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Introduction

These notes are a detailed account of two lectures I gave during a workshop on
operads in Osnabrück (16-19 June 1998). I would like to thank Rainer Vogt
for organizing this really stimulating meeting which gave the participants the
wonderful chance to exchange their ideas in a very lively atmosphere.

The purpose of my lectures is fourfold :

1. to show “on the nose” that the well known configuration space model for
ΩnSnX is homotopy equivalent to Milgram’s permutohedral model ;

2. to indicate a “recipe” for constructing cellular decompositions of En-
operads ;

3. to give a simplicial splitting of ΩnSnX using Jeff Smith’s filtration of the
“symmetric monoidal” operad ;

4. to outline some interaction between En-operads and immersion theory.

1 Configuration spaces and permutohedra.

Initially, the interest in iterated loop spaces arose from homotopy theory, more
precisely from the fact that several important classifying spaces were known to
be infinite loop spaces. In Peter May’s theory of En-operads [20], the recognition
principle for n-fold iterated loop spaces is based on the approximation theorem
which (in its crude form) states that (for a connected, well pointed space X)
the weak homotopy type of ΩnSnX can be realized as a coend F (Rn,−)⊗Λ X.
The ingredients for this coend are the configuration spaces

F (Rn, k) = {(t1, . . . , tk) ∈ (Rn)k | ti 6= tj for i 6= j}.

This May-Segal model for ΩnSnX is predated by Milgram’s model which
can also be written as a coend J (n)⊗Λ X, where this time the coend ingredients
are constructed out of convex polytopes Pk, nowadays called permutohedra. The
permutohedron Pk is by definition the convex hull of the symmetric group Sk
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“generically” embedded in some affine euclidean space. There are different ways
of doing so. Milgram considered the orbit Sk.(1, 2, . . . , k) in Rk, the symmetric
group acting by permutation of the coordinates. Baues [4] considered the k!
edge-paths in [0, 1]k joining the vertex (0, . . . , 0) to the vertex (1, . . . , 1), realizing
this way the permutohedron as a combinatorial path space. Probability theorists
consider Sk as the set of permutation matrices embedded in the affine space of
k×k-matrices with real coefficients. The permutohedron is then identified with
the space of the so called probabilistic matrices with column and line sum equal
to 1.

The following lemma is crucial to Milgram’s construction, cf. also Michael
Brinkmeier’s lecture [10] :

Lemma 1.1. The face-poset of the permutohedron Pk is canonically isomorphic
to the set of (right) cosets of subgroups Si1⊕· · ·⊕Sir

of Sk with k = i1+· · ·+ir,
partially ordered by inclusion.

The purpose of this section is to define equivariant cellular decompositions of
both “building blocks” F (Rn, k) and J

(n)
k in order to deduce that the May-Segal

model and the Milgram model have the same homotopy type. Incidentally, this
provides us with a nice compact model J

(2)
k /Sk for the classifying space of the

braid group on k strands BBk = F (R2, k)/Sk which is actually known in the
literature as the Salvetti-complex of the symmetric group Sk and which exists
for every finite Coxeter group, cf. Charney-Davis [11].

The common structure of the families F (Rn, k), J (n)
k , k ≥ 1, is that of a

preoperad (or coefficient system, cf. [14]).

Definition 1.2. A (topological) preoperad is a functor O : Λop → Top, where
Λ is the category of (non-empty) finite sets k = {1, . . . , k} and injective maps.
Each pointed space (X, ∗) defines a functor X : Λ→ Top∗ : k 7→ Xk so that by
the usual coend construction we end up with a bifunctor

−⊗Λ − : TopΛop

× Top∗ → Top
(O, X) 7→ O ⊗Λ X = (

∐
k≥1Ok ×Xk)/ ∼ .

where (φ∗(t), x) ∼ (t, φ∗(x)) for all t ∈ Ol, x ∈ Xk, φ : k → l.

In order to make sure that this bifunctor preserves weak equivalences in both
arguments, we have two choices : either we look for the “correct” notion of weak
equivalence for both arguments, or we restrict to objects for which the “naive”
(= pointwise) notion of weak equivalence works. We choose the latter variant
which is sufficient for our purpose. Indeed, if we restrict to preoperads O with
free Sk-action on Ok for all k, and to well pointed spaces X (i.e. such that the
basepoint inclusion is a cofibration), then the bifunctor −⊗Λ − preserves (the
naive notion of) weak equivalences in both arguments. The proof of this fact
relies on the unique factorization property of the category Λ which allows to
writeO⊗ΛX as an iterated pushout along cofibrations with values inOk×Sk

Xk,
cf. [14].
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Notation 1.3. Each morphism of the category Λ factorizes uniquely as a permu-
tation followed by an increasing map. For φ ∈ Λ(k, l), we write φ = φinc ◦ φ \

with φ \ ∈ Λ(k, k) and φinc ∈ Λinc(k, l) = {φ ∈ Λ(k, l)|φ(i) < φ(j) for i < j}.
Remark 1.4. The increasing maps φ : k → l are generated by elementary de-
generacy operators Di : k → k + 1 mapping j to j (resp. j + 1) if j < i (resp.
j ≥ i). A preoperad O is thus uniquely determined by a family of Sk-spaces Ok

together with degeneracy maps D∗
i : Ok+1 → Ok (i = 1, . . . , k + 1) satisfying

the appropriate relations. For an operad O, these degeneracy maps are given
by evaluation :

D∗
i : Ok+1 → Ok : t 7→ t(1, . . . , 1, ∗

i
, 1, . . . , 1)

where 1 ∈ O1 is the unit of the operad, and ∗ ∈ O0 is the unique constant of
the operad. Observe that in our definition of preoperads we discard constants.

