Moment categories and operads

Clemens Berger

University of Nice-Sophia Antipolis

CRM Barcelone Seminar
Higher Homotopical Structures
March 9, 2021
(1) Introduction
(2) Moment categories
(3) Hypermoment categories

4 Plus construction
(5) Monadicity

Summary (active/inert factorisation system)

Related concepts (replacing "inert part" with \rightsquigarrow)
Operator category (Barwick \rightsquigarrow pullback structure)
Operadic category (Batanin-Markl \rightsquigarrow fibre structure)
Feynman category (Kaufmann-Ward \rightsquigarrow sym. monoidal structure)
Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$-categorical context)

Summary (active/inert factorisation system)

Related concepts (replacing "inert part" with \rightsquigarrow)

Operator category (Barwick \rightsquigarrow pullback structure)
Operadic category (Batanin-Markl \rightsquigarrow fibre structure)
Feynman category (Kaufmann-Ward \rightsquigarrow sym. monoidal structure) Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$-categorical context)

Summary (active/inert factorisation system)

moments
 $\underset{\sim}{m e n t s}$ moment category
 $\stackrel{\text { units }}{\rightsquigarrow}$ operad-type
 plus
 Segal presheaf

\mathbb{C}	\mathbb{C}-operad	\mathbb{C}-monoid	\mathbb{C}_{∞}-monoid
Γ	sym. operad	comm. monoid	E_{∞}-space
Δ	non-sym. operad	assoc. monoid	A_{∞}-space
Θ_{n}	n-operad	n-monoid	E_{n}-space
Ω	tree-hyperoperad	sym. operad	∞-operad
Γ_{\uparrow}	graph-hyperoperad	properad	∞-properad

[^0]
Summary (active/inert factorisation system)

moments moment category $\stackrel{\text { units }}{\rightsquigarrow}$ operad-type $\stackrel{\text { plus }}{\sim}$ Segal presheaf

\mathbb{C}	\mathbb{C}-operad	\mathbb{C}-monoid	\mathbb{C}_{∞}-monoid
Γ	sym. operad	comm. monoid	E_{∞}-space
Δ	non-sym. operad	assoc. monoid	A_{∞}-space
Θ_{n}	n-operad	n-monoid	E_{n}-space
Ω	tree-hyperoperad	sym. operad	∞-operad
Γ_{\downarrow}	graph-hyperoperad	properad	∞-properad

Summary (active/inert factorisation system)

moments moment category $\stackrel{\text { units }}{\rightsquigarrow}$ operad-type $\stackrel{\text { plus }}{\sim}$ Segal presheaf

\mathbb{C}	\mathbb{C}-operad	\mathbb{C}-monoid	\mathbb{C}_{∞}-monoid
Γ	sym. operad	comm. monoid	E_{∞}-space
Δ	non-sym. operad	assoc. monoid	A_{∞}-space
Θ_{n}	n-operad	n-monoid	E_{n}-space
Ω	tree-hyperoperad	sym. operad	∞-operad
Γ_{\uparrow}	graph-hyperoperad	properad	∞-properad

Related concepts (replacing "inert part" with \rightsquigarrow)
Operator category (Barwick \rightsquigarrow pullback structure) Operadic category (Batanin-Markl \rightsquigarrow fibre structure) Feynman category (Kaufmann-Ward \rightsquigarrow sym. monoidal structure)
Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$-categorical context)

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system $\left(\mathbb{C}_{\text {act }}, \mathbb{C}_{\text {in }}\right)$ such that
(1) each inert map admits a unique active retraction;
(2) if the left square below commutes then the right square as well

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system $\left(\mathbb{C}_{\text {act }}, \mathbb{C}_{\text {in }}\right)$ such that
(1) each inert map admits a unique active retraction;

(2) if the left square below commutes then the right square as well

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system $\left(\mathbb{C}_{\text {act }}, \mathbb{C}_{\text {in }}\right)$ such that
(1) each inert map admits a unique active retraction;
(2) if the left square below commutes then the right square as well

where r, r^{\prime} are the active retractions of i, i^{\prime} provided by (1).

Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between inert subobjects of A and moments of A, i.e. endomorphisms $\phi: A \rightarrow A$ sth. $\phi=\phi_{\text {in }} \phi_{\text {act }} \Longrightarrow \phi_{\text {act }} \phi_{\text {in }}=1_{A}$.

Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between inert subobjects of A and moments of A, i.e. endomorphisms $\phi: A \rightarrow A$ sth. $\phi=\phi_{\text {in }} \phi_{\text {act }} \Longrightarrow \phi_{\text {act }} \phi_{\text {in }}=1_{A}$.

Put $m_{A}=\left\{\phi \in \mathbb{C}(A, A) \mid \phi_{\text {act }} \phi_{\text {in }}=1_{A}\right\}$

Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between inert subobjects of A and moments of A, i.e. endomorphisms $\phi: A \rightarrow A$ sth. $\phi=\phi_{\text {in }} \phi_{\text {act }} \Longrightarrow \phi_{\text {act }} \phi_{\text {in }}=1_{A}$.

Put $m_{A}=\left\{\phi \in \mathbb{C}(A, A) \mid \phi_{\text {act }} \phi_{\text {in }}=1_{A}\right\}$
For $f: A \rightarrow B$ define $f_{*}: m_{A} \rightarrow m_{B}$ by

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma \mathrm{Op}=$ finite sets and partial maps)

Example (simplex category Δ)

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

Example (simplex category \triangle)

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active provided $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n}$. (partition)
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n\right.} \underline{n}$ inert provided all \underline{n}_{i} are singleton. (embedding)

Example (simplex category Δ)

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active provided $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n}$. (partition)
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ inert provided all \underline{n}_{i} are singleton. (embedding)

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active provided $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n}$. (partition)
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ inert provided all \underline{n}_{i} are singleton. (embedding)

Example (simplex category Δ)

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active provided $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n}$. (partition)
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ inert provided all \underline{n}_{i} are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f}[n]$ is active provided f is endpoint-preserving, i.e. $f(0)=0, f(m)=n$.
- $[m] \xrightarrow{f}[n]$ is inert provided f is distance-preserving, i.e $f(i+1)=f(i)+1$ for all

Proposition (left regular band - skew-commutativity)

The moment set m_{A} is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi=\phi \psi$.

Example (Segal's category $\Gamma \rightsquigarrow \Gamma^{\mathrm{op}}=$ finite sets and partial maps)

- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active provided $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n}$. (partition)
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ inert provided all \underline{n}_{i} are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f}[n]$ is active provided f is endpoint-preserving, i.e. $f(0)=0, f(m)=n$.
- $[m] \xrightarrow{f}[n]$ is inert provided f is distance-preserving, i.e. $f(i+1)=f(i)+1$ for all i.

Definition（units，elementary moments，nilobjects）
－A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$ ．
－A unit is an object U sth． 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$ ，and every active map with target U admits exactly one inert section．
－A moment is elementary if it splits over a unit．The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$ ．
－An object without elementary moments is called a nilobject．

Example（ Γ and \triangle ）

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\{1 U\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An object without elementary moments is called a nilobject.

Example (Γ and \triangle)

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An ohiect without elementary moments is called a nilobject.

Example (Γ and \triangle)

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An object without elementary moments is called a nilobject.

Example (Γ and \triangle)

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{i n}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An object without elementary moments is called a nilobject.

Example (Γ and \triangle)

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Г. Elementary inert subobjects $\underline{1}>\underline{n}$ are elements. Cardinality of $\mathrm{el}_{\underline{n}}$ is n.
- [0] is the nilobject, and [1] the unit of Δ. Elementary inert subobjects $[1]>[n]$ are segments. Cardinality of $\mathrm{el}_{[n]}$ is n.

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An object without elementary moments is called a nilobject.

Example (Γ and \triangle)

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $\underline{1}>\underline{n}$ are elements. Cardinality of $\mathrm{el}_{\underline{n}}$ is n.

Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if $\phi_{\text {in }}$ is the only inert section of $\phi_{\text {act }}$.
- A unit is an object U sth. 1_{U} is the only centric moment but $m_{U} \neq\left\{1_{U}\right\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\mathrm{el}_{A} \subset m_{A}$.
- An object without elementary moments is called a nilobject.

