Moment categories and operads

Clemens Berger

University of Nice-Sophia Antipolis

CRM Barcelone Seminar Higher Homotopical Structures March 9, 2021

- Introduction
- 2 Moment categories
- 3 Hypermoment categories
- Plus construction
- Monadicity

Related concepts (replacing "inert part" with ↔)

Operator category (Barwick --> pullback structure)

Operadic category (Batanin-Markl ->> fibre structure)

Feynman category (Kaufmann-Ward → sym. monoidal structure)

Categorical pattern (Chu-Haugseng → ∞-categorical context)

 $\overset{\textit{moments}}{\leadsto}$ moment category $\overset{\textit{units}}{\leadsto}$ operad-type $\overset{\textit{plus}}{\leadsto}$ Segal presheaf

	C-operad		
Γ	sym. operad	comm. monoid	E_{∞} -space
Δ	non-sym. operad	assoc. monoid	A_{∞} -space
	<i>n</i> -operad		E_n -space
Ω	tree-hyperoperad	sym. operad	∞-operad
Г	graph-hyperoperad	properad	∞-properad

Related concepts (replacing "inert part" with ↔)

Operator category (Barwick --> pullback structure)

Operadic category (Batanin-Markl --> fibre structure)

Feynman category (Kaufmann-Ward → sym. monoidal structure)

Categorical pattern (Chu-Haugseng → ∞-categorical context)

$\overset{\textit{moments}}{\leadsto} \text{moment category}$	$\overset{\textit{units}}{\leadsto}$	operad-type	$\overset{\textit{plus}}{\leadsto}$	Segal presheaf
---	--------------------------------------	-------------	-------------------------------------	----------------

	C-operad		
Γ	sym. operad	comm. monoid	E_{∞} -space
Δ	non-sym. operad	assoc. monoid	A_{∞} -space
	<i>n</i> -operad		E_n -space
Ω	tree-hyperoperad	sym. operad	∞-operad
Г	graph-hyperoperad	properad	∞ -properad

Related concepts (replacing "inert part" with ↔

Operator category (Barwick --> pullback structure)

Operadic category (Batanin-Markl --> fibre structure)

Feynman category (Kaufmann-Ward → sym. monoidal structure)

Categorical pattern (Chu-Haugseng → ∞-categorical context)

moments → moment category	$\overset{units}{\leadsto}$	operad-type	$\overset{\textit{plus}}{\leadsto}$	Segal presheaf
------------------------------	-----------------------------	-------------	-------------------------------------	----------------

\mathbb{C}	\mathbb{C} -operad	$\mathbb{C} ext{-monoid}$	\mathbb{C}_{∞} -monoid
Γ	sym. operad	comm. monoid	E_{∞} -space
Δ	non-sym. operad	assoc. monoid	A_{∞} -space
Θ_n	<i>n</i> -operad	<i>n</i> -monoid	E_n -space
Ω	tree-hyperoperad	sym. operad	∞-operad
Г≎	graph-hyperoperad	properad	∞ -properad

Related concepts (replacing "inert part" with ↔

Operator category (Barwick → pullback structure)
Operadic category (Batanin-Markl → fibre structure)
Feynman category (Kaufmann-Ward → sym. monoidal structure)
Categorical pattern (Chu-Haugseng → ∞-categorical context)

moments	5	units		plus	
~→	moment category	~→	operad-type	~ →	Segal presheaf

\mathbb{C}	\mathbb{C} -operad	\mathbb{C} -monoid	\mathbb{C}_{∞} -monoid
Γ	sym. operad	comm. monoid	E_{∞} -space
Δ	non-sym. operad	assoc. monoid	A_{∞} -space
Θ_n	<i>n</i> -operad	<i>n</i> -monoid	E_n -space
Ω	tree-hyperoperad	sym. operad	∞-operad
Г	graph-hyperoperad	properad	∞ -properad

Related concepts (replacing "inert part" with ↔)

Operator category (Barwick → pullback structure)

Operadic category (Batanin-Markl → fibre structure)

Feynman category (Kaufmann-Ward → sym. monoidal structure)

Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$ -categorical context)

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system $(\mathbb{C}_{act}, \mathbb{C}_{in})$ such that

- (1) each inert map admits a unique active retraction;
- (2) if the left square below commutes then the right square as well

where r, r' are the active retractions of i, i' provided by (1).