Examples 1.5. (a) The configuration preoperads.
The collection of configuration spaces F (Rn, k) defines a topological preoperad
F (Rn,−) : Λop → Top by setting for φ ∈ Λ(k, l) :

φ∗ : F (Rn, l) → F (Rn, k)
(t1, . . . , tl) 7→ (tφ(1), . . . , tφ(k)).

(b) The permutation preoperad.
The collection of symmetric groups Sk = Λ(k, k) defines a set-valued preoperad
S : Λop → Sets by setting for φ ∈ Λ(k, l) :

φ∗ : Sl → Sk

σ 7→ (σ ◦ φ) \.

Equivalently, the permutation preoperad can also be defined as the composite
functor π0 ◦ F (R,−) : Λop → Sets, identifying Sk with the path components of
F (R, k).

(c) The permutohedral preoperad. By convex extension of the permutation
preoperad we get the permutohedral preoperad P : Λop → Top, cf. [5].

Definition 1.6. Milgram’s preoperads J (n) : Λop → Top are defined by

J
(n)
k = (Pk)n−1 ×Sk/ ∼

where the equivalence relation identifies certain boundary cells. Explicitly, for
each point (τ∗(t1), . . . , τ∗(tn−1);σ) ∈ (Pk)n−1 ×Sk such that ts belongs to the
convex hull of a proper subgroup Si1 ⊕ · · · ⊕Sir

⊂ Sk and such that τ−1 is a
(i1, . . . , ir)-shuffle of Sk, we have the relation

(τ∗(t1), . . . , τ∗(tn−1);σ) ∼
(t1, . . . , ts, D∗

i1,...,ir
(ts+1), . . . , D∗

i1,...,ir
(tn−1); τσ)

where D∗
i1,...,ir

denotes the projection of Pk onto the convex hull of Si1⊕· · ·⊕Sir .

The Λ-structure is induced by φ∗(t1, . . . , tn−1;σ) = (t(σφ)inc

1 , . . . , t
(σφ)inc

n−1 ; (σφ)\).

3



For n = 1, J (1) ⊗Λ X reduces to James’ model for ΩSX; indeed, J
(1)
k = Sk

and S⊗X is nothing but the free monoid generated by the pointed space (X, ∗).
For n = 2, the space J

(2)
k is obtained by gluing together k! copies of Pk

according to the (right) Sk-action. This action is only “partially free” and the
quotient space J

(2)
k can be interpreted as the free extension of this partially free

action. Indeed, the equivalence relation (t, σ) ∼ (tσ, idk) applies precisely when
σ acts freely and orientation preserving on the minimal face containing t. The
resulting Sk-action on J

(2)
k is free.

Proposition 1.7. The configuration preoperad F (Rn,−) and Milgram’s preop-
erad J (n) are equivalent as preoperads. In particular, the Sk-spaces F (Rn, k)
and J

(n)
k have the same equivariant homotopy type and for a well pointed space

(X, ∗), the May-Segal model F (Rn,−)⊗Λ X and the Milgram model J (n)⊗Λ X
are homotopy equivalent.

Proof. – We shall outline a proof for the case n = 2 (cf. [5], [6]). The idea is to
define equivariant cellular decompositions for F (R2, k) and J

(2)
k and to compare

the associated cell posets, cf. definition 2.2. For the configuration space F (R2, k)
this is done by ordering its points antilexicographically, i.e. (x1, x2) < (y1, y2)
iff either x2 < y2 or x2 =y2 ∧ x1 <y1. In the first case we write x ≤1 y, whereas
in the second case we write x ≤0 y. Each labeled linear graph

σ−1(1) α12−→ σ−1(2) α23−→ · · · αk−1,k−→ σ−1(k) with αi,i+1 ∈ {0, 1}

defines then the closed contractible subset

F
(σ∗α)
k = {(t1, . . . , tk) ∈ F (R2, k) | tσ−1(1) ≤

α12

tσ−1(2) ≤
α23

· · · ≤
αk−1,k

tσ−1(k)}

Let us write K(F )(2)k for the poset of the so defined “cells”. – Similarly, to each
labeled linear graph as above, we associate the closed contractible set

J
(σ∗α)
k = Hull(Si1 ⊕Si2 ⊕ · · · ⊕Sir

)× {σ} ⊂ J
(2)
k

where the “partition” (i1, . . . , ir) of k is defined by the 1′s in the sequence
(α12, . . . , αk−1,k) ; we write K(J)(2)k for the poset of these cells. One then shows
that K(F )(2)k and K(J)(2)k are antiisomorphic posets and deduces the statement
from the following diagram of Λ-equivalences, cf. [6] :

F (R2, k) ∼← hocolimF
(σ∗α)
k

∼→ |K(F )(2)k | ∼= |K(J)(2)k |
∼← hocolimJ

(σ∗α)
k

∼→ J
(2)
k

Remark 1.8. More generally, there are cellular decompositions of F (Rn, k) resp.
J