Example (Γ and \triangle)

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $\underline{1} \longrightarrow \underline{n}$ are elements. Cardinality of $\mathrm{el}_{\underline{n}}$ is n.
- [0] is the nilobject, and [1] the unit of Δ. Elementary inert subobjects $[1]>\longrightarrow[n]$ are segments. Cardinality of $\mathrm{el}_{[n]}$ is n.

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, I_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{E}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \rightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha \in \mathrm{el}_{A}} \mathcal{O}\left(B_{f_{*}(\alpha)}\right)$.

Example (Γ and \triangle)

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, I_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{I}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition

Example (Γ and \triangle)

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, I_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{I}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \rightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha \in \mathrm{el}_{A}} \mathcal{O}\left(B_{f_{*}(\alpha)}\right)$.

Example (Γ and \triangle)

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, \mathbb{I}_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{I}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \rightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha \in \mathrm{el}_{A}} \mathcal{O}\left(B_{f_{*}(\alpha)}\right)$.

Example (Γ and \triangle)

- Γ-operads=symmetric operads:
- Δ-operads $=$ non-symmetric operads:

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, \mathbb{I}_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{I}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \rightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha \in \mathrm{el}_{A}} \mathcal{O}\left(B_{f_{*}(\alpha)}\right)$.

Example (Γ and \triangle)

- Γ-operads=symmetric operads:

$$
\mathcal{O}_{m} \otimes \mathcal{O}_{n_{1}} \otimes \cdots \otimes \mathcal{O}_{n_{m}} \rightarrow \mathcal{O}_{n_{1}+\cdots+n_{m}} \text { for each } \underline{m} \longrightarrow \underline{n} .
$$

Definition (\mathbb{C}-operads for unital moment categories \mathbb{C})

A \mathbb{C}-operad \mathcal{O} in a symmetric monoidal category $\left(\mathbb{E}, \otimes, \mathbb{I}_{\mathbb{E}}\right)$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E}, together with

- a unit $\mathbb{I}_{\mathbb{E}} \rightarrow \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \rightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha \in \mathrm{el}_{A}} \mathcal{O}\left(B_{f_{*}(\alpha)}\right)$.

Example (Γ and \triangle)

- Γ-operads=symmetric operads:

$$
\mathcal{O}_{m} \otimes \mathcal{O}_{n_{1}} \otimes \cdots \otimes \mathcal{O}_{n_{m}} \rightarrow \mathcal{O}_{n_{1}+\cdots+n_{m}} \text { for each } \underline{m} \longrightarrow \underline{n} .
$$

- Δ-operads $=$ non-symmetric operads:

$$
\mathcal{O}_{m} \otimes \mathcal{O}_{n_{1}} \otimes \cdots \otimes \mathcal{O}_{n_{m}} \rightarrow \mathcal{O}_{n_{1}+\cdots+n_{m}} \text { for each }[m]-十 \rightarrow[n]
$$

Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \rightarrow A$ from a unit.

Proposition (universal role of 「)

For every unital moment category \mathbb{C} there is an essentially unique
cardinality preserving moment functor

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

Proposition
Joval's category Θ_{n} is an iterated wreath product $\Delta ? \cdots 2 \Delta$
Θ_{n}-operads are Batanin's $(n-1)$-terminal n-operads.

Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

Proposition
Ioval's cateon Θ_{n} is an iterated wreath product $\Delta ? \cdots \Delta$ Θ_{n}-operads are Batanin's $(n-1)$-terminal n-operads.

Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \xrightarrow{\longrightarrow} A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

Proposition

Joyal's category Θ_{n} is an iterated wreath product $\Delta ? \cdots{ }^{\prime}$ Θ_{n}-operads are Batanin's $(n-1)$-terminal n-operads

Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \xrightarrow{\longrightarrow} A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$\operatorname{Ob}(\mathcal{A}$ 乙 $\mathcal{B})=\left\{\left(A, B_{\alpha}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), \alpha \in \mathrm{el}_{A}, B_{\alpha} \in \operatorname{Ob}(\mathcal{B})\right\}$

[^1]
Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \xrightarrow{\longrightarrow} A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$\operatorname{Ob}(\mathcal{A}$ 乙 $\mathcal{B})=\left\{\left(A, B_{\alpha}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), \alpha \in \mathrm{el}_{A}, B_{\alpha} \in \operatorname{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{\alpha}\right) \longrightarrow\left(A^{\prime}, B_{\beta}^{\prime}\right)$ where f_{α}^{β} for each $\beta \leq f_{*}(\alpha)$.

