Moment categories and operads Clemens Berger University of Nice-Sophia Antipolis CRM Barcelone Seminar Higher Homotopical Structures March 9, 2021 - Introduction - 2 Moment categories - 3 Hypermoment categories - Plus construction - Monadicity #### Related concepts (replacing "inert part" with ↔) Operator category (Barwick --> pullback structure) Operadic category (Batanin-Markl ->> fibre structure) Feynman category (Kaufmann-Ward → sym. monoidal structure) Categorical pattern (Chu-Haugseng → ∞-categorical context) $\overset{\textit{moments}}{\leadsto}$ moment category $\overset{\textit{units}}{\leadsto}$ operad-type $\overset{\textit{plus}}{\leadsto}$ Segal presheaf | | C-operad | | | |---|-------------------|---------------|---------------------| | Γ | sym. operad | comm. monoid | E_{∞} -space | | Δ | non-sym. operad | assoc. monoid | A_{∞} -space | | | <i>n</i> -operad | | E_n -space | | Ω | tree-hyperoperad | sym. operad | ∞-operad | | Г | graph-hyperoperad | properad | ∞-properad | #### Related concepts (replacing "inert part" with ↔) Operator category (Barwick --> pullback structure) Operadic category (Batanin-Markl --> fibre structure) Feynman category (Kaufmann-Ward → sym. monoidal structure) Categorical pattern (Chu-Haugseng → ∞-categorical context) | $\overset{\textit{moments}}{\leadsto} \text{moment category}$ | $\overset{\textit{units}}{\leadsto}$ | operad-type | $\overset{\textit{plus}}{\leadsto}$ | Segal presheaf | |---|--------------------------------------|-------------|-------------------------------------|----------------| |---|--------------------------------------|-------------|-------------------------------------|----------------| | | C-operad | | | |---|-------------------|---------------|---------------------| | Γ | sym. operad | comm. monoid | E_{∞} -space | | Δ | non-sym. operad | assoc. monoid | A_{∞} -space | | | <i>n</i> -operad | | E_n -space | | Ω | tree-hyperoperad | sym. operad | ∞-operad | | Г | graph-hyperoperad | properad | ∞ -properad | #### Related concepts (replacing "inert part" with ↔ Operator category (Barwick --> pullback structure) Operadic category (Batanin-Markl --> fibre structure) Feynman category (Kaufmann-Ward → sym. monoidal structure) Categorical pattern (Chu-Haugseng → ∞-categorical context) | moments
→ moment category | $\overset{units}{\leadsto}$ | operad-type | $\overset{\textit{plus}}{\leadsto}$ | Segal presheaf | |------------------------------|-----------------------------|-------------|-------------------------------------|----------------| |------------------------------|-----------------------------|-------------|-------------------------------------|----------------| | \mathbb{C} | \mathbb{C} -operad | $\mathbb{C} ext{-monoid}$ | \mathbb{C}_{∞} -monoid | |--------------|----------------------|---------------------------|-------------------------------| | Γ | sym. operad | comm. monoid | E_{∞} -space | | Δ | non-sym. operad | assoc. monoid | A_{∞} -space | | Θ_n | <i>n</i> -operad | <i>n</i> -monoid | E_n -space | | Ω | tree-hyperoperad | sym. operad | ∞-operad | | Г≎ | graph-hyperoperad | properad | ∞ -properad | #### Related concepts (replacing "inert part" with ↔ Operator category (Barwick → pullback structure) Operadic category (Batanin-Markl → fibre structure) Feynman category (Kaufmann-Ward → sym. monoidal structure) Categorical pattern (Chu-Haugseng → ∞-categorical context) | moments | 5 | units | | plus | | |-----------|-----------------|-----------|-------------|------------|----------------| | ~→ | moment category | ~→ | operad-type | ~ → | Segal presheaf | | \mathbb{C} | \mathbb{C} -operad | \mathbb{C} -monoid | \mathbb{C}_{∞} -monoid | |--------------|----------------------|----------------------|-------------------------------| | Γ | sym. operad | comm. monoid | E_{∞} -space | | Δ | non-sym. operad | assoc. monoid | A_{∞} -space | | Θ_n | <i>n</i> -operad | <i>n</i> -monoid | E_n -space | | Ω | tree-hyperoperad | sym. operad | ∞-operad | | Г | graph-hyperoperad | properad | ∞ -properad | #### Related concepts (replacing "inert part" with ↔) Operator category (Barwick → pullback structure) Operadic category (Batanin-Markl → fibre structure) Feynman category (Kaufmann-Ward → sym. monoidal structure) Categorical pattern (Chu-Haugseng $\rightsquigarrow \infty$ -categorical context) #### Definition (moment category) # A moment category is a category \mathbb{C} with an active/inert factorisation system $(\mathbb{C}_{act}, \mathbb{C}_{in})$ such that - (1) each inert map admits a unique active retraction; - (2) if the left square below commutes then the right square as well where r, r' are the active