Goodwillie's cubical cross-effects \& nilpotency in semiabelian categories

Clemens Berger

based on joint work with Dominique Bourn
Topos Institute Workshop, 14-18 March, 2022
(1) Introduction
(2) Semiabelian categories
(3) Cubical cross-effects

4 Algebraic nilpotency
(5) Homotopical nilpotency

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $\operatorname{cr}_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

- Degree for functors between non-additive categories
- Goodwillie's cubical cross-effects
- nilnotency phenomena

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

- Degree for functors between non-additive categories
- Goodwillie's cubical cross-effects
- nilpotency phenomena

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

- Degree for functors between non-additive categories
- Goodwillie's cubical cross-effects
- nilpotency phenomena

Definition (polynomials)

- $k[X] \ni F(X)=\sum_{i \geq 0} \alpha_{i} X^{i}$
- $\operatorname{deg}(F) \leq n$ iff $\alpha_{i}=0$ for $i>n$
- $F: k \rightarrow k$ is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Definition (polynomial functors of Eilenberg-MacLane)

- A functor between abelian categories is of degree $\leq n$ iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=0$ for all X_{1}, \ldots, X_{n+1} of the domain.
- F is linear iff $F(0)=0$ and $\operatorname{deg}(F) \leq 1$.

Purpose of the talk

- Degree for functors between non-additive categories
- Goodwillie's cubical cross-effects
- nilpotency phenomena

Definition (additive/abelian)

- ($\mathbb{E}, \star_{\mathbb{E}}$) additive iff $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is invertible, and every identity has an additive inverse.
- An abelian category is an additive category with kernels and cokernels sth. every mono/epi is a kernel/cokernel.

Definition (idempotent-complete)

An additive category is idempotent-complete if every idempotent endomorphism has kernel/cokernel.

Lemma (idempotent-complete \Longrightarrow protomodular (Bourn '96))
In an idempotent-complete additive category, every split epi
$f: X \xrightarrow{\curvearrowleft} Y$ is protomodular: f has a kernel and $Y+\operatorname{ker}(f) \rightarrow X$.

Definition (additive/abelian)

- ($\mathbb{E}, \star_{\mathbb{E}}$) additive iff $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is invertible, and every identity has an additive inverse.

- An abelian category is an additive category with kernels and cokernels sth. every mono/epi is a kernel/cokernel.

> Definition (idempotent-complete)
> An additive category is idempotent-complete if every idempotent endomorphism has kernel/cokernel.

Lemma (idempotent-complete \Longrightarrow protomodular (Bourn '96))
In an idempotent-complete additive category, every split epi
$f: X \rightarrow Y$ is protomodular: f has a kernel and $Y+\operatorname{ker}(f) \rightarrow X$

Definition (additive/abelian)

- ($\mathbb{E}, \star_{\mathbb{E}}$) additive iff $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is invertible, and every identity has an additive inverse.
- An abelian category is an additive category with kernels and cokernels sth. every mono/epi is a kernel/cokernel.

> Definition (idempotent-complete)
> An additive category is idempotent-complete if every idempotent endomorphism has kernel/cokernel

\square
Lemma (idempotent-complete protomodular (Bourn '96))

In an idempotent-complete additive category, every split epi $f: X \rightarrow Y$ is protomodular: f has a kernel and $Y+\operatorname{ker}(f) \rightarrow X$

Definition (additive/abelian)

- ($\mathbb{E}, \star_{\mathbb{E}}$) additive iff $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is invertible, and every identity has an additive inverse.
- An abelian category is an additive category with kernels and cokernels sth. every mono/epi is a kernel/cokernel.

Definition (idempotent-complete)

An additive category is idempotent-complete if every idempotent endomorphism has kernel/cokernel.

Lemma (idempotent-complete \Longrightarrow protomodular (Bourn '96))
In an idempotent-complete additive category, every split epi

Definition (additive/abelian)

- ($\mathbb{E}, \star_{\mathbb{E}}$) additive iff $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is invertible, and every identity has an additive inverse.
- An abelian category is an additive category with kernels and cokernels sth. every mono/epi is a kernel/cokernel.

Definition (idempotent-complete)

An additive category is idempotent-complete if every idempotent endomorphism has kernel/cokernel.