[^2]
Definition (unital moment categories)

For every object A, el_{A} has finite cardinality and receives an essentially unique active morphism $U_{A} \xrightarrow{\longrightarrow} A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$\operatorname{Ob}(\mathcal{A}$ 乙 $\mathcal{B})=\left\{\left(A, B_{\alpha}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), \alpha \in \mathrm{el}_{A}, B_{\alpha} \in \operatorname{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{\alpha}\right) \longrightarrow\left(A^{\prime}, B_{\beta}^{\prime}\right)$ where f_{α}^{β} for each $\beta \leq f_{*}(\alpha)$.

Proposition

Joyal's category Θ_{n} is an iterated wreath product $\Delta \imath \cdots \imath \Delta$. Θ_{n}-operads are Batanin's ($n-1$)-terminal n-operads.

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\sim_{O_{n}}: \Theta_{n} \rightarrow \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of $[2(2], 0)$ in $\left.\Delta \imath \Delta=\theta_{2}\right)$

τ_{8}

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\gamma_{\Theta_{n}}: \Theta_{n} \rightarrow$ Г takes n-level tree to its set of height n vertices.
- Active maps $S \rightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of $2(22,0)$ in $\left.\Delta \imath \Delta=\theta_{2}\right)$

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\gamma_{\Theta_{n}}: \Theta_{n} \rightarrow$ 「 takes n-level tree to its set of height n vertices.
- Active maps $S \rightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of $[2]([2],[0])$ in $\left.\Delta \imath \Delta=\theta_{2}\right)$

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\gamma_{\Theta_{n}}: \Theta_{n} \rightarrow \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of $[2](2],[0])$ in $\left.\Delta\rangle \Delta=\theta_{2}\right)$

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\gamma_{\Theta_{n}}: \Theta_{n} \rightarrow \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of [2] $(2],[0])$ in $\left.\Delta \imath \Delta=\Theta_{2}\right)$

Remark (moment category structure on Θ_{n})

- Objects of Θ_{n} correspond to n-level trees.
- There is a unique unit U_{n}, the linear tree of height n.
- $\gamma_{\Theta_{n}}: \Theta_{n} \rightarrow \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_{n}.

Example (inert substructure of [2](%5B2%5D,%5B0%5D) in $\left.\Delta \imath \Delta=\Theta_{2}\right)$

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

Lemma (presheaf presentation for cartesian closed \mathbb{E})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\text {op }} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
 \mathbb{C}-monoids are presheaves $X: \mathbb{C}_{a c t}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

Lemma (presheaf presentation for cartesian closed \mathbb{E})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{Op}} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

Lemma (presheaf presentation for cartesian closed \mathbb{E})

\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C}-monoids are presheaves $X: \mathbb{C}_{a c t}^{o p} \rightarrow \mathbb{E}$ such that
Lemma (presheaf presentation for cartesian closed \mathbb{E})

\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}$ Op $\rightarrow \mathbb{\mathbb { E }}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

Lemma (presheaf presentation for cartesian closed \mathbb{B})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{Op}} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A)=X^{\otimes \mathrm{el}_{A}}$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})

\mathbb{C}-monoid's arise from presheaves $X: \mathbb{C o n} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A)=X^{\otimes \mathrm{el}_{A}}$.
- $X(f: A \longrightarrow B)=\bigotimes_{\alpha \in \mathrm{el}_{A}} X\left(f_{\alpha}: U \longrightarrow B_{f_{*}(\alpha)}\right)$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})

\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\text {op }} \rightarrow \mathbb{E}$ such that

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A)=X^{\otimes \mathrm{el}_{A}}$.
- $X(f: A \longrightarrow B)=\bigotimes_{\alpha \in \mathrm{el}_{A}} X\left(f_{\alpha}: U \longrightarrow B_{f_{*}(\alpha)}\right)$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \mathrm{el}_{A}} X(U)$ (strict Segal-condition)

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A)=X^{\otimes \mathrm{el}_{A}}$.
- $X(f: A \longrightarrow B)=\bigotimes_{\alpha \in \mathrm{el}_{A}} X\left(f_{\alpha}: U \longrightarrow B_{f_{*}(\alpha)}\right)$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(N)=*$ for every nilobject N.