(n)
k with antiisomorphic cell-posets K(F )(n)

k resp. K(J)(n)
k . The poset K(F )(n)

k

implicitly appears already in Fadell-Neuwirth’s paper [16] and has also been
studied by Getzler-Jones [17]. The posetK(J)(n)

k plays a central role in Balteanu-
Fiedorowicz-Schwänzl-Vogt’s study of n-fold monoidal categories [2].
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Remark 1.9. In [5], [6] I wrongly claimed to be able to endow the Milgram
preoperad J (n) : Λop → Top with an operad structure. Although the permu-
tohedral preoperad is an operad, this operad structure doesn’t carry over to
J (n), since its multiplication doesn’t preserve the boundary. I tried to force the
permutohedral multiplication to preserve the boundary by passing from convex
to cubical extension, but I overlooked that cubical extension commutes with
composition only up to homotopy so that I really got some kind of lax operad
where all relations only hold up to (a uniquely specified) homotopy. Michael
Brinkmeier shows in his lecture [10] that just assuming the ordinary (strict)
relations between the “cubical” multiplication J

(2)
2 × J

(2)
2 × J

(2)
1 → J

(2)
3 (resp.

J
(2)
2 ×J

(2)
1 ×J

(2)
2 → J

(2)
3 ) and the various degeneracies already implies that a hy-

pothetical J (2)-algebra would be a commutative monoid, which is incompatible
with the approximation theorem.

Remark 1.10. Jim McClure and Jeff Smith construct an E2-operad which acts
on topological Hochschild cohomology and which is closely related to J (2), see
Jim McClure’s lecture [22]. This E2-operad is a kind of semi-direct product
of the little 1-cubes operad with the permutohedral operad. Its multiplication
uses prismatic decompositions of the permutohedra Pk (labeled by “formulae”)
which can be described as follows : The image of P2 × P1 × Pk−1 → Pk is a
prism ∆1 × Pk−1, thus by induction endowed with a prismatic decomposition;
it turns out that the (closure of the) complement of the image also admits a
prismatic decomposition labeled by the set of proper faces of Pk−1. The good
thing about this prismatic decomposition of Pk is that all its cells are convex
hulls of vertex-sets of Pk and thus allow a very neat combinatorial description.

2 The complete graph operad

While the configuration spaces F (Rn, k) suffice to approximate ΩnSnX for con-
nected spaces X, they allow us neither to reconstruct the n different loop struc-
tures of ΩnSnX nor to recognize general n-fold iterated loop spaces. The appro-
priate gadget for these tasks is the little n-cubes operad of Boardman-Vogt which
we shall denote by C(n) [9]. As a preoperad, the little n-cubes are equivalent
to F (Rn,−), but thanks to the canonical inclusion C(n)

k ↪→ Top∗(Sn,
∨k

i=1 Sn)
they come equipped with a multiplication (indeed a substitution product)

C(n)
k × C(n)

i1
× · · · × C(n)

ik
−→ C(n)

i1+···+ik

turning them into an operad. The endofunctor C(n) ⊗Λ − : Top∗ → Top∗ is
then a monad such that the category of n-fold iterated loop spaces fully embeds
into the category of C(n)-spaces. Moreover, each connected C(n)-space is C(n)-
equivalent to an n-fold loop space [20]. Operads equivalent to the little n-cubes
operad are called En-operads.

The following question then naturally arises : Are there other interesting En-
operads or is there even an internal characterization of En-operads ? For the
moment, we are far away from such a characterization if n 6= 1, 2 or ∞, however
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using “cellular techniques”, Zig Fiedorowicz found a method of constructing new
En-operads out of spaces having the equivariant homotopy type of an (n− 1)-
sphere, see his lecture [15].

In this section I shall describe a poset-valued En-operad which may serve to
define an equivariant cellular decomposition of a topological En-operad O. The
leading idea is that the k-level space Ok should be determined by the family
of

(
k
2

)
degeneracies φ∗ij : Ok → O2, i < j, whereas the 2-level space O2 has to

have the S2-equivariant homotopy type of an (n−1)-sphere. Here and later on,
φij : 2→ k denotes the map which sends (1, 2) to (i, j), and σij = φ∗ij(σ) :

Definition 2.1. Set K(n)
k = {0, 1, . . . , n− 1}(

k
2) ×Sk and denote the elements

of K(n)
k by (µ, σ) where µ = (µij)1≤i<j≤k. Define a partial order by

(µ, σ) ≤ (ν, τ)
def⇔ either σij =τij ∧ µij ≤ νij or σij 6=τij ∧ µij <νij

There is a nice combinatorial description of K(n)
k , due to Fiedorowicz [2] :

Each element (µ, σ) ∈ K(n)
k corresponds to an acyclic orientation of the com-

plete graph on k vertices together with a {0, 1, . . . , n− 1}-coloring of its edges.
Explicitly,

(µ, σ)←→

{
acyclic orientation σ−1(1) −→ σ−1(2) −→ · · · −→ σ−1(k)
edge− coloring i

µij←→ j

In this setting, (µ, σ) ≤ (ν, τ) iff for all i < j, we have µij ≤ νij with µij < νij

whenever the induced orientations on the edge i—j differ.
Observe that throughout these notes I use the convention that Sk acts from

the right, which is the natural choice with respect to the category Λ. The reader
who prefers left actions has simply to replace every permutation by its inverse,
but he has to be aware of the fact that this choice also affects the equivariance
relations to be hold by an operad !