Lemma (idempotent-complete \Longrightarrow protomodular (Bourn '96))
In an idempotent-complete additive category, every split epi
$f: X \xrightarrow{\curvearrowleft} Y$ is protomodular: f has a kernel and $Y+\operatorname{ker}(f) \rightarrow X$.

```
Definition (semiadditive)
A pointed category is semiadditive iff it has binary sums, pullbacks
of split epis, and every split epi is protomodular.
```


Lemma

In a semiadditive category $\theta X, Y: X+Y \rightarrow X X Y$ is a strong epi.

```
Theorem (Tierney)
E abelian }\Longleftrightarrow\mathbb{E}\mathrm{ adclitive and exact.
```

Definition (Janelidze-Márki-Tholen '01)
\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact ${ }^{2}$
${ }^{a}$ finitely complete, stable strong epi/mono fact, effective equ. relations

Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category $\theta_{X, Y}$

Theorem (Tierney)
 \mathbb{E} abelian $\Longleftrightarrow \mathbb{E}$ adclitive and exact

Definition (Janelidze-Márki-Tholen '01)
\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact ${ }^{\text {a }}$
afinitely complete, stable strong epi/mono fact, effective equ. relations

Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is a strong epi. \mathbb{E} additive \& idempotent-complete

Theorem (Tierney)
\mathbb{E} abelian $\Longleftrightarrow \mathbb{E}$ addlitive and exact.

Definition (Janelidze-Márki-Tholen '01)
\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact
finitely complete, stable strong epi/mono fact, effective equ. relations

Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is a strong epi. \mathbb{E} additive \& idempotent-complete $\Longleftrightarrow \mathbb{E}$ and $\mathbb{E}^{\text {op }}$ semi-additive.

Theorem (Tierney)
 \mathbb{E} abelian $\Longleftrightarrow \mathbb{E}$ additive and exact

Definition (Janelidze-Márki-Tholen '01)
\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact ${ }^{\text {a }}$
finitely complete, stable strong epi/mono fact, effective equ. relations

Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is a strong epi. \mathbb{E} additive \& idempotent-complete $\Longleftrightarrow \mathbb{E}$ and $\mathbb{E}^{\text {op }}$ semi-additive.

Theorem (Tierney)

\mathbb{E} abelian $\Longleftrightarrow \mathbb{E}$ additive and exact.

Definition (Janelidze-Márki-Tholen '01)
\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact ${ }^{a}$

[^0]
Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category $\theta_{X, Y}: X+Y \rightarrow X \times Y$ is a strong epi. \mathbb{E} additive \& idempotent-complete $\Longleftrightarrow \mathbb{E}$ and $\mathbb{E}^{\text {op }}$ semi-additive.

Theorem (Tierney)

\mathbb{E} abelian $\Longleftrightarrow \mathbb{E}$ additive and exact.

Definition (Janelidze-Márki-Tholen '01)

\mathbb{E} semiabelian iff \mathbb{E} semiadditive and exact ${ }^{a}$.

$$
{ }^{a} \text { finitely complete, stable strong epi/mono fact, effective equ. relations }
$$

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $\mathrm{Ab}(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$.

Definition (commutator subobject)

The commutator subobject $[X, X]$ is the image of $\operatorname{ker}(\theta x, X)$ along the folding map $\nabla_{X}: X+X \rightarrow X$

Remark

In an abelian category the commutator subobjects are trivial.

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $A b(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$.

Definition (commutator subobject)

The commutator subobiect $[X, X]$ is the image of $\operatorname{ker}(\theta x, X)$ along the folding map $\nabla_{X}: X+X \rightarrow X$

Remark

In an abelian category the commutator subobjects are trivial.

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $A b(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$

Definition (commutator subobject)

The commutator subobject $[X, X]$ is the image of $\operatorname{ker}(\theta x, X)$ along the folding map $\nabla_{X}: X+X \rightarrow X$

Remark

In an abelian category the commutator subobjects are trivial

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $A b(\mathbb{E})$ spanned
by those objects X for which $[X, X]=\star_{\mathbb{E}}$

Definition (commutator subobject)

The commutator subobject $[X, X]$ is the image of $\operatorname{ker}(\theta x, x)$ along the folding map $\nabla_{X}: X+X \rightarrow X$

Remark

In an abelian category the commutator subobjects are trivial

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $\operatorname{Ab}(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$.