Definition (moment category)

A moment category is a category $\mathbb C$ with an active/inert factorisation system $(\mathbb C_{act},\mathbb C_{in})$ such that

- (1) each inert map admits a unique active retraction;
- (2) if the left square below commutes then the right square as well

where r, r' are the active retractions of i, i' provided by (1)

Definition (moment category)

A moment category is a category $\mathbb C$ with an active/inert factorisation system $(\mathbb C_{act},\mathbb C_{in})$ such that

- (1) each inert map admits a unique active retraction;
- (2) if the left square below commutes then the right square as well

where r, r' are the active retractions of i, i' provided by (1).

Lemma (inert subobjects vs moments)

For each object A of a moment category $\mathbb C$ there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi:A\to A$ sth. $\phi=\phi_{in}\phi_{act}\implies\phi_{act}\phi_{in}=1_A$.

Put
$$m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$$

For $f: A \to B$ define $f_*: m_A \to m_B$ by

$$A \xrightarrow{f} B$$

$$\phi_{act} \downarrow \uparrow \phi_{in} \qquad \psi_{in} \downarrow \downarrow \qquad \psi_{act} \quad \text{with} \quad f_*(\phi_{in}\phi_{act}) = \psi_{in}\psi_{act}.$$

$$A_{\phi} \xrightarrow{f'} B_{\psi}$$

Lemma (inert subobjects vs moments)

For each object A of a moment category $\mathbb C$ there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi: A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put
$$m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$$

For $f : A \to B$ define $f_* : m_A \to m_B$ by

$$A \xrightarrow{f} B$$

$$\phi_{act} \downarrow \uparrow \phi_{in} \qquad \psi_{in} \downarrow \downarrow \qquad \psi_{act} \quad \text{with} \quad f_*(\phi_{in}\phi_{act}) = \psi_{in}\psi_{act}.$$

$$A_{\phi} \xrightarrow{f'} B_{\psi}$$

Lemma (inert subobjects vs moments)

For each object A of a moment category $\mathbb C$ there is a bijection between inert subobjects of A and moments of A, i.e. endomorphisms $\phi: A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act} \phi_{in} = 1_A \}$ For $f: A \to B$ define $f_*: m_A \to m_B$ by

The moment set m_A is a submonoid of $\mathbb{C}(A,A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{ m op} =$ finite sets and partial maps)

- $\underline{m} \overset{(\underline{n}_1, \dots, \underline{n}_m)}{\longrightarrow} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e.
 - f(0)=0, f(m)=n
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e.
 - f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e., f(0) = 0 f(m) = n
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i

The moment set m_A is a submonoid of $\mathbb{C}(A,A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \overset{(\underline{n}_1, \dots, \underline{n}_m)}{\longrightarrow} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e f(i+1) = f(i) + 1 for all i

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e f(0) = 0, f(m) = n.
- $[m] \stackrel{f}{\rightarrow} [n]$ is inert provided f is distance-preserving, i.e f(i+1) = f(i) + 1 for all i

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$)

- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $1 \longrightarrow n$ are elements. Cardinality of el_n is n
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n.

- \bullet A moment ϕ is $\mathit{centric}$ if ϕ_in is the only inert section of $\phi_\mathit{act}.$
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $1 > \longrightarrow n$ are elements. Cardinality of el_n is r
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $1 > \longrightarrow n$ are elements. Cardinality of elapsis n
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of el_{n} is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

Example (Γ and Δ)

<u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> > → <u>n</u> are elements. Cardinality of el_n is n.
[0] is the nilobject, and [1] the unit of Δ. Elementary inert subobjects [1] > → [n] are segments. Cardinality of el_[n] is an inequality of el_[n] is a segment of the nilobject.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a nilobject.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > ---- \underline{n}$ are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > \longrightarrow \underline{n}$ are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