Now, let us describe the operad structure of (K(n)
k )k≥1 : Since the edge-

colorings of the complete graphs form themselves a preoperad whose degenera-
cies are given by restriction, we get a preoperad K(n) : Λop → Posets with
φ∗(µ, σ) = (φ∗µ, φ∗σ). Like for the little n-cubes, the multiplication is defined
as a substitution product :

K(n)
k ×K(n)

i1
× · · · × K(n)

ik
→ K(n)

i1+···+ik

((µ, σ); (µ1, σ1), . . . , (µk, σk)) 7→ (µ(µ1, . . . , µk), σ(σ1, . . . , σk)),

where (µ(µ1, . . . , µk), σ(σ1, . . . , σk)) corresponds to the complete (oriented and
colored) graph on i1 + · · ·+ ik vertices obtained from (µ, σ) by substituting
to each of its k vertices the complete graphs defined by (µ1, σ1), . . . , (µk, σk)
respectively. For sake of precision we give the explicit formulae :
σ(σ1, . . . , σk) = σ(i1, . . . , ik)◦ (σ1⊕· · ·⊕σk), where σ(i1, . . . , ik) permutes the k
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blocks {1, . . . , i1}, {i1 + 1, . . . , i1 + i2}, . . . , {i1 + · · ·+ ik−1 + 1, . . . , i1 + · · ·+ ik}
according to σ, and:

µ(µ1, . . . , µk)rs =


(µj)r′,s′ if r, s belong to the j-th block,

µjj′ if r belongs to the j-th block and
s belongs to the j′-th block, j < j′.

Definition 2.2. Let A be a partially ordered set and X a topological space.
A collection (cα)α∈A of closed contractible subspaces (the “cells”) of X will be
called a cellular A-decomposition of X iff the following three conditions hold
(where c̆α = cα\

⋃
α′<α cα′) :

1. α ≤ β ⇒ cα ⊆ cβ and for all α, β ∈ A : c̆α ∩ c̆β = ∅ ;

2. the cell-inclusions are cofibrations ;

3. X = lim−→A
cα, i.e. X equals the union of its cells and carries the weak

topology with respect to its cells.

Cells cα with non-empty cell-interiors c̆α will be called proper. By the usual
homotopy colimit argument, the nerve of the poset A has the same homotopy
type as X : X

∼← hocolimAcα
∼→ |A|. The same is true for the subposet of

proper cells. Moreover, the cell-interiors of the proper cells partition X.

Definition 2.3. An operad O is called a cellular En-operad iff

1. O2 admits an equivariant cellular K(n)
2 -decomposition by cells denoted

O(α)
2 , α ∈ K(n)

2 ;

2. the closed subsets O(α)
k = {x ∈ Ok |φ∗ij(x) ∈ O(φ∗ijα)

2 }, α ∈ K(n)
k , form a

cellular K(n)
k -decomposition of Ok ;

3. the operad multiplication sends each cell-product O(α)
k ×O(α1)

i1
×· · ·×O(αk)

ik

into the cell O(α(α1,...,αk))
i1+···+ik

prescribed by the complete graph operad.

For the second condition of a cellular En-operad it is sufficient to show :
a) the contractibility of the cells, b) the cofibration property of the cell-inclusions
and c) the existence of “ordered” points, i.e. in each Sk-orbit of Ok there has
to be a point x such that all degeneracies φ∗ij(x) with i < j belong to “upper

hemispheres” O(·,id2)
2 (this last condition implies that the union of the O(α)

k

covers Ok).

Theorem 2.4. The little n-cubes operad is a cellular En-operad and any two
cellular En-operads are equivalent as operads.

The first part of the theorem is due to Fiedorowicz and relies on the analysis
of a given configuration of little n-cubes by means of separating hyperplanes per-
pendicular to the coordinate axis, cf. [6]. The second part (which implies con-
sistency of our terminology) follows from the above homotopy colimit argument,
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more precisley : for each cellular En-operad O there are operad equivalences

O ∼← hocolimα∈K(n)O(α) ∼→ |K(n)|.

The existence of a cellular structure allows several constructions which would
not be available otherwise. For instance, assume that O is a cellular E∞-
operad. The filtration of K = lim−→K

(n) by the En-suboperads K(n) induces
an analogous filtration of O by cellular En-suboperads O(n) ! As example,
consider the simplicial E∞-operad Γ = ES where E stands for the universal
bundle construction. This operad has a long history : Barratt-Eccles [3] based a
general recognition principle for infinite loop spaces on it; Peter May [21] showed
that Γ acts canonically on nerves of (strict) symmetric monoidal categories,
but it was only Jeff Smith who discovered the existence of a filtration of Γ by
suboperads Γ(n) [24]. Using the cellular structure of Γ, this filtration comes
for free as well as the fact that |Γ(n)

k | has the Sk-equivariant homotopy type of
F (Rn, k). The latter was only conjectured by Smith in view of his approximation
theorem and later on proved by T. Kashiwabara [18]. For an explicit operad
map |K(n)| ∼−→ |Γ(n)| inducing the equivalence, see [2].

3 A simplicial splitting of ΩnSnX

The purpose of this section is to use the Smith filtration Γ(n) of the symmetric
monoidal operad Γ in order to derive the Snaith-splitting of ΩnSnX, cf. [25].
Adapting the method of Cohen-May-Taylor [14] to the simplicial setting I obtain
combinatorial estimates for the number of suspensions necessary to split ΩnSnX
globally at a given filtration level.