Definition (commutator subobject)
 The commutator subobject $[X, X]$ is the image of $\operatorname{ker}(\theta X, X)$ along the folding map ∇_{X}

Remark

In an ahelian category the commutator subobjects are trivial

Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $\operatorname{Ab}(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$.

Definition (commutator subobject)

The commutator subobject $[X, X]$ is the image of $\operatorname{ker}\left(\theta_{X, X}\right)$ along the folding map $\nabla_{X}: X+X \rightarrow X$.

[^1]
Examples (semiabelian categories)

- groups
- Lie algebras
- cocommutative Hopf algebras (Gran-Sterck-Vercruysse '19)

Proposition (abelian core)

Each semiabelian category \mathbb{E} has an abelian core $\operatorname{Ab}(\mathbb{E})$ spanned by those objects X for which $[X, X]=\star_{\mathbb{E}}$.

Definition (commutator subobject)

The commutator subobject $[X, X]$ is the image of $\operatorname{ker}\left(\theta_{X, X}\right)$ along the folding map $\nabla_{X}: X+X \rightarrow X$.

Remark

In an abelian category the commutator subobjects are trivial.

Definition (Goodwillie cubes for pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$)

Definition (Goodwillie cubes for pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$)

$$
\overline{=}_{X_{1}, X_{2}}^{F}
$$

Definition (Goodwillie cubes for pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$)

$$
\bar{E}_{X_{1}, X_{2}}^{F}
$$

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
$\operatorname{ar} \operatorname{cr}_{n}\left(X_{1}, \ldots X_{n}\right)=\operatorname{ker}\left(\theta_{X}^{F} \quad X_{n}\right)=" \operatorname{total} "$ kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$

Example (functors of degree ≤ 1)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube

- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$

Example (functors of degree ≤ 1)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$

Example (functors of degree ≤ 1)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$

Example (functors of degree

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$

Example (functors of degree

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$ iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$ iff $\equiv{ }_{X_{1}, \ldots, X_{n+1}}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$ iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !) iff $\operatorname{cr}_{n+1}^{F}\left(X_{1}\right.$,

Example (functors of degree

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$
iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$
iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !)
iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=\star_{\mathbb{E}^{\prime}} \forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$ iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$ iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !) iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=\star_{\mathbb{E}^{\prime}} \forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree ≤ 1)

- F is of degree ≤ 1 iff F takes sums to products - Id is of degree ≤ 1 iff $\mathbb{F}=A h(\mathbb{R})$

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$ iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$ iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !) iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=\star_{\mathbb{E}^{\prime}} \forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree ≤ 1)

- $\theta_{X_{1}, X_{2}}^{F}: F\left(X_{1}+X_{2}\right) \rightarrow F\left(X_{1}\right) \times F\left(X_{2}\right)$
- F is of degree ≤ 1 iff F takes sums to products
- $I d_{\mathbb{E}}$ is of degree ≤ 1 iff $\mathbb{E}=\mathrm{Ab}(\mathbb{E})$

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$
iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$
iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !) iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=\star_{\mathbb{E}^{\prime}} \forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree ≤ 1)

- $\theta_{X_{1}, X_{2}}^{F}: F\left(X_{1}+X_{2}\right) \rightarrow F\left(X_{1}\right) \times F\left(X_{2}\right)$
- F is of degree ≤ 1 iff F takes sums to products

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}^{F}=$ limit of the punctured cube
- $\theta_{X_{1}, \ldots, X_{n}}^{F}: F\left(X_{1}+\cdots+X_{n}\right) \rightarrow P_{X_{1}, \ldots, X_{n}}^{F}$
- $\operatorname{cr}_{n}^{F}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{ker}\left(\theta_{X_{1}, \ldots, X_{n}}^{F}\right)=$ "total" kernel of the cube
- pointed $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is of degree $\leq n$
iff $\Xi_{X_{1}, \ldots, X_{n+1}}^{F}$ is a limit-cube $\forall X_{1}, \ldots, X_{n+1}$
iff $\theta_{X_{1}, \ldots, X_{n+1}}^{F}$ is invertible $\forall X_{1}, \ldots, X_{n+1} \quad\left(\theta^{F}\right.$ is strong epi !) iff $c r_{n+1}^{F}\left(X_{1}, \ldots, X_{n+1}\right)=\star_{\mathbb{E}^{\prime}} \forall X_{1}, \ldots, X_{n+1}$

