a DK-category whenever $(-)^{*}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.
(1) $e e^{*}=1$ (the idempotent $e^{*} e$ is called an \mathcal{E}-projector);
(2) the morphisms $f^{*} e($ for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
(3) Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
(4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_{j} \phi_{i}$ is an \mathcal{E}-projector for $i<j$.

Definition (primitive \mathcal{E}-projectors $e^{*} e$)

Whenever $e=e_{2} e_{1}$ then either e_{1} or e_{2} is invertible.

Definition (essential and inessential \mathcal{M}-maps)

An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_{B} is the only \mathcal{E}-projector of B fixing m. Otherwise m is called inessential.

Remark（DK－category structure for Δ ）

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$ ．

Remark（essential \mathcal{M}－maps of Δ ）

are precisely the＂last＂face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$ ．

Lemma（quotienting out inessential \mathcal{M}－maps）

By axiom（3），there is a locally pointed category $\Xi_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$ ．

Remark（description of $\bar{\Xi}_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$ ）

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq$

Remark (essential M-maps of Δ)

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)
By axiom (3), there is a locally pointed category $\bar{E}_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$

Remark (description of $\bar{\Xi}_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$)

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i<n$.

Remark (essential \mathcal{M}-maps of Δ)

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)

By axiom (3), there is a locally pointed category $\Xi_{C}=\mathcal{M} / \mathcal{M}_{\text {iness }}$

Remark (description of $\Xi_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$)

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i<n$.

Remark (essential \mathcal{M}-maps of Δ)

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

Remark (description of $\bar{\Xi}_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$)

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i<n$.

Remark (essential \mathcal{M}-maps of Δ)

are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \mapsto[n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)
By axiom (3), there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i<n$.

Remark (essential \mathcal{M}-maps of Δ) are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)
By axiom (3), there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Remark (description of $\bar{\Xi}_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$)

Remark (DK-category structure for Δ)

Each epi $e:[m] \rightarrow[n]$ has a maximal section $e^{*}:[n] \rightarrow[m]$. The primitive \mathcal{E}-projectors of $[n]$ are the $\eta_{i}^{*} \eta_{i}=\epsilon_{i} \eta_{i}, 0 \leq i<n$.

Remark (essential \mathcal{M}-maps of Δ) are precisely the "last" face operators $\epsilon_{n}^{n}:[n-1] \longmapsto[n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)
By axiom (3), there is a locally pointed category $\bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Remark (description of $\bar{\Xi}_{\Delta}=\mathcal{M} / \mathcal{M}_{\text {iness }}$)

Theorem (generalised Dold-Kan correspondence, BCW 2022)

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C}) Denote $i: \mathcal{M} \hookrightarrow \mathcal{C}$ and $a: \mathcal{M} \rightarrow \Xi_{c}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Examples

Theorem (generalised Dold-Kan correspondence, BCW 2022)
 For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence
 $$
M_{C}:[C o n, A] \sim\left[\begin{array}{ll} {[=\mathrm{Ap}} & \mathcal{A} \end{array}\right]_{*}: K_{C}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})

Examples

Theorem (generalised Dold-Kan correspondence, BCW 2022)
For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing M_{C} and K_{C} for general DK-categories C)
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Examples

Theorem (generalised Dold-Kan correspondence, BCW 2022)
For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$.

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\overline{\mathcal{C}}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Examples

> - 「 (Pirashvili 2000) and FĬ (Church-Ellenberg-Farb 2015)
> - $\Omega_{\text {planar }}$ (Gutierrez-Lukacs-Weiss 2011)
> - cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\overline{\mathcal{C}}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Examples

- 「 (Pirashvili 2000) and FI (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukacs-Weiss 2011)

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{E}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Examples

- 「 (Pirashvili 2000) and FIL (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukacs-Weiss 2011)

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \simeq\left[\bar{Z}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})
Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \rightarrow \bar{\Xi}_{\mathcal{C}}=\mathcal{M} / \mathcal{M}_{\text {iness }}$. Then

$$
M_{\mathcal{C}}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{A}\right] \underset{\mathrm{j}!}{\stackrel{j^{*}}{\rightleftarrows}}\left[\mathcal{M}^{\mathrm{op}}, \mathcal{A}\right] \underset{q^{*}}{\stackrel{q_{*}}{\rightleftarrows}}\left[\bar{\Xi}_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\mathcal{C}}
$$