retractions of i, i' provided by (1). #### Definition (moment category) A moment category is a category $\mathbb C$ with an active/inert factorisation system $(\mathbb C_{act},\mathbb C_{in})$ such that - (1) each inert map admits a unique active retraction; - (2) if the left square below commutes then the right square as well where r, r' are the active retractions of i, i' provided by (1) #### Definition (moment category) A moment category is a category $\mathbb C$ with an active/inert factorisation system $(\mathbb C_{act},\mathbb C_{in})$ such that - (1) each inert map admits a unique active retraction; - (2) if the left square below commutes then the right square as well where r, r' are the active retractions of i, i' provided by (1). #### Lemma (inert subobjects vs moments) For each object A of a moment category $\mathbb C$ there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi:A\to A$ sth. $\phi=\phi_{in}\phi_{act}\implies\phi_{act}\phi_{in}=1_A$. Put $$m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$$ For $f: A \to B$ define $f_*: m_A \to m_B$ by $$A \xrightarrow{f} B$$ $$\phi_{act} \downarrow \uparrow \phi_{in} \qquad \psi_{in} \downarrow \downarrow \qquad \psi_{act} \quad \text{with} \quad f_*(\phi_{in}\phi_{act}) = \psi_{in}\psi_{act}.$$ $$A_{\phi} \xrightarrow{f'} B_{\psi}$$ #### Lemma (inert subobjects vs moments) For each object A of a moment category $\mathbb C$ there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi: A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$. Put $$m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$$ For $f : A \to B$ define $f_* : m_A \to m_B$ by $$A \xrightarrow{f} B$$ $$\phi_{act} \downarrow \uparrow \phi_{in} \qquad \psi_{in} \downarrow \downarrow \qquad \psi_{act} \quad \text{with} \quad f_*(\phi_{in}\phi_{act}) = \psi_{in}\psi_{act}.$$ $$A_{\phi} \xrightarrow{f'} B_{\psi}$$ #### Lemma (inert subobjects vs moments) For each object A of a moment category $\mathbb C$ there is a bijection between inert subobjects of A and moments of A, i.e. endomorphisms $\phi: A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$. Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act} \phi_{in} = 1_A \}$ For $f: A \to B$ define $f_*: m_A \to m_B$ by The moment set m_A is a submonoid of $\mathbb{C}(A,A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{ m op} =$ finite sets and partial maps) - $\underline{m} \overset{(\underline{n}_1, \dots, \underline{n}_m)}{\longrightarrow} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. - f(0)=0, f(m)=n - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. - f(i+1) = f(i) + 1 for all i. The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e., f(0) = 0 f(m) = n - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i The moment set m_A is a submonoid of $\mathbb{C}(A,A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \overset{(\underline{n}_1, \dots, \underline{n}_m)}{\longrightarrow} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e f(0) = 0, f(m) = n. - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e f(i+1) = f(i) + 1 for all i The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \xrightarrow{(\underline{n}_1,
\dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e f(0) = 0, f(m) = n. - $[m] \stackrel{f}{\rightarrow} [n]$ is inert provided f is distance-preserving, i.e f(i+1) = f(i) + 1 for all i The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi=\phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \stackrel{f}{\rightarrow} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n. - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i. The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n. - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i. The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$. # Example (Segal's category $\Gamma \leadsto \Gamma^{\mathrm{op}} = \text{finite sets and partial maps}$) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition) - $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding) - $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n. - $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $1 \longrightarrow n$ are elements. Cardinality of el_n is n - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n. - \bullet A moment ϕ is $\mathit{centric}$ if ϕ_in is the only inert section of $\phi_\mathit{act}.$ - A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ. Elementary inert subobjects $1 > \longrightarrow n$ are elements. Cardinality of el_n is r - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $1 > \longrightarrow n$ are elements. Cardinality of elapsis n - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of el_{n} is n. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. #### Example (Γ and Δ) <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> > → <u>n</u> are elements. Cardinality of el_n is n. [0] is the nilobject, and [1] the unit of Δ. Elementary inert subobjects [1] > → [n] are segments. Cardinality of el_[n] is an inequality of el_[n] is a segment of the nilobject. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a nilobject. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > ---- \underline{n}$ are elements. Cardinality of el_n is n. - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > \longrightarrow \underline{n}$ are elements. Cardinality of el_n is n. - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n. - A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} . - A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section. - A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$. - An object without elementary moments is called a *nilobject*. - $\underline{0}$ is the nilobject, and $\underline{1}$ the unit of Γ . Elementary inert subobjects $\underline{1} > \longrightarrow \underline{n}$ are elements. Cardinality of el_n is n. - [0] is the nilobject, and [1] the unit of Δ . Elementary inert subobjects [1] \longrightarrow [n] are segments. Cardinality of $el_{[n]}$ is n. A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - **F-operads**=symmetric operads - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$ - Δ-operads=non-symmetric operads - $\mathcal{O}_m \otimes \mathcal{O}_m \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$ A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \mathrm{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - Γ-operads=symmetric operads - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m}
\longrightarrow \underline{n}$. - Δ-operads=non-symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$ A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \mathrm{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - Г-operads=symmetric operads - $\mathcal{O}_m\otimes\mathcal{O}_{n_1}\otimes\cdots\otimes\mathcal{O}_{n_m} o\mathcal{O}_{n_1+\cdots+n_m}$ for each $\underline{m}\longrightarrow\underline{n}$ - Δ-operads=non-symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_n \otimes \cdots \otimes \mathcal{O}_{n-} \to \mathcal{O}_{n+\dots+n-}$ for each $[m] \longrightarrow [n]$. A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - Γ-operads=symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$. - $\bullet \ \Delta \hbox{-operads} = \hbox{non-symmetric operads} :$ - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$. A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - Γ-operads=symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$. - ullet Δ -operads=non-symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$. A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with - ullet a unit $I_{\mathbb E} o \mathcal O(U)$ in $\mathbb E$ for each unit U of $\mathbb C$; - a unital, associative and equivariant composition $\mathcal{O}(A)\otimes\mathcal{O}(f)\to\mathcal{O}(B)$ for each active $f:A\longrightarrow B$, where $\mathcal{O}(f)=\otimes_{\alpha\in \operatorname{el}_A}\mathcal{O}(B_{f_*(\alpha)}).$ - Γ-operads=symmetric operads: - $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$. - Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1+\cdots+n_m}$ for each $[m] \longrightarrow [n]$. # Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to\Gamma.$ #### Definition (wreath product of unital moment categories $\mathcal{A},\mathcal{B})$ $$Ob(A \wr B) = \{ (A, B_{\alpha}) \mid A \in Ob(A), \alpha \in el_{A}, B_{\alpha} \in Ob(B) \}$$ $$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha)$$ #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads. #### Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to\Gamma.$ Definition (wreath product of unital moment categories A, B_{β} Ob $(A \wr B) = \{(A, B_{\alpha}) | A \in Ob(A), \alpha \in el_A, B_{\alpha} \in Ob(B)\}$ $(f, f_{\beta}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta})$ where f_{β}^{β} for each $\beta \leq f_{\beta}(\alpha)$. #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads. #### Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$ #### Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B}) $$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$ $$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$ #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads. #### Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$ #### Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B}) $$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$ $$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$ #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads. #### Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$ #### Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B}) $$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$ $$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$ #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta \Theta_n$ -operads are Batanin's (n-1)-terminal n-operads. #### Definition (unital moment categories) For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit. #### Proposition (universal role of Γ) For every unital moment category $\mathbb C$ there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb C}:\mathbb C\to \Gamma.$ ## Definition (wreath product of unital moment categories \mathcal{A},\mathcal{B}) $$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$$ $$(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$$ #### Proposition Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal n-operads. - Objects of Θ_n correspond to *n*-level trees - There is a unique unit U_n , the linear tree of height n. - $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . - Objects of
Θ_n correspond to *n*-level trees. - There is a unique *unit* U_n , the linear tree of height n. - $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . - Objects of Θ_n correspond to *n*-level trees. - There is a unique unit U_n , the linear tree of height n. - $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . - Objects of Θ_n correspond to *n*-level trees. - There is a unique unit U_n , the linear tree of height n. - $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . - Objects of Θ_n correspond to *n*-level trees. - There is a unique unit U_n , the linear tree of height n. - $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . $$\begin{array}{c} \tau_4 \\ \downarrow \tau_8 \\ \tau_1 - \tau_5 > \tau_2 - \tau_7 > \tau_3 \\ \downarrow \tau_9 \end{array}$$ - Objects of Θ_n correspond to *n*-level trees. - There is a unique unit U_n , the linear tree of height n. - $\gamma_{\Theta_n}:\Theta_n\to\Gamma$ takes *n*-level tree to its set of height *n* vertices. - Active maps $S \longrightarrow T$ correspond to Batanin's S_* -indexed decompositions of T_* , where T_* is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n . - $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - C-monoid=algebra over the unit-C-operad. #### Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that $$\bullet \ X(A) = X^{\otimes \mathrm{el}_A}.$$ $$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) • $$X(N) = *$$ for every nilobject N • $$X(A) \xrightarrow{\cong} \prod_{\sigma \in el_A} X(U)$$ (strict Segal-condition) - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - C-monoid=algebra over the unit-C-operad. #### Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that • $$X(A) = X^{\otimes \mathrm{el}_A}$$. $$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) • $$X(N) = *$$ for every nilobject N • $$X(A) \xrightarrow{\cong} \prod_{\alpha \in el} X(U)$$ (strict Segal-condition) - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - C-monoid=algebra over the unit-C-operad. #### Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$) \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that • $$X(A) = X^{\otimes \operatorname{el}_A}$$. $$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) • $$X(N) = *$$ for every nilobject N • $$X(A) \xrightarrow{\cong} \prod_{\alpha \in el} X(U)$$ (strict Segal-condition) - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - \bullet $\mathbb{C}\text{-monoid}{=}\text{algebra}$ over the unit- $\mathbb{C}\text{-operad}.$ #### Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$) \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{act} o\mathbb{E}$ such that $\bullet X(A) = X^{\otimes e_{1A}}.$ $$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)})$$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) \mathbb{C} -monoids arise from presheaves $X:\mathbb{C}^{\mathrm{op}} o \mathbb{E}$ such that • X(N) = * for every nilobject N • $X(A) \xrightarrow{\cong} \prod_{\alpha \in I} X(U)$ (strict Segal-condition) - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - ullet C-monoid=algebra over the unit- $\Bbb C$ -operad. ## Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$) $\mathbb{C} ext{-monoids}$ are presheaves $X:\mathbb{C}^{\operatorname{op}}_{\mathit{act}} o\mathbb{E}$ such that • $$X(A) = X^{\otimes \operatorname{el}_A}$$. $$\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) - X(N) = * for every nilobject N. - $X(A) \xrightarrow{\cong} \prod_{\alpha \in \operatorname{ol}} X(U)$ (strict Segal-condition). - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - ullet C-monoid=algebra over the unit- $\Bbb C$ -operad. ## Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$) \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that - $X(A) = X^{\otimes \operatorname{el}_A}$. - $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha: U \longrightarrow B_{f_*(\alpha)}).