To fix notation, Γk = ESk is the universal bundle on Sk: a d-simplex
of Γk is thus a (d + 1)-tuple (σ0, . . . , σd) of permutations in Sk with the usual
(homogenous) simplicial operators. The permutation operad S : Λop → Sets in-
duces componentwise an operad structure on Γ : Λop → SimpSets. Let us check
that the E∞-operad Γ is cellular : Γ2 = ES2 is the “Milnor-sphere” of infinite
dimension with one non-degenerate simplex per hemisphere. There exists thus
a natural cellular K2-decomposition of Γ2. The c(an)onical contraction of Γk

stays within the formally defined cells Γ(α)
k , α ∈ Kk. Moreover, cell-inclusions

are cofibrations and “ordered” points exist. Finally, the multiplication is cellular
since induced by the permutation operad.

Theorem 2.4 then implies that the union of the cells labeled by K(n) defines
a cellular En-suboperad Γ(n) of Γ, explicitly :

Γ(n)
k = {ω ∈ Γk |φ∗ij(ω) ∈ Γ(n)

2 } = {ω ∈ Γk |φ∗ij(ω) ∈ skn−1Γ2}.

This is precisely the suboperad defined by J. Smith [24]. Since the geometric re-
alization preserves arbitrary colimits and finite limits, we get for each connected
simplicial set (X, ∗) :

|Γ(n) ⊗Λ X| ∼= |Γ(n)| ⊗Λ |X| ∼ ΩnSn|X|
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thus the coend Γ(n)⊗ΛX is a “simplicial model” for ΩnSn|X|. Moreover, the in-
clusion Γ(n) ↪→ Γ(n+1) induces the stabilization map ΩnSn|X| → Ωn+1Sn+1|X|
as is the case for the “cellular” filtration of the little cubes by little n-cubes.

Remark 3.1. For n = 1, we get the James-construction Γ(1) ⊗Λ X = S ⊗Λ X
whose group completion is isomorphic to the famous Kan-Milnor model FX =
GSX for ΩS|X| valid also for non-connected simplicial sets (X, ∗). In general,
as S = Γ(1) is a suboperad of Γ(n) the coend Γ(n) ⊗Λ X is a simplicial monoid
which even turns out to be free, cf. [3]; its group completion is thus a free
simplicial group model for ΩnSn|X| valid also for non-connected X, cf. [24].

Remark 3.2. Sets with a Γ(1)-action are precisely monoids ; in [7], it is shown
that the nerve of a braided monoidal category admits a Γ(2)-action. Recall that
in the terminology of Baez-Dolan [1] braided monoidal categories are 2-tuply
monoidal 1-categories. I conjecture that in general the “nerve” of a “n-tuply
monoidal (n − 1)-category” admits a Γ(n)-action. There is now at least one
additional case, where this conjecture can be verified, the case n = 3, i.e. the
nerve of a sylleptic monoidal 2-category should admit a Γ(3)-action, cf. S. Crans
[13].

For simplicity, we shall write Γ(n)(X) for the coend Γ(n)⊗Λ X. The Snaith-
splitting can be summarized by the following diagram whose existence we are
going to establish (where X is assumed to be connected) :

ΩSX ∼ Γ(1)(X)
stably−→ D

(1)
1 (X) ∨ D

(1)
2 (X) ∨ D

(1)
3 (X) ∨ · · ·y y www y y ...

Ω2S2X ∼ Γ(2)(X)
stably−→ D

(2)
1 (X) ∨ D

(2)
2 (X) ∨ D

(2)
3 (X) ∨ · · ·y y www y y ...

Ω3S3X ∼ Γ(3)(X)
stably−→ D

(3)
1 (X) ∨ D

(3)
2 (X) ∨ D

(3)
3 (X) ∨ · · ·y y www y y ...

...
...

...
...

...
...y y www y y ...

Ω∞S∞X ∼ Γ(X)
stably−→ D1(X) ∨ D2(X) ∨ D3(X) ∨ · · ·

D(n)
m (X) = Γ(n)

≤m(X)/Γ(n)
≤m−1(X) where Γ(n)

≤m(X) = (
m∐

k=1

Γ(n)
k ×Xk)/ ∼

In particular, we have : D
(n)
1 (X) = X and D(1)

m (X) = X ∧ · · · ∧X︸ ︷︷ ︸
m

In general : D(n)
m (X) = Γ(n)

m,+ ∧Sm
X ∧ · · · ∧X︸ ︷︷ ︸

m
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Our purpose here is to show that James’ combinatorial maps

j(1)
m : Γ(1)(X)→ Γ(1)(D(1)

m (X))

naturally extend to maps j
(n)
m : Γ(n)(X)→ Γ(tnm)(D(n)

m (X)) which by adjunction
induce “global” Snaith-splittings for each n and m. For n = tnm =∞ this was
already observed by Barratt-Eccles [3], and Cohen-May-Taylor [14] used the
same idea to define “global” Snaith-splittings in full generality. It is somewhat
surprising that one gets purely combinatorial estimates for the number t = tnm

of suspensions needed to split ΩnSn|X| at filtration level m :

StΩnSn(X) ∼−→ StX ∨ StD
(n)
2 (X) ∨ StD

(n)
3 (X) ∨ · · · ∨ StD(n)

m (X) ∨R

I obtain as estimate tnm = (n− 1)(2m− 1) + 1 which gives for n = 1

SΩS(X) ∼−→ SX ∨ S(X ∧X) ∨ S(X ∧X ∧X) ∨ · · · (Hilton-Milnor)

and which seems to be quite sharp for n = 2, cf. [14]. Snaith’s estimates [25]
as well as Vogt’s estimates [27] are lower for large n,m but they only allow a
“non-global” splitting of StΓ(n)

≤m(X).