Examples

- 「 (Pirashvili 2000) and FIL (Church-Ellenberg-Farb 2015)
- $\Omega_{\text {planar }}$ (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

Joyal's categories Θ_{n}

Definition (wreath product over \triangle)

For any small category \mathcal{A} the category $\triangle ? \mathcal{A}$ is defined by

```
Definition (B 2007, cf. Joyal 1997)
Put }\mp@subsup{\Theta}{1}{}=\Delta\mathrm{ and }\mp@subsup{\Theta}{n}{}=\Delta\imath\mp@subsup{\Theta}{n-1}{}\mathrm{ for }n>1
```


Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

$$
\mathrm{nCat} \hookrightarrow \operatorname{Sets}^{\Theta_{n}^{\mathrm{op}}}
$$

Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \mathfrak{A}$ is defined by

- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_{1}=\Delta$ and $\Theta_{n}=\Delta \imath \Theta_{n-1}$ for $n>1$

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta \backslash \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_{1}=\Delta$ and $\Theta_{n}=\Delta\left\langle\Theta_{n-1}\right.$ for $n>1$

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_{1}=\Delta$ and $\Theta_{n}=\Delta \imath \Theta_{n-1}$ for $n>1$

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)
Put $\Theta_{1}=\Delta$ and $\Theta_{n}=\Delta \imath \Theta_{n-1}$ for $n>1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta\{\mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta / \mathcal{A})=\coprod_{n \geq 0} \mathcal{A}^{n}=\left\{\left([m] ; A_{1}, \ldots, A_{m}\right)\right\}$
- $\left.\left(\phi ; \phi_{i j}\right):\left([m], A_{1}, \ldots, A_{m}\right) \rightarrow\left([n], B_{1}, \ldots, B_{n}\right)\right)$ is given by $\phi:[m] \rightarrow[n]$ and $\phi_{i j}: A_{i} \rightarrow B_{j}$ whenever $\phi(i-1)<j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_{1}=\Delta$ and $\Theta_{n}=\Delta \imath \Theta_{n-1}$ for $n>1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_{n} fully embeds in nCat, inducing a fully faithful nerve functor

$$
\mathrm{nCat} \hookrightarrow \operatorname{Sets}^{\Theta_{n}^{\mathrm{op}}}
$$

Joyal's categories Θ_{n}

Remark (2-categorical structure of $[2]([2],[0])$ in Θ_{2})

Proposition (full embedding $\Theta_{n} \hookrightarrow$ nCat)

$$
\Theta_{n}(S, T)=\operatorname{nCat}\left(\mathcal{F}_{n}\left(S_{*}\right), \mathcal{F}_{n}\left(T_{*}\right)\right)
$$

where $\mathcal{F}_{n}: \mathrm{nGrph} \rightarrow \mathrm{nCat}$ is left adjoint to the forgeful functor.

Remark (2-categorical structure of $[2]([2],[0])$ in Θ_{2})

T
T_{*}

Proposition (full embedding $\Theta_{n} \hookrightarrow$ nCat)

$$
\Theta_{n}(S, T)=\operatorname{nCat}\left(\mathcal{F}_{n}\left(S_{*}\right), \mathcal{F}_{n}\left(T_{*}\right)\right)
$$

where $\mathcal{F}_{n}: \mathrm{nGrph} \rightarrow \mathrm{nCat}$ is left adjoint to the forgeful functor

Remark (2-categorical structure of $[2]([2],[0])$ in Θ_{2})

T
T_{*}

Proposition (full embedding $\Theta_{n} \hookrightarrow$ nCat)

$$
\Theta_{n}(S, T)=\operatorname{nCat}\left(\mathcal{F}_{n}\left(S_{*}\right), \mathcal{F}_{n}\left(T_{*}\right)\right)
$$

where $\mathcal{F}_{n}: \mathrm{nGrph} \rightarrow \mathrm{nCat}$ is left adjoint to the forgeful functor.