Definition (\mathbb{C}-monoids for \mathbb{C} with single rigid unit U)

- $\mathcal{E}_{X}(A)=\operatorname{hom}_{\mathbb{E}}\left(X^{\otimes \mathrm{el}_{A}}, X\right)$ (endomorphism- \mathbb{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_{X}(\mathcal{O}$-algebra structure on $X)$.
- \mathbb{C}-monoid=algebra over the unit- \mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})
\mathbb{C}-monoids are presheaves $X: \mathbb{C}_{\text {act }}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(A)=X^{\otimes \mathrm{el}_{A}}$.
- $X(f: A \longrightarrow B)=\bigotimes_{\alpha \in \mathrm{el}_{A}} X\left(f_{\alpha}: U \longrightarrow B_{f_{*}(\alpha)}\right)$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})
\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\mathrm{op}} \rightarrow \mathbb{E}$ such that

- $X(N)=*$ for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \mathrm{el}_{A}} X(U)$ (strict Segal-condition).

Moment categories and operads
Hypermoment categories

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

Example (dendroidal category Ω of Moerdijk-Weiss)

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} \gg \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U>A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $1 \gg \gamma_{C}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U>\longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion inert mono $=$ outer face $=$ dendrix embedding
- $\gamma_{\Omega}: \Omega \rightarrow \Gamma$ takes a dendrix to its vertex set.
- units $=$ corollas C_{n}, one for each $n \in \mathbb{N}$.

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion
inert mono $=$ outer face $=$ dendrix embedding
- $\gamma_{\Omega}: \Omega \rightarrow \Gamma$ takes a dendrix to its vertex set.
- units - corollas C_{n}, one for each $n \in \mathbb{N}$.

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion inert mono $=$ outer face $=$ dendrix embedding

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion inert mono $=$ outer face $=$ dendrix embedding
- $\gamma \Omega: \Omega \rightarrow \Gamma$ takes a dendrix to its vertex set.
- units $=$ corollas C_{n}, one for each $n \in \mathbb{N}$.

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion inert mono $=$ outer face $=$ dendrix embedding
- $\gamma_{\Omega}: \Omega \rightarrow$ 「 takes a dendrix to its vertex set.

Definition (hypermoment category)

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \rightarrow \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1}>\gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U \gg A$ in \mathbb{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ dendrix insertion inert mono $=$ outer face $=$ dendrix embedding
- $\gamma_{\Omega}: \Omega \rightarrow \Gamma$ takes a dendrix to its vertex set.
- units $=$ corollas C_{n}, one for each $n \in \mathbb{N}$.

Example (graphoidal category $\Gamma_{\mathfrak{\downarrow}}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every mornhism decomnoses into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\uparrow}: \Gamma_{\hat{\imath}} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

Example (graphoidal category $\Gamma_{\mathfrak{\downarrow}}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\uparrow}}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units - directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

Example (graphoidal category $\Gamma_{\mathfrak{\downarrow}}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $v_{r}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a granhix to its vertex set
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings Δ

Example (graphoidal category $\Gamma_{\mathfrak{\downarrow}}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\uparrow}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings \triangle

Example (graphoidal category Γ_{\downarrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\downarrow}}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$

Example (graphoidal category Γ_{\downarrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\downarrow}}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\downarrow}}: \Gamma_{\downarrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- $\Omega / \Gamma_{\uparrow}$-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma_{\uparrow}$-monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\downarrow}}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- $\Omega / \Gamma_{\downarrow}$-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma_{\uparrow}$-monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono $=$ inner face $=$ graphix insertion inert mono $=$ outer face $=$ graphix embedding
- $\gamma_{\Gamma_{\downarrow}}: \Gamma_{\uparrow} \rightarrow \Gamma$ takes a graphix to its vertex set.
- units $=$ directed corollas $C_{n, m}$, one for each $(n, m) \in \mathbb{N}^{2}$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- $\Omega / \Gamma_{\mathfrak{\downarrow}}$-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma_{\mathfrak{\downarrow}}$-monoids=symmetric operads/properads (Vallette)

Moment categories and operads
Plus construction

Definition（plus construction for unital hypermoment categories \mathbb{C} ）

Theorem（cf．Baez－Dolan）

\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}－operads get identified with \mathbb{C}^{+}－monoids．

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \longrightarrow \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m\rceil \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \rightarrow A)>\left([m], A_{0}\right)$

Theorem (cf. Baez-Dolan)

\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^{+}-monoids.