Definition 3.3. For each k and m define (cf. notation 1.3)

hk
m : Sk → SΛinc(m,k)

def
= S(k

m)
σ 7→ (φ 7→ (σ ◦ φ)inc).

Lemma 3.4. If for each k, the set Λinc(m, k) is antilexicographically ordered,
then the following diagram commutes for all φ : k → k′ (cf. [14], 4.3 and [3],
III.4):

Sk′
hk′

m−−−−→ S(k′
m)yφ∗

y(φ
m)∗

Sk
hk

m−−−−→ S(k
m)

Lemma 3.5. The maps jk
m below are compatible with the coend relations and in-

duce the stable James maps jm : Γ(X)→ Γ(Dm(X)) (satisfying that jm|Γ≤m(X)

is equal to the projection composed with the unit of Γ(−)) :

jk
m : Γk ×Xk → Γ(k

m) ×Dm(X)(
k
m)

(ω;x1, . . . , xk) 7→
(
hk

m(ω); [φ∗(ω);xφ(1), . . . , xφ(m)]φ∈Λinc(m,k)

)
.

Proposition 3.6. The stable James maps jm : Γ(X) → Γ(Dm(X)) restrict
to unstable James maps j

(n)
m : Γ(n)(X) → Γ(tnm)(Dm(X)) where tnm can be

chosen equal to (n− 1)(2m− 1) + 1.

10



Proof. – We have to show that ω ∈ Γ(n)
k implies hk

m(ω) ∈ Γ(tnm)
Λinc(m,k) for all k.

Let ω = (σ0, . . . , σd) ∈ Γ(n)
k , i.e. for each pair i < j, the simplex φ∗ij(ω)

belongs to the (n− 1)-skeleton of Γ2, which means that φ∗ij(ω) contains at most
n− 1 changes or equivalently : the sequence

(σc(i) ≶ σc(j))c=0,...,d (1)

contains at most n− 1 inversions of the order relation.
Similarly, let Ω = hk

m(ω) ∈ Γ(t)
Λinc(m,k), i.e. for each pair {i1, . . . , im} <

{j1, . . . , jm} in Λinc(m, k) the simplex φ∗{i1,...,im},{j1,...,jm}(Ω) contains at most
t− 1 changes, or equivalently : the sequence

({σc(i1), . . . , σc(im)} ≶ {σc(j1), . . . , σc(jm)})c=0,...d (2)

contains at most t− 1 inversions of the (antilexicographical) order relation.
Each inversion in (2) induces an inversion in (1) for at least one pair (i, j) ∈

{i1, . . . , im} × {j1, . . . , jm}. The “worst” case occurs when an inversion in (2)
induces inversions in (1) for as few pairs as possible. From this point of view,
the “worst” configuration is i1 < j1 < i2 < j2 < · · · < im < jm (thus k ≥ 2m)
with simplex ω = (σ0, . . . , σ2m−1) such that σ0 = idk, σ1 puts im on the top, σ2

puts jm−1 on the top and im on the second place, σ3 puts im−1 on the top, jm−1

on the second place and im on the third place, and so on, until finally σ2m−1

reverses completely the order : σ2m−1(i1, j1, . . . , im, jm) = (jm, im, . . . , j1, i1).
For each pair (i, j) ∈ {i1, . . . , im} × {j1, . . . , jm}, the simplex φ∗ij(ω) con-

tains then exactly one change, whereas φ∗{i1,...,im},{j1,...,jm}(Ω) contains 2m− 1
changes. Repeating the above construction n − 1 times in alternating direc-
tions defines a simplex ω ∈ Γk such that φ∗ij(ω) contains n − 1 changes for
each (i, j) ∈ {i1, . . . , im} × {j1, . . . , jm}, whereas φ∗{i1,...,im},{j1,...,jm}(Ω) con-
tains (n − 1)(2m − 1) changes. Since this is presumably the “worst” case, it
suffices to put tnm = (n− 1)(2m− 1) + 1.

Let me finish this section by recalling how to associate to the unstable James
maps j

(n)
m : Γ(n)(X) → Γ(tnm)(D(n)

m (X)) higher Hopf invariants for homotopy
classes in [SnZ, SnX] and state conjecturally the properties they should share
(extending what is known for n = 1, see Boardman-Steer [8], and for general n,
if X is a “Thom-space”, see Koschorke-Sanderson [19]).

Conjecture 3.7. For each f : SnZ → SnX there is a family of higher Hopf
invariants γm(f) : StZ → StD

(n)
m (X) (t = tnm) satisfying

1. γ1(f) = f ;

2. γm(Sng) ∼ 0 for m > 1 ;

3. γm(f + f ′)
stably∼ γm(f) + γm−1(f)γ1(f ′) + · · ·+ γ1(f)γm−1(f ′) + γm(f ′);

4. m! γm(f)
stably∼ γ1(f)m (if X is an n-fold suspension).