Example (functors of degree ≤ 1)

- $\theta_{X_{1}, X_{2}}^{F}: F\left(X_{1}+X_{2}\right) \rightarrow F\left(X_{1}\right) \times F\left(X_{2}\right)$
- F is of degree ≤ 1 iff F takes sums to products
- $\quad l d_{\mathbb{E}}$ is of degree ≤ 1 iff $\mathbb{E}=\operatorname{Ab}(\mathbb{E})$.

Definition (Higgins commutators and n-foldedness)

Theorem (BB '17)

TFAE for a semiabelian category E:

Definition (Higgins commutators and n-foldedness)

$$
\begin{gathered}
c r_{n+1}(X, \ldots, X)>X+\cdots+X \xrightarrow{\theta_{X, \ldots, x}} P_{X, \ldots, X} \\
\downarrow \underset{ }{\downarrow} X /[X, \ldots, X]_{n+1}
\end{gathered}
$$

X is n-folded iff ∇_{X}^{n+1} factors through θ_{X}, \ldots, X.

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

Definition (Higgins commutators and n-foldedness)

$$
\begin{gathered}
{c r_{n+1}(X, \ldots, X)} \text { (X } X+\cdots+X \xrightarrow{\theta_{X, \ldots, x}} P_{X, \ldots, X} \\
\downarrow \underset{ }{\downarrow} X /[X, \ldots, X]_{n+1}
\end{gathered}
$$

X is n-folded iff ∇_{X}^{n+1} factors through $\theta_{X, \ldots, X}$.

TFAE for a semiabelian category \mathbb{E} :

Definition (Higgins commutators and n-foldedness)

$$
\begin{gathered}
{c r_{n+1}(X, \ldots, X)} \text { (X)X+} X+X \xrightarrow{\theta_{X, \ldots, X}} P_{X, \ldots, X} \\
\downarrow \underset{ }{\downarrow} X /[X, \ldots, X]_{n+1}
\end{gathered}
$$

X is n-folded iff ∇_{X}^{n+1} factors through θ_{X}, \ldots, X.

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- $\quad l d_{\mathbb{E}}$ is of degree $\leq n$
- all objects of \mathbb{E} are n-folded

Definition (Higgins commutators and n-foldedness)

$$
\begin{gathered}
{c r_{n+1}(X, \ldots, X)} \text { (X)X+} X+X \xrightarrow{\theta_{X, \ldots, X}} P_{X, \ldots, X} \\
\downarrow \underset{ }{\downarrow} X X /[X, \ldots, X]_{n+1}
\end{gathered}
$$

X is n-folded iff ∇_{X}^{n+1} factors through θ_{X}, \ldots, X.

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- $\quad l d_{\mathbb{E}}$ is of degree $\leq n$
- all objects of \mathbb{E} are n-folded

Definition (Higgins commutators and n-foldedness)

$$
\begin{gathered}
{c r_{n+1}(X, \ldots, X)} \text { (X } X+\cdots+X \xrightarrow{\theta_{X, \ldots, x}} P_{X, \ldots, X} \\
\downarrow \underset{ }{\downarrow} X X /[X, \ldots, X]_{n+1}
\end{gathered}
$$

X is n-folded iff ∇_{X}^{n+1} factors through θ_{X}, \ldots, X.

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- $\quad l d_{\mathbb{E}}$ is of degree $\leq n$
- all objects of \mathbb{E} are n-folded

Definition (Higgins commutators and n-foldedness)

$$
\begin{aligned}
& c r_{n+1}(X, \ldots, X)>X+\cdots+X \xrightarrow{\theta_{X}, \ldots, X} P_{X, \ldots, X} \\
& \downarrow \quad * \quad \nabla_{x}^{n+1} \downarrow \downarrow \\
& {[X, \ldots, X]_{n+1} \longrightarrow X \xrightarrow{ } X /[X, \ldots, X]_{n+1}}
\end{aligned}
$$

X is n-folded iff ∇_{X}^{n+1} factors through θ_{X}, \ldots, X.