Joyal's categories Θ_{n}

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is \triangle / \mathcal{A}.
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
(3) \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is Δ ? \mathcal{A}
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
(3) \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has
$C W$-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is Δ ? \mathcal{A}
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
© \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has
CW-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic
to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is Δ ? \mathcal{A}
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
(3) \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has
CW-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic
to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric $D K$-category then so is Δ ? \mathcal{A}.
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
(3) \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has $C W$-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)
If \mathcal{A} is a geometric DK-category then so is $\Delta \imath \mathcal{A}$.
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Definition (geometric DK-categories)

A DK-category $\mathcal{C}=\left(\mathcal{E}, \mathcal{M},(-)^{*}\right)$ is called geometric if
(1) the \mathcal{E}-quotients of any object form a lattice
(2) the \mathcal{M}-face poset of any object is a cone over a sphere
(3) \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\text {op }} \rightarrow$ Sets on a geometric DK-category has $C W$-realisation $|X|$ whose chain complex $C_{*}^{\text {cell }}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is Δ / \mathcal{A}.
For instance, Joyal's cell category Θ_{n} is a geometric DK-category.

Joyal's categories Θ_{n}

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\bar{\Xi}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

Example (\# cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)=$ generalised Fibonacci number)

\# cells in dim	0	1	2	3	4	5	6	7	8	9	10
$K(\mathbb{Z} / 2 \mathbb{Z}, 1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z} / 2 \mathbb{Z}, 2)$	1	0	1	1	2	3	5	8	13	21	34
$K(\mathbb{Z} / 2 \mathbb{Z}, 3)$	1	0	0	1	1	2	4	7	13	24	44

Joyal's categories Θ_{n}

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (θ_{n}-set model for Eilenberg-MacLane spaces)

Example (\# cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)=$ generalised Fibonacci number)

\# cells in dim	0	1	2	3	4	5	6	7	8	9	10
$K(\mathbb{Z} / 2 \mathbb{Z}, 1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z} / 2 \mathbb{Z}, 2)$	1	0	1	1	2	3	5	8	13	21	34
$K(\mathbb{Z} / 2 \mathbb{Z}, 3)$	1	0	0	1	1	2	4	7	13	24	44

Joyal's categories Θ_{n}

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^{n} A$ with one k-cell for $0 \leq k<n$ and A as endo- n-object;
- $\left|B^{n} A\right|_{\Theta_{n}}$ is a CW-complex of type $K(A, n)$;
- $C_{*}^{\text {cell }}\left(\left|B^{n} A\right|_{\Theta_{n}}\right)$ is the "totalisation" of $M_{\Theta_{n}}\left(\mathbb{Z}\left[B^{n} A\right]\right)$.

Example (\# cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)=$ generalised Fibonacci number)

\# cells in dim	0	1	2	3	4	5	6	7	8	9	10
$K(\mathbb{Z} / 2 \mathbb{Z}, 1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z} / 2 \mathbb{Z}, 2)$	1	0	1	1	2	3	5	8	13	21	34
$K(\mathbb{Z} / 2 \mathbb{Z}, 3)$	1	0	0	1	1	2	4	7	13	24	44

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^{n} A$ with one k-cell for $0 \leq k<n$ and A as endo- n-object;

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^{n} A$ with one k-cell for $0 \leq k<n$ and A as endo- n-object;
- $\left|B^{n} A\right|_{\Theta_{n}}$ is a $C W$-complex of type $K(A, n)$;
- $C_{*}^{\text {cell }}\left(\left|B^{n} A\right|_{\Theta_{n}}\right)$ is the "totalisation" of $M_{\Theta_{n}}\left(\mathbb{Z}\left[B^{n} A\right]\right)$

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^{n} A$ with one k-cell for $0 \leq k<n$ and A as endo- n-object;
- $\left|B^{n} A\right|_{\Theta_{n}}$ is a $C W$-complex of type $K(A, n)$;
- $C_{*}^{\text {cell }}\left(\left|B^{n} A\right|_{\Theta_{n}}\right)$ is the "totalisation" of $M_{\Theta_{n}}\left(\mathbb{Z}\left[B^{n} A\right]\right)$.