- $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > \longrightarrow \underline{n}$ are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- **F-operads**=symmetric operads
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$
- Δ-operads=non-symmetric operads
 - $\mathcal{O}_m \otimes \mathcal{O}_m \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \mathrm{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- Γ-operads=symmetric operads
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- Δ-operads=non-symmetric operads:
- $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \mathrm{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- Г-operads=symmetric operads
 - $\mathcal{O}_m\otimes\mathcal{O}_{n_1}\otimes\cdots\otimes\mathcal{O}_{n_m} o\mathcal{O}_{n_1+\cdots+n_m}$ for each $\underline{m}\longrightarrow\underline{n}$
- Δ-operads=non-symmetric operads:
- $\mathcal{O}_m \otimes \mathcal{O}_n \otimes \cdots \otimes \mathcal{O}_{n-} \to \mathcal{O}_{n+\dots+n-}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- Γ-operads=symmetric operads:
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- $\bullet \ \Delta \hbox{-operads} = \hbox{non-symmetric operads} :$
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- Γ-operads=symmetric operads:
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- ullet Δ -operads=non-symmetric operads:
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$;
- a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$

- Γ-operads=symmetric operads:
 - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1+\cdots+n_m}$ for each $[m] \longrightarrow [n]$.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to\Gamma.$

Definition (wreath product of unital moment categories $\mathcal{A},\mathcal{B})$

$$Ob(A \wr B) = \{ (A, B_{\alpha}) \mid A \in Ob(A), \alpha \in el_{A}, B_{\alpha} \in Ob(B) \}$$
$$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha)$$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to\Gamma.$

Definition (wreath product of unital moment categories A, B_{β} Ob $(A \wr B) = \{(A, B_{\alpha}) | A \in Ob(A), \alpha \in el_A, B_{\alpha} \in Ob(B)\}$ $(f, f_{\beta}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta})$ where f_{β}^{β} for each $\beta \leq f_{\beta}(\alpha)$.

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$

$$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$
$$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

$$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$
$$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta \Theta_n$ -operads are Batanin's (n-1)-terminal n-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$

Definition (wreath product of unital moment categories \mathcal{A},\mathcal{B})

$$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$
$$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads.

- Objects of Θ_n correspond to *n*-level trees
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique *unit* U_n , the linear tree of height n.
- $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

$$\begin{array}{c} \tau_4 \\ \downarrow \tau_8 \\ \tau_1 - \tau_5 > \tau_2 - \tau_7 > \tau_3 \\ \downarrow \tau_9 \end{array}$$

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n .

- $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that

$$\bullet \ X(A) = X^{\otimes \mathrm{el}_A}.$$

$$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

•
$$X(N) = *$$
 for every nilobject N

•
$$X(A) \xrightarrow{\cong} \prod_{\sigma \in el_A} X(U)$$
 (strict Segal-condition)

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that

•
$$X(A) = X^{\otimes \mathrm{el}_A}$$
.

$$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

•
$$X(N) = *$$
 for every nilobject N

•
$$X(A) \xrightarrow{\cong} \prod_{\alpha \in el} X(U)$$
 (strict Segal-condition)

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$)

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that

•
$$X(A) = X^{\otimes \operatorname{el}_A}$$
.

$$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

•
$$X(N) = *$$
 for every nilobject N

•
$$X(A) \xrightarrow{\cong} \prod_{\alpha \in el} X(U)$$
 (strict Segal-condition)

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \bullet $\mathbb{C}\text{-monoid}{=}\text{algebra}$ over the unit- $\mathbb{C}\text{-operad}.$

Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$)

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{act} o\mathbb{E}$ such that

 $\bullet X(A) = X^{\otimes e_{1A}}.$

$$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)})$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

 \mathbb{C} -monoids arise from presheaves $X:\mathbb{C}^{\mathrm{op}} o \mathbb{E}$ such that

• X(N) = * for every nilobject N

• $X(A) \xrightarrow{\cong} \prod_{\alpha \in I} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- ullet C-monoid=algebra over the unit- $\Bbb C$ -operad.

Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$)

 $\mathbb{C} ext{-monoids}$ are presheaves $X:\mathbb{C}^{\operatorname{op}}_{\mathit{act}} o\mathbb{E}$ such that

•
$$X(A) = X^{\otimes \operatorname{el}_A}$$
.

$$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \operatorname{ol}} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- ullet C-monoid=algebra over the unit- $\Bbb C$ -operad.

Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$)

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that

- $X(A) = X^{\otimes \operatorname{el}_A}$.
- $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \operatorname{ol}} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- ullet C-monoid=algebra over the unit- ${\mathbb C}$ -operad.

Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$)

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that

- $X(A) = X^{\otimes \operatorname{el}_A}$.
- $X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = ∗ for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in I} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that

- $X(A) = X^{\otimes \mathrm{el}_A}$.
- $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \stackrel{\cong}{\longrightarrow} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- ullet C-monoid=algebra over the unit- ${\mathbb C}$ -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that

- $X(A) = X^{\otimes el_A}$.
- $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that

- $X(A) = X^{\otimes \operatorname{el}_A}$.
- $X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_0:\Omega\to\Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_0:\Omega\to\Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- ullet $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
 inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- ullet $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
 inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}:\Omega\to\Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- ullet $\gamma_{\mathbb C}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\updownarrow}\to\Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\updownarrow}$)

- Ω/Γ_1 -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ*-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\!\! \perp}$)

- \bullet $\Omega/\Gamma_{\updownarrow}$ -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- 0/□-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\!\! \perp}$)

Ω/Γ_‡-operads=tree/graph-hyperoperads (Getzler-Kapranov)
 Ω/Γ₊-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\! oldsymbol{1}})$

• Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) • $\Omega/\Gamma_{\leftarrow}$ -monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow\uparrow}}:\Gamma_{\uparrow}\to\Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\! oldsymbol{1}})$

Ω/Γ_↑-operads=tree/graph-hyperoperads (Getzler-Kapranov)
 Ω/Γ_←-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\! \perp})$

• Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) • $\Omega/\Gamma_{\leftarrow}$ -monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_↑-monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\updownarrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_↑-monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\updownarrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_{\uparrow} -monoids=symmetric operads/properads (Vallette)

- A \mathbb{C} -tree $([m], A_0 \xrightarrow{} \cdots \xrightarrow{} A_m)$ consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A C-tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- \bullet \mathbb{C}^+ is the category of $\mathbb{C}\text{-trees}$ and $\mathbb{C}\text{-tree}$ morphisms
- \bullet A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C⁺ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) > ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C⁺ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet}).$

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C⁺ is the category of \mathbb{C} -trees and \mathbb{C} -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) > ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C+ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet}).$

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C+ is the category of ${\mathbb C}$ -trees and ${\mathbb C}$ -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

- A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} .
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- ullet C+ is the category of ${\mathbb C}$ -trees and ${\mathbb C}$ -tree morphisms.
- A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseng-Heuts)

Remark (reduced dendrices)

$$\Gamma^{+}_{mono} \xrightarrow{=} \Omega_{open,prune}$$
 $\Gamma^{+} \xrightarrow{=} \Omega_{reduced}$

Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseng-Heuts)

Remark (reduced dendrices)

$$\Gamma^{+}_{mono} \xrightarrow{=} \Omega_{open,prunec}$$

$$\Gamma^{+} \xrightarrow{=} \Omega_{reduced}$$

A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$.

Proposition ($\mathbb C$ -tree insertion for extensional $\mathbb C$)

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional \mathbb{C})

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$.

Proposition ($\mathbb C$ -tree insertion for extensional $\mathbb C$)

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C$)

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C$)

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$.

$\overline{\mathsf{Proposition}} \ (\mathbb{C}\text{-tree insertion for extensional }\mathbb{C})$

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remarl

A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Гţ
$\mathbb{C}_{\operatorname{Seg}}$	$[0] \rightrightarrows [1]$	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
C-gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
C-cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C)$

The forgetful functor from C-categories to C-graphs is monadic

Thanks for your attention!

The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Г₽
$\mathbb{C}_{\operatorname{Seg}}$	[0] ightrightarrows [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
\mathbb{C} -gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
\mathbb{C} -cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C)$

The forgetful functor from C-categories to C-graphs is monadic

Thanks for your attention!

The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Г
$\mathbb{C}_{\operatorname{Seg}}$	[0] ightrightarrows [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
\mathbb{C} -gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
\mathbb{C} -cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C)$

The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic.

Thanks for your attention !

The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Г
$\mathbb{C}_{\operatorname{Seg}}$	[0] ightrightarrows [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
\mathbb{C} -gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
C-cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C$)

The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic.

Thanks for your attention !