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- $\quad l d_{\mathbb{E}}$ is of degree $\leq n$
- all objects of \mathbb{E} are n-folded
- $[X, \ldots, X]_{n+1}=\star_{\mathbb{E}}$ for all X.

Definition (iterated Huq commutators in semiabelian categories)

An object X is n-nilpotent if commutators of length $n+1$ vanish:

$$
[X,[X,[X, \ldots,[X, X] \cdots]]]_{n+1}=\star_{\mathbb{E}}
$$

Definition (central extensions)

Central extensions are strong epis $X \rightarrow Y$ sth. $[X, \operatorname{ker}(f)]=\star_{\mathbb{E}}$

Lemma

An object X is n-nilpotent iff it is an n-fold central extension of the trivial object, i.e. $X \xrightarrow{n} X_{n-1}$

Proposition (Hartl-Van der Linden '13, BB '17)

Every n-folded object is n-nilpotent, i.e. iterated Huq commutators are contained in Higgins commutators of same length

Definition (iterated Huq commutators in semiabelian categories)

An object X is n-nilpotent if commutators of length $n+1$ vanish:

$$
[X,[X,[X, \ldots,[X, X] \cdots]]]_{n+1}=\star_{\mathbb{E}}
$$

Definition (central extensions)

Central extensions are strong epis $X \xrightarrow{f} Y$ sth. $[X, \operatorname{ker}(f)]=\star_{\mathbb{E}}$.

Lemma

An object X is n-nilpotent iff it is an n-fold central extension of the trivial object, i.e. $X \xrightarrow{n_{n}} X_{n-1}$
\square
Proposition (Hartl-Van der Linden '13, BB '17)
Every n-folded object is n-nilpotent, i.e. iterated Huq commutators are contained in Higgins commutators of same length

Definition (iterated Huq commutators in semiabelian categories)

An object X is n-nilpotent if commutators of length $n+1$ vanish:

$$
[X,[X,[X, \ldots,[X, X] \cdots]]]_{n+1}=\star_{\mathbb{E}} .
$$

Definition (central extensions)

Central extensions are strong epis $X \xrightarrow{f} Y$ sth. $[X, \operatorname{ker}(f)]=\star_{\mathbb{E}}$.

Lemma

An object X is n-nilpotent iff it is an n-fold central extension of the trivial object, i.e. $X \xrightarrow{f_{n}} X_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow X_{2} \xrightarrow{f_{2}} X_{1} \xrightarrow{f_{1}} \star_{\mathbb{E}}$.

[^2]
Definition (iterated Huq commutators in semiabelian categories)

An object X is n-nilpotent if commutators of length $n+1$ vanish:

$$
[X,[X,[X, \ldots,[X, X] \cdots]]]_{n+1}=\star_{\mathbb{E}} .
$$

Definition (central extensions)

Central extensions are strong epis $X \xrightarrow{f} Y$ sth. $[X, \operatorname{ker}(f)]=\star_{\mathbb{E}}$.

Lemma

An object X is n-nilpotent iff it is an n-fold central extension of the trivial object, i.e. $X \xrightarrow{f_{n}} X_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow X_{2} \xrightarrow{f_{2}} X_{1} \xrightarrow{f_{1}} \star_{\mathbb{E}}$.

Proposition (Hartl-Van der Linden '13, BB '17)

Every n-folded object is n-nilpotent, i.e. iterated Huq commutators are contained in Higgins commutators of same length.

Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm i, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

$\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\operatorname{Nil}^{n}(\mathbb{E})$.
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Proposition

The subcategory $\mathrm{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}.

Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nipotency)

$\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\operatorname{Nil}^{n}(\mathbb{E})$.
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Proposition

The subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}.

Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

$\mathrm{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\operatorname{Nil}^{n}(\mathbb{E})$
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Proposition

The subcategory $\mathrm{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}

Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$$
\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}
$$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

$\mathrm{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\operatorname{Nil}^{n}(\mathbb{E})$
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Proposition

The subcategory $\mathrm{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}

Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$$
\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}
$$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

$\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\operatorname{Nil}^{n}(\mathbb{E})$.
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

[^3]Example (n-folded $\neq n$-nilpotent for $n \geq 2$)

$$
\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}
$$

- $\{ \pm 1\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\{ \pm 1, \pm i\}=\mathbb{Z} / 4 \mathbb{Z}$
- $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ 2-nilpotent and 2-folded group
- $O_{16}=\left\{ \pm 1, \pm e_{2}, \cdots, \pm e_{8}\right\}$ 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

$\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff $\mathbb{E}=\mathrm{Nil}^{n}(\mathbb{E})$.
A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Proposition

The subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}.