Theorem (Dold-Kan correspondence for Θ_{n})

$$
M_{\Theta_{n}}: \mathcal{A}^{\Theta_{n}^{\mathrm{op}}} \simeq\left[\overline{\underline{I}}_{\Theta_{n}}^{\mathrm{op}}, \mathcal{A}\right]_{*}: K_{\Theta_{n}}
$$

Remark (Θ_{n}-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^{n} A$ with one k-cell for $0 \leq k<n$ and A as endo- n-object;
- $\left|B^{n} A\right|_{\Theta_{n}}$ is a $C W$-complex of type $K(A, n)$;
- $C_{*}^{\text {cell }}\left(\left|B^{n} A\right|_{\Theta_{n}}\right)$ is the "totalisation" of $M_{\Theta_{n}}\left(\mathbb{Z}\left[B^{n} A\right]\right)$.

Example (\# cells of $K(\mathbb{Z} / 2 \mathbb{Z}, n)=$ generalised Fibonacci number)

\# cells in dim	0	1	2	3	4	5	6	7	8	9	10
$K(\mathbb{Z} / 2 \mathbb{Z}, 1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z} / 2 \mathbb{Z}, 2)$	1	0	1	1	2	3	5	8	13	21	34
$K(\mathbb{Z} / 2 \mathbb{Z}, 3)$	1	0	0	1	1	2	4	7	13	24	44

Dold-Kan categories \& Catalan monoids

Joyal's categories Θ_{n}

Example (action of $\Xi_{\Theta_{2}}$ on $C_{*}^{\text {cell }}(K(Z / 2,2))$ for $\left.2 \leq * \leq 6\right)$

Theorem (Serre 1953)

$$
H^{*}(K(\mathbb{Z} / 2 \mathbb{Z}, n) ; \mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}\left[S q^{J}\left(L_{2}\right), J \text { admissible, } e(J)<n\right]
$$

Each $S q^{J}\left(\iota_{2}\right)$ is represented by an admissible cocycle of ht n.

Joyal's categories Θ_{n}

Example (action of $\Xi_{\Theta_{2}}$ on $C_{*}^{\text {cell }}(K(Z / 2,2))$ for $2 \leq * \leq 6$)

Theorem (Serre 1953)

$H^{*}(K(\mathbb{Z} / 2 \mathbb{Z}, n) ; \mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}\left[S q^{J}\left(\iota_{2}\right)\right.$, J admissible, $\left.e(J)<n\right]$ Each $S q^{J}\left(L_{2}\right)$ is represented by an admissible cocycle of ht n.

Example (action of $\Xi_{\Theta_{2}}$ on $C_{*}^{c \in l l}(K(Z / 2,2))$ for $\left.2 \leq * \leq 6\right)$

Theorem (Serre 1953)

$H^{*}(K(\mathbb{Z} / 2 \mathbb{Z}, n) ; \mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}\left[S q^{J}\left(\iota_{2}\right)\right.$, J admissible, $\left.e(J)<n\right]$
Each $S q^{J}\left(\iota_{2}\right)$ is represented by an admissible cocycle of ht n.

Proposition

Let $\left(x_{i}\right)_{1<i<n}$ be a family of projectors of an R-module X such that $x_{i} x_{j} x_{j}=x_{i} x_{j}=x_{j} x_{i} x_{j}$ for $i<j$. Then we get a direct sum decomposition $X=N_{X} \oplus D_{X}:=\bigcap_{1 \leq i \leq n} \operatorname{ker}\left(x_{i}\right) \oplus \sum_{1 \leq i \leq n} \operatorname{im}\left(x_{i}\right)$.

Corollary

Let $X: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C}, we get

$$
X(A)=N_{X(A)} \oplus D_{X(A)}=\bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{ker}(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))
$$

Proof.

If $\phi, k, \alpha, \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi=\psi \phi=\phi \psi \phi$.

Proposition

Let $\left(x_{i}\right)_{1 \leq i \leq n}$ be a family of projectors of an R-module X such that $x_{i} x_{j} x_{i}=x_{i} x_{j}=x_{j} x_{i} x_{j}$ for $i<j$. Then we get a direct sum decomposition $X=N_{X} \oplus D_{X}:=\bigcap_{1 \leq i \leq n} \operatorname{ker}\left(x_{i}\right) \oplus \sum_{1 \leq i \leq n} \operatorname{im}\left(x_{i}\right)$.