11



The Hopf invariant is defined by the formula γm(f) = ̂
j
(n)
m ◦ f̆ where ˘(−)

and (̂−) are given by the Sn-Ωn-adjunction.
The product of Hopf invariants is given by a cup product, compare [8] :

For α : StZ → StD
(n)
m (X) and β : St′Z → St′D

(n)
m′ (X) we put

αβ : St+t′Z
∇−→ StZ ∧ St′Z

α∧β−→ StD(n)
m (X) ∧ St′D

(n)
m′ (X) ×−→ St+t′D

(n)
m+m′(X)

where the last map is induced by the monoidal structure of Γ(n)(X).
Boardman-Steer’s proof of properties 1-4 for the case n = 1 should go

through in general, since it is combinatorial in nature. Their uniqueness result
strongly suggests that properties 1-3 determine the higher Hopf invariants up
to some suspensions. I think that the existence of subdivided power operations
in the stable homotopy of ΩnSnX (X n-fold suspension) should contain some
information about the Hurewicz homomorphism πst

∗ (ΩnSnX) → H∗(ΩnSnX)
and perhaps interact with Fred Cohen’s [12] calculations of H∗(ΩnSnX; Z/pZ)
where he completely determines H∗(D

(n)
m (X); Z/pZ) in terms of the reduced

homology of X and of suitably weighted Dyer-Lashof operations.

4 Decompressible immersions

In this final very “sketchy” section I will indicate how the configuration space
model of ΩnSnX for a “Thom space” X appears quite naturally in immersion
theory, giving rise to a “more concrete” construction of the higher Hopf invari-
ants. The existence of such a relationship between En-operads and immersion
theory has been brought to my attention by Jean Lannes, for which I am very
grateful to him. In the literature, different approaches have successively been
developed by R. Wells [28], P. Vogel [26] and U. Koschorke-B. Sanderson [19].
My presentation heavily relies on the last reference.

Definition 4.1. An immersion j : M # V admits a ξ-structure with respect to
a vector bundle ξ : E → B iff there exists a differentiable map φ : M → B and
a short exact sequence of vector bundles over M :

0 −→ TM −→ j∗TV −→ φ∗ξ −→ 0

The group of ξ-corbordism classes of closed ξ-embeddings in V will be denoted
by Ωξ(V ).

Theorem 4.2. (Thom-Pontryagin) Ωξ(V ) ∼= [V ,Th(ξ)], where V is the one-
point compactification of V and Th(ξ) = D(ξ)/S(ξ) is the Thom-space of ξ.

Definition 4.3. The suspension of an immersion j : M # V is the immersion
j × (0 ↪→ R) : M # V × R.

Lemma 4.4. The suspension of embeddings corresponds under 4.2 to ordinary
suspension: [V ,Th(ξ)] −→ [V ∧ R,Th(ξ) ∧ Th(ε1)] where we identify V × R ∼=
V ∧ R and Th(ξ ⊕ ε1) ∼= Th(ξ) ∧ Th(ε1).

12



Here and later on, I write εk for the trivial vector bundle Rk → ∗.
A framed cobordism (resp. immersion) is by definition an εk-cobordism (resp.
εk-immersion) which in both cases means that the normal bundle is endowed
with a trivialization. The group

lim−→
k

Ωεk(Rm+k) ∼= lim−→
k

[Sm+k, Sk] = {Sm, S0} = πst
m

then defines simultaneously stable framed cobordism classes of m-dimensional
framed manifolds and the m-th stem of the stable homotopy groups of spheres.

Immersions are in some sense “desuspended embeddings” since by a sufficient
number of suspensions any immersion (of positive codimension) can be made
“regularly homotopic” to an embedding.

Definition 4.5. A n-decompression for an immersion j : M # V is a differ-
entiable map λ : M → Rn such that (j, λ) : M → V × Rn is an embedding.
Immersions for which an n-decompression exists are called n-decompressible.

Theorem 4.6. (Koschorke-Sanderson) The group of (ξ⊕εn)-cobordism classses
of n-decompressed ξ-immersions (j, λ) : M → V ×Rn is canonically isomorphic
to [V ,ΩnSnTh(ξ)]. Moreover, under SnΩn-adjunction, this group is isomorphic
to the classical Thom-Pontryagin cobordism group (we assume rg(ξ) > 0) :

[V , ΩnSnTh(ξ)] ∼= [SnV , SnTh(ξ)] = [V × Rn,Th(ξ ⊕ εn)] = Ωξ⊕εn(V × Rn)

Proof. The proof consists essentially in the construction of an “adjoint” rep-
resentative of (j, λ) inside [V ,ΩnSnTh(ξ)] using the configuration space model
for the target space as well as the classical Thom-Pontryagin construction. The
immersion j : M # V defines for a small neighborhood Vy of each y ∈ M
a neighborhood of j(Vy) which by hypothesis can be given the structure of a
D(ξ)-bundle over Vy. This defines a “fattening” j : M ×D(ξ) # V of j. The
“adjoint” representative is then given by

τ̂j,λ : V → F (Rn,−)⊗Λ Th(ξ)
x 7→ (λ(j

−1
(x)); j

−1
(x))

Corollary 4.7. The “stable group” of ξ-cobordism classes of n-decompressible
ξ-immersions is canonically isomorphic to

{V ,ΩnSnTh(ξ)} ∼=
⊕
k≥1

{V ,D
(n)
k (Th(ξ))}.

Remark 4.8. The split summand D
(n)
k (Th(ξ)) can be identified with the Thom

space of the vector bundle F (Rn, k) ×Sk
ξk. For example, let ξ = ε1, n = 2,

then D
(2)
k (S1) = D

(2)
k (Th(ε1)) = Th(F (R2, k) ×Sk

(ε1)k) which is thus the
Thom-space of the vector bundle F (R2, k)×Sk

Rk → BBk.
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Remark 4.9. The projections inducing the above isomorphism are induced by
composition with James’ combinatorial maps

j
(n)
k : ΩnSnTh(ξ)→ ΩtStD

(n)
k (Th(ξ)).