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \xrightarrow{+} \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m] \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \longrightarrow A)>\left([m], A_{0}\right)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^{+}-monoids.

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \rightarrow \rightarrow \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m] \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) \gg\left([m], A_{0}\right)$.

Theorem (cf. Baez-Dolan)
\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get
identified with \mathbb{C}^{+}-monoids.

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \rightarrow \rightarrow \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m] \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \longrightarrow A)>\longrightarrow\left([m], A_{\bullet}\right)$.

Theorem (cf. Baez-Dolan)
\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get
identified with \mathbb{C}^{+}-monoids.

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \rightarrow \rightarrow \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m] \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \longrightarrow A)>\longrightarrow\left([m], A_{\bullet}\right)$.

Theorem (cf. Baez-Dolan)
\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get
identified with \mathbb{C}^{+}-monoids.

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $\left([m], A_{0} \rightarrow \cdots \rightarrow A_{m}\right)$ consists of $[m]$ in Δ and a functor $A_{\bullet}:[m] \rightarrow \mathbb{C}_{\text {act }}$ such that A_{0} is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi:[m] \rightarrow[n]$ and a nat. transf. $f: A \rightarrow B \phi$ sth. $f_{i}: A_{i} \rightarrow B_{\phi(i)}$ is inert for $i \in[m]$.
- \mathbb{C}^{+}is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \longrightarrow A)>\longrightarrow\left([m], A_{\bullet}\right)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^{+}is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^{+}-monoids.

Proposition ($\Omega \supset \Gamma^{+}$, cf. Chu-Haugseng-Heuts)

Remark (reduced dendrices)

Proposition ($\Omega \supset \Gamma^{+}$, cf. Chu-Haugseng-Heuts)

Remark (reduced dendrices)

Definition（extensionality）

A hypermoment category \mathbb{C} is extensional if pushouts of inert maps along active maps exist，are inert and preserved by $\gamma_{\mathbb{C}}$ ．

Proposition（ \mathbb{C}－tree insertion for extensional \mathbb{C} ）

\mathbb{C}－trees can be inserted into vertices of \mathbb{C}－trees．There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$－operads $) \simeq\left(\mathcal{F}_{\mathbb{C}}\right.$－algebras $)$ ．

Theorem（monadicity for extensional \mathbb{C} ）

The forgetful functor from \mathbb{C}－operads to \mathbb{C}－collections is monadic．

Remark

$\mathcal{F}_{\boldsymbol{\Gamma}}$ is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads．

Definition (extensionality)

A hypermoment category \mathbb{C} is extensional if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

```
Proposition (\mathbb{C}\mathrm{ -tree insertion for extensional }\mathbb{C}\mathrm{ )}
C}\mathrm{ -trees can be inserted into vertices of }\mathbb{C}\mathrm{ -trees. There exists a
Feynman category }\mp@subsup{\mathcal{F}}{\mathbb{C}}{}\mathrm{ such that (C}\mathbb{C}\mathrm{ -operads })\simeq(\mp@subsup{\mathcal{F}}{\mathbb{C}}{}\mathrm{ -algebras }
```


Theorem (monadicity for extensional \mathbb{C}) The forgetful functor from \mathbb{C}-operads to \mathbb{C}-collections is monadic.

Remark

$\mathcal{F}_{\boldsymbol{\Gamma}}$ is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads

Definition (extensionality)

A hypermoment category \mathbb{C} is extensional if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C}-tree insertion for extensional \mathbb{C})

\mathbb{C}-trees can be inserted into vertices of \mathbb{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$-operads $) \simeq\left(\mathcal{F}_{\mathbb{C}}\right.$-algebras $)$.