Corollary

Let $X: \mathcal{C}^{\text {op }} \rightarrow \mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C}, we get

Proof

If $\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi=\psi \phi=\phi \psi \phi$

Proposition

Let $\left(x_{i}\right)_{1 \leq i \leq n}$ be a family of projectors of an R-module X such that $x_{i} x_{j} x_{i}=x_{i} x_{j}=x_{j} x_{i} x_{j}$ for $i<j$. Then we get a direct sum decomposition $X=N_{X} \oplus D_{X}:=\bigcap_{1 \leq i \leq n} \operatorname{ker}\left(x_{i}\right) \oplus \sum_{1 \leq i \leq n} \operatorname{im}\left(x_{i}\right)$.

Corollary

Let $X: \mathcal{C}^{\text {op }} \rightarrow \mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C}, we get

$$
X(A)=N_{X(A)} \oplus D_{X(A)}=\bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{ker}(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))
$$

Proof.
If $\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi=\psi \phi=\phi \psi \phi$.

Proposition

Let $\left(x_{i}\right)_{1 \leq i \leq n}$ be a family of projectors of an R-module X such that $x_{i} x_{j} x_{j}=x_{i} x_{j}=x_{j} x_{i} x_{j}$ for $i<j$. Then we get a direct sum decomposition $X=N_{X} \oplus D_{X}:=\bigcap_{1 \leq i \leq n} \operatorname{ker}\left(x_{i}\right) \oplus \sum_{1 \leq i \leq n} \operatorname{im}\left(x_{i}\right)$.

Corollary

Let $X: \mathcal{C}^{\text {op }} \rightarrow \mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C}, we get

$$
X(A)=N_{X(A)} \oplus D_{X(A)}=\bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{ker}(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))
$$

Proof.

If $\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi=\psi \phi=\phi \psi \phi$.

Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

Proposition (Kudryatseva-Mazorchuk 2009)

Fvery Catalan monoid C_{Γ} is finite and has $2 \# \boldsymbol{V}(\Gamma)$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2^{\# V(\Gamma)}$ pairwise orth. idempotents:

```
\(1=\)
```



```
\[
x_{i_{k}} \cdots x_{i_{2}} x_{i_{1}}\left(1-x_{j_{1}}\right)\left(1-x_{j_{2}}\right) \cdots\left(1-x_{j_{n-k}}\right) .
\]
\[
\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1} \ldots j_{n-k}\right\}=n
\]
```


Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

- $x_{i}^{2}=x_{i}$ for $i \in V(\Gamma)$;
- $x_{i} x_{j} x_{i}=x_{j} x_{i}=x_{j} x_{i} x_{j}$ if $(i, j) \in E(\Gamma)$;
- $x_{i} x_{j}=x_{i} x_{i}$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_{Γ} is finite and has $2 \# V(\Gamma)$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2^{\# V(\Gamma)}$ pairwise orth. idempotents:

Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

- $x_{i}^{2}=x_{i}$ for $i \in V(\Gamma)$;

Proposition (Kudryatseva-Mazorchuk 2009)
Every Catalan monoid C_{Γ} is finite and has $2^{\# V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2^{\# V(\Gamma)}$ pairwise orth. idempotents

Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

- $x_{i}^{2}=x_{i}$ for $i \in V(\Gamma)$;
- $x_{i} x_{j} x_{i}=x_{j} x_{i}=x_{j} x_{i} x_{j}$ if $(i, j) \in E(\Gamma)$;

Proposition (Kudryatseva-Mazorchuk 2009)
Every Catalan monoid C_{Γ} is finite and has $2^{\# V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2 \# V(\Gamma)$ pairwise orth. idempotents

Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

- $x_{i}^{2}=x_{i}$ for $i \in V(\Gamma)$;
- $x_{i} x_{j} x_{i}=x_{j} x_{i}=x_{j} x_{i} x_{j}$ if $(i, j) \in E(\Gamma)$;
- $x_{i} x_{j}=x_{j} x_{i}$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_{Γ} is finite and has $2^{\# V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2 \# V(\Gamma)$ pairwise orth. idempotents