The remarkable fact here is that there exists a direct construction for immersions
performing this composition. Namely, assume that the immersion j : M # V
is generic, i.e. for each k, the natural map F (M,k) → V k is transverse to the
diagonal ; then the subset

M̃(k) = {(m1, . . . ,mk) ∈ F (M,k) | j(m1) = · · · = j(mk)}

is a manifold with free Sk-action and the quotient manifold M(k) = M̃(k)/Sk

is called the k-tuple manifold of j : M # V .
It turns out (cf. [19]) that the immersion j(k) : M(k) # V represents

precisely the projected class

[(j(k), ?)] ∈ [V ,ΩtStD
(n)
k (Th(ξ))].

If the estimates of the last section are correct, then j(k) : M(k) # V is t-
decompressible with t = tnk = (n−1)(2k−1)+1, and this universally for every
generic n-decompressible immersion j : M # V !

Remark 4.10. Let us come back to the higher Hopf invariants. Given a class [f ] ∈
[SnV , SnTh(ξ)] represented by (j, λ) : M ↪→ V × Rn with generic immersion j.
How can the Hopf invariant

[γk(f)] ∈ [StV , StD
(n)
k (Th(ξ))] = [StV , StTh(F (Rn, k)×Sk

ξk)]

be represented ? According to the preceding remark we have only to find a
t-decompression λ(k) : M(k) → Rt for j(k) : M(k) # V and the embedding
(j(k), λ(k)) : M(k) ↪→ V × Rt will be a representative for [γk(f)]. Koschorke-
Sanderson [19] prove that for the so defined higher Hopf invariants properties 1-3
of conjecture 3.7 hold, see also Boardman-Steer [8] where the same construction
is carried out for n = 1.

14



References

[1] J. C. Baez and M. Neuchl – Higher dimensional algebra I : Braided monoidal
2-categories, Adv. in Math. 121 (1996), 196-244.

[2] C. Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt – Iterated monoidal
categories, to appear (1999).

[3] M. G. Barratt and P. J. Eccles – Γ+-Structures I,II,III, Topology 13 (1974),
25-45, 113-126, 199-207.

[4] H.-J. Baues – Geometry of loop spaces and the cobar-construction, Mem.
AMS 230 (1980).

[5] C. Berger – Opérades cellulaires et espaces de lacets itérés, Ann. de l’Inst.
Fourier 46 (1996), 1125-1157.

[6] C. Berger – Combinatorial models of real configuration spaces and En-
operads, Contemp. Math. 202 (1997), 37-52.

[7] C. Berger – Double loop spaces, braided monoidal categories and algebraic
3-type of space, to appear in Contemp Math. (1998).

[8] J. M. Boardman and B. Steer – On Hopf invariants, Comment. Math.
Helvet. 42 (1967), 180-221.

[9] J. M. Boardman and R. Vogt – Homotopy invariant algebraic structures on
topological spaces, Lecture Notes in Math. 347, Springer Verlag (1973).

[10] M. Brinkmeier – The Milgram non-operad, this volume.

[11] R. Charney and M. W. Davis – Finite K(π, 1)′s for Artin groups, Annals
of Math. Studies 138 (1995), 110-124.

[12] F. R. Cohen – The homology of Cn+1-spaces, Lecture Notes in Math. 533,
Springer Verlag (1976), 207-351.

[13] S. E. Crans – On braidings, syllepses and symmetries, to appear in Cah.
Top. Geom. Diff. Cat.(1998).

[14] F. R. Cohen, J. P. May and L. R. Taylor – Splitting of certain spaces CX,
Math. Proc. Camb. Phil. Soc. 84 (1978), 465-496.

[15] Z. Fiedorowicz – Constructions of En-operads, this volume.

[16] R. Fox and L. Neuwirth – The braid groups, Math. Scand. 10 (1962), 119-
126.

[17] E. Getzler and J. D. S. Jones – Operads, homotopy algebra, and iterated
integrals for double loop spaces, preprint (1995).

15



[18] T. Kashiwabara – On the Homotopy Type of Configuration Complexes,
Contemp. Math. 146 (1993), 159-170.

[19] U. Koschorke and B. Sanderson – Self intersections and higher Hopf in-
variants, Topology 17 (1978), 283-290.

[20] J. P. May – The geometry of iterated loop spaces, Lecture Notes in Math.
271, Springer Verlag (1972).

[21] J. P. May – E∞-spaces, group completions and permutative categories, Lon-
don Math. Soc. Lecture Notes 11 (1974), 61-94.

[22] J. McClure – Little 2-cubes and Hochschild cohomology, this volume.

[23] R. J. Milgram – Iterated loop spaces, Annals of Math. 84 (1966), 386-403.

[24] J. H. Smith – Simplicial Group Models for ΩnSnX, Israel J. of Math. 66
(1989), 330-350.

[25] V. P. Snaith – A stable decomposition of ΩnSnX, J. London Math. Soc.
(2) 7 (1974), 577-583.

[26] P. Vogel – Cobordisme d’immersions, Ann. scient. Ec. Norm. Sup. (4) 7
(1974), 317-358.

[27] R. Vogt – Splittings of spaces CX, manuscripta math. 38 (1982), 21-39.

[28] R. Wells – Cobordism groups of immersions, Topology 5 (1966), 281-294.
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