Proposition (BB '17)

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an $(n-1)$-fold central extension of $X \times Y$.

Lemma (nilpotency tower)

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})=\mathrm{Ab}(\mathbb{E})$ is abelianization

Proposition (BB '17)

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Lemma (nilpotency tower)

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})=\mathrm{Ab}(\mathbb{E})$ is abelianization.
The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ are central reflections.

Proposition (BB '17)

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an $(n-1)$-fold central extension of $X \times Y$.

Lemma (nilpotency tower)

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})=\mathrm{Ab}(\mathbb{E})$ is abelianization.
The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ are central reflections.

Proposition (BB '17)

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an $(n-1)$-fold central extension of $X \times Y$.

Lemma (nilpotency tower)

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})=\mathrm{Ab}(\mathbb{E})$ is abelianization.
The relative Birkhoff reflections $I^{n, n+1}: \mathrm{Nil}^{n+1}(\mathbb{E}) \rightarrow \mathrm{Nil}^{n}(\mathbb{E})$ are central reflections.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
$\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \simeq n_{n}(X) / n_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n>1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\boldsymbol{t}_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

Example (Lazard's Theorem)

For a group $X, L(X)=\oplus_{n>1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n>1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n>1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- the functor $L_{n}: \mathbb{E} \rightarrow \mathrm{Ab}(\mathbb{E})$ is of degree $\leq n$ for each n
- the identity functor of $\mathrm{Nil}^{n}(\mathbb{E})$ is of degree $\leq n$ for each n
- everv n-nilnotent obiect is n-folded.

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n \geq 1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- the functor $L_{n}: \mathbb{E} \rightarrow \operatorname{Ab}(\mathbb{E})$ is of degree $\leq n$ for each n
- the identity functor of $\operatorname{Nil}^{n}(\mathbb{E})$ is of degree $\leq n$ for each n
- every n-nilpotent object is n-folded.

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n \geq 1} L_{n}(X)$ is a Lie ring which is free if X
is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- the functor $L_{n}: \mathbb{E} \rightarrow \operatorname{Ab}(\mathbb{E})$ is of degree $\leq n$ for each n
- the identity functor of $\operatorname{Nil}^{n}(\mathbb{E})$ is of degree $\leq n$ for each n
- every n-nilpotent object is n-folded
\square
Example (Lazard's Theorem)
For a group $X, L(X)=\bigoplus_{n \geq 1} L_{n}(X)$ is a Lie ring which is free if X
is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- the functor $L_{n}: \mathbb{E} \rightarrow \mathrm{Ab}(\mathbb{E})$ is of degree $\leq n$ for each n
- the identity functor of $\operatorname{Nil}^{n}(\mathbb{E})$ is of degree $\leq n$ for each n
- every n-nilpotent object is n-folded.

Example (Lazard's Theorem)
For a group $X, L(X)=\bigoplus_{n \geq 1} L_{n}(X)$ is a Lie ring which is free if X
is free. This shows that the properties above hold for groups.

Corollary

- $L_{n}(X)=\operatorname{ker}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) \in \operatorname{Ab}(\mathbb{E})$
- $\star_{\mathbb{E}} \longrightarrow L_{n}(X) \longrightarrow X / \gamma_{n+1}(X) \longrightarrow X / \gamma_{n}(X) \longrightarrow \star_{\mathbb{E}}$
- $L_{n}(X) \cong \gamma_{n}(X) / \gamma_{n+1}(X)$

Theorem (BB '17)

TFAE for a semiabelian category \mathbb{E} :

- the functor $L_{n}: \mathbb{E} \rightarrow \operatorname{Ab}(\mathbb{E})$ is of degree $\leq n$ for each n
- the identity functor of $\operatorname{Nil}^{n}(\mathbb{E})$ is of degree $\leq n$ for each n
- every n-nilpotent object is n-folded.