Definition

Let Γ by a finite quiver with $V(\Gamma)=\{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i<j$. The Catalan monoid C_{Γ} is generated by $x_{i}, i \in V(\Gamma)$, with relations:

- $x_{i}^{2}=x_{i}$ for $i \in V(\Gamma)$;
- $x_{i} x_{j} x_{i}=x_{j} x_{i}=x_{j} x_{i} x_{j}$ if $(i, j) \in E(\Gamma)$;
- $x_{i} x_{j}=x_{j} x_{i}$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_{Γ} is finite and has $2^{\# V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}\left[C_{\Gamma}\right]$ is a sum of $2^{\# V(\Gamma)}$ pairwise orth. idempotents:

$$
1=\sum_{\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1}, \ldots, j_{n-k}\right\}=\underline{n}} x_{i_{k}} \cdots x_{i_{2}} x_{i_{1}}\left(1-x_{j_{1}}\right)\left(1-x_{j_{2}}\right) \cdots\left(1-x_{j_{n-k}}\right) .
$$

Remark（Catalan monoid rings are semi－perfect）

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$ ．

Example（Catalan monoids inside \triangle ）

Remark（Kiselman monoids $C_{K_{n}}$ ）

The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known．

Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside \triangle)

Remark (Kiselman monoids $C_{K_{n}}$)
The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known

Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n],[n])$ generated by the primitive projectors $x_{i}=\epsilon_{i} \eta_{i}(0 \leq i<n)$ is the Catalan monoid $C_{L_{n}}$ of the linear quiver because $x_{i} x_{j}=x_{j} x_{i}$ if $|i-j| \geq 2$.
- $C[n]$ consists of those $\phi:[n] \rightarrow[n]$ sth. $\phi(i) \geq i$ for all i

Remark (Kiselman monoids $C_{K_{n}}$)
The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known.

Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n],[n])$ generated by the primitive projectors $x_{i}=\epsilon_{i} \eta_{i}(0 \leq i<n)$ is the Catalan monoid $C_{L_{n}}$ of the linear quiver because $x_{i} x_{j}=x_{j} x_{i}$ if $|i-j| \geq 2$.
- $C_{[n]}$ consists of those $\phi:[n] \rightarrow[n]$ sth. $\phi(i) \geq i$ for all i.

Remark (Kiselman monoids $C_{K_{n}}$)
The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known.

Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n],[n])$ generated by the primitive projectors $x_{i}=\epsilon_{i} \eta_{i}(0 \leq i<n)$ is the Catalan monoid $C_{L_{n}}$ of the linear quiver because $x_{i} x_{j}=x_{j} x_{i}$ if $|i-j| \geq 2$.
- $C_{[n]}$ consists of those $\phi:[n] \rightarrow[n]$ sth. $\phi(i) \geq i$ for all i.

[^0]
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n],[n])$ generated by the primitive projectors $x_{i}=\epsilon_{i} \eta_{i}(0 \leq i<n)$ is the Catalan monoid $C_{L_{n}}$ of the linear quiver because $x_{i} x_{j}=x_{j} x_{i}$ if $|i-j| \geq 2$.
- $C_{[n]}$ consists of those $\phi:[n] \rightarrow[n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_{[n]}=\frac{1}{n+2}\binom{2 n+2}{n+1}$

[^1]
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}\left[C_{\Gamma}\right]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n],[n])$ generated by the primitive projectors $x_{i}=\epsilon_{i} \eta_{i}(0 \leq i<n)$ is the Catalan monoid $C_{L_{n}}$ of the linear quiver because $x_{i} x_{j}=x_{j} x_{i}$ if $|i-j| \geq 2$.
- $C_{[n]}$ consists of those $\phi:[n] \rightarrow[n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_{[n]}=\frac{1}{n+2}\binom{2 n+2}{n+1}$

Remark (Kiselman monoids $C_{K_{n}}$)

The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known.

[^0]: Remark (Kiselman monoids $C_{K_{n}}$)
 The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known.

[^1]: Remark (Kiselman monoids $C_{K_{n}}$)
 The cardinalities of $C_{K_{n}}$ for the complete quivers K_{n} are not known.