[^3]
Definition (extensionality)

A hypermoment category \mathbb{C} is extensional if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C}-tree insertion for extensional \mathbb{C})

\mathbb{C}-trees can be inserted into vertices of \mathbb{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$-operads $) \simeq\left(\mathcal{F}_{\mathbb{C}}\right.$-algebras $)$.

Theorem (monadicity for extensional \mathbb{C})

The forgetful functor from \mathbb{C}-operads to \mathbb{C}-collections is monadic.

Definition (extensionality)

A hypermoment category \mathbb{C} is extensional if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C}-tree insertion for extensional \mathbb{C})

\mathbb{C}-trees can be inserted into vertices of \mathbb{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$-operads $) \simeq\left(\mathcal{F}_{\mathbb{C}}\right.$-algebras $)$.

Theorem (monadicity for extensional \mathbb{C})

The forgetful functor from \mathbb{C}-operads to \mathbb{C}-collections is monadic.

Remark

\mathcal{F}_{Γ} is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.

Definition (Segal core for strongly unital \mathbb{C})

The Segal core $\mathbb{C}_{\text {Seg }}$ is the subcategory of $\mathbb{C}_{\text {in }}$ spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\text {Seg }}$ is dense in $\mathbb{C}_{\text {in }}$.

\mathbb{C}	\triangle	Θ_{n}	Ω	Γ_{\uparrow}
$\mathbb{C}_{\text {Seg }}$	$[0] \rightrightarrows[1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathbb{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathbb{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})

The forgetful functor from \mathbb{C}-categories to \mathbb{C}-graphs is monadic.

Definition (Segal core for strongly unital \mathbb{C})

The Segal core $\mathbb{C}_{\text {Seg }}$ is the subcategory of $\mathbb{C}_{\text {in }}$ spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\text {Seg }}$ is dense in $\mathbb{C}_{\text {in }}$.

\mathbb{C}	Δ	Θ_{n}	Ω	Γ_{\uparrow}
$\mathbb{C}_{\text {Seg }}$	$[0] \rightrightarrows[1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathbb{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathbb{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})
The forgetful functor from \mathbb{C}-categories to \mathbb{C}-graphs is monadic

Definition (Segal core for strongly unital \mathbb{C})

The Segal core $\mathbb{C}_{\text {Seg }}$ is the subcategory of $\mathbb{C}_{\text {in }}$ spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\text {Seg }}$ is dense in $\mathbb{C}_{\text {in }}$.

\mathbb{C}	Δ	Θ_{n}	Ω	Γ_{\uparrow}
$\mathbb{C}_{\text {Seg }}$	$[0] \rightrightarrows[1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathbb{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathbb{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})

The forgetful functor from \mathbb{C}-categories to \mathbb{C}-graphs is monadic.

Definition (Segal core for strongly unital \mathbb{C})

The Segal core $\mathbb{C}_{\text {Seg }}$ is the subcategory of $\mathbb{C}_{\text {in }}$ spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\text {Seg }}$ is dense in $\mathbb{C}_{\text {in }}$.

\mathbb{C}	Δ	Θ_{n}	Ω	Γ_{\uparrow}
$\mathbb{C}_{\text {Seg }}$	$[0] \rightrightarrows[1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathbb{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathbb{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})

The forgetful functor from \mathbb{C}-categories to \mathbb{C}-graphs is monadic.

Thanks for your attention!

[^0]: Related concepts (replacing "inert part" with \rightsquigarrow)
 Operator category (Barwick $\leadsto \rightarrow$ pullback structure)
 Operadic category (Batanin-Mark| \rightsquigarrow fibre structure)
 Feynman category (Kaufmann-Ward \rightsquigarrow sym. monoidal structure)
 Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$-categorical context)

[^1]: Proposition
 Joyal's category Θ_{n} is an iterated wreath product \triangle ? . ? Δ. Θ_{n}-operads are Batanin's $(n-1)$-terminal n-operads

[^2]: Proposition
 Joyal's category Θ_{n} is an iterated wreath product $\left.\Delta\right\} \cdots{ }^{\prime}$ Θ_{n}-operads are Batanin's $(n-1)$-terminal n-operads.

[^3]: Remark
 \mathcal{F}_{r} is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.