Example (Lazard's Theorem)

For a group $X, L(X)=\bigoplus_{n \geq 1} L_{n}(X)$ is a Lie ring which is free if X is free. This shows that the properties above hold for groups.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we $e_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap\right.$ we $\left._{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- ($\operatorname{cof}_{\mathbb{F}}$, we $\left._{\mathbb{F}} \cap \operatorname{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}\right.$, we $\left._{\mathbb{E}}, \operatorname{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe

Theorem (Quillen '66)

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $\mathrm{we}_{\mathbb{E}}$ fulfills 2-out-of-3;
- ($\operatorname{cof}_{\mathbb{E}} \cap$ we $\left._{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, w_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quilen '66)
 $\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}\right.$, we $\left._{\mathbb{E}}, \operatorname{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe

Theorem (Quillen '66)

- The adjunction |-| : sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $w_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}\right.$, we $\left._{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $w_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}} \cap \operatorname{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

\square
- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $\mathrm{we}_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}} \cap \operatorname{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.
Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}$, we $_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we \mathbb{E} fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Carboni-Kelly-Pedicchio '93)
 A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

```
Every semiabelian category is a Mal'cev category.
```


Corollary

The simplical objects of a semiabelian variety V_{T} carry a model structure sth

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} of $s V_{T}$ the algebraic cross-effects $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)$ are homotopy-invariant.

Proposition (Carboni-Kelly-Pedicchio '93)
 A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)
Every semiabelian category is a Mal'cev category.
Corollary
The simplical objects of a semiabelian variety V_{T} carry a model structure sth

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} of $s V_{T}$ the algebraic cross-effects $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)$ are homotopy-invariant.

Proposition (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

Every semiabelian category is a Mal'cev category.
Corollary
The simplical objects of a semiabelian variety V_{T} carry a model
structure sth

Proposition

For cofibrant cbjects $X_{1} \ldots, X_{n}$ of $s V_{T}$ the algebraic cross-effects $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)$ are homotopy-invariant.

Proposition (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

Every semiabelian category is a Mal'cev category.

Corollary

The simplical objects of a semiabelian variety V_{T} carry a model structure sth

```
- we's are the maps inducing a quasi-iso on Moore complexes;
- every strong epi is a fibration.
```

Proposition
\square $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)$ are homotopy-invariant.

Proposition (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

Every semiabelian category is a Mal'cev category.

Corollary

The simplical objects of a semiabelian variety V_{T} carry a model structure sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every strong epi is a fibration.

Proposition (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

Every semiabelian category is a Mal'cev category.

Corollary

The simplical objects of a semiabelian variety V_{T} carry a model structure sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every strong epi is a fibration.

Proposition (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Proposition (Bourn '96)

Every semiabelian category is a Mal'cev category.

Corollary

The simplical objects of a semiabelian variety V_{T} carry a model structure sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every strong epi is a fibration.

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} of $s V_{T}$ the algebraic cross-effects $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ are homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which
$\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $n^{2} l_{2}^{T}(X)=n$ iff n is the least integer for which ∇_{X}^{n+1} factors up to homotopy through θ_{X}, \ldots, x;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity functor of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which ∇_{X}^{n+1} factors up to homotopy through θ_{X}, \ldots, x; - $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity functor of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which ∇_{X}^{n+1} factors up to homotopy through $\theta_{X, \ldots, X}$;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity functor of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which ∇_{X}^{n+1} factors up to homotopy through θ_{X}, \ldots, X;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity functor of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which ∇_{X}^{n+1} factors up to homotopy through θ_{X}, \ldots, X;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity functor of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=$ nil $_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=\operatorname{cocat}_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=$ nil $_{\text {Biadarmann }}$ D.uyer $(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)
For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Thank you!

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=$ nil $_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)
For any based connected space X one has

Thank you!

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=$ nil $_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)
For any based connected space X one has

Thank you!

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)
For any based connected space X one has

Thank you!

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (cf. Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Thank you!

[^0]: finitely complete, stable strong epi/mono fact, effective equ. relations

[^1]: Remark
 In an abelian category the commutator subobjects are trivial

[^2]: Proposition (Hartl-Van der Linden '13, BB '17)
 Every n-folded object is n-nilpotent, i.e. iterated Huq commutators are contained in Higgins commutators of same length.

[^3]: Proposition
 The subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}