$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) - X(N) = * for every nilobject N. - $X(A) \xrightarrow{\cong} \prod_{\alpha \in \operatorname{ol}} X(U)$ (strict Segal-condition). - $\mathcal{E}_X(A) = \mathsf{hom}_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - ullet C-monoid=algebra over the unit- ${\mathbb C}$ -operad. ## Lemma (presheaf presentation for closed symmetric monoidal $\mathbb E$) \mathbb{C} -monoids are presheaves $X:\mathbb{C}_{act}^{\mathrm{op}} o \mathbb{E}$ such that - $X(A) = X^{\otimes \operatorname{el}_A}$. - $X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$ #### Lemma (presheaf presentation for cartesian closed \mathbb{E}) - X(N) = ∗ for every nilobject N. - $X(A) \xrightarrow{\cong} \prod_{\alpha \in I} X(U)$ (strict Segal-condition). - $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - C-monoid=algebra over the unit-C-operad. #### Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that - $X(A) = X^{\otimes \mathrm{el}_A}$. - $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$ ## Lemma (presheaf presentation for cartesian closed \mathbb{E}) - X(N) = * for every nilobject N. - $X(A) \stackrel{\cong}{\longrightarrow} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition). - $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - ullet C-monoid=algebra over the unit- ${\mathbb C}$ -operad. #### Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that - $X(A) = X^{\otimes el_A}$. - $\bullet \ X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$ ## Lemma (presheaf presentation for cartesian closed \mathbb{E}) - X(N) = * for every nilobject N. - $X(A) \xrightarrow{\cong} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition). - $\mathcal{E}_X(A) = \text{hom}_{\mathbb{E}}(X^{\otimes \text{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X). - $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X). - C-monoid=algebra over the unit-C-operad. #### Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X:\mathbb{C}^{\mathrm{op}}_{\mathit{act}} o \mathbb{E}$ such that - $X(A) = X^{\otimes \operatorname{el}_A}$. - $X(f:A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha:U \longrightarrow B_{f_*(\alpha)}).$ ## Lemma (presheaf presentation for cartesian
closed \mathbb{E}) - X(N) = * for every nilobject N. - $X(A) \xrightarrow{\cong} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition). A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_0:\Omega\to\Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$ # A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_0:\Omega\to\Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - ullet $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - ullet $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}:\Omega\to\Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - ullet $\gamma_{\mathbb C}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. A hypermoment category $\mathbb C$ comes equipped with an active/inert factorisation system and $\gamma_{\mathbb C}:\mathbb C\to\Gamma$ such that - $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms; - for each A and $\underline{1} > \longrightarrow \gamma_{\mathbb{C}}(A)$, there is an ess. unique inert lift $U > \longrightarrow A$ in \mathbb{C} such that U satisfies the second unit-axiom. - objects (dendrices) are finite rooted trees with leaves. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding - $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set. - units = corollas C_n , one for each $n \in \mathbb{N}$. - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\updownarrow}\to\Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. ## Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\updownarrow}$) - Ω/Γ_1 -operads=tree/graph-hyperoperads (Getzler-Kapranov) - Ω/Γ*-monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. # Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\!\! \perp}$) - \bullet $\Omega/\Gamma_{\updownarrow}$ -operads=tree/graph-hyperoperads (Getzler-Kapranov) - 0/□-monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. # Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\!\! \perp}$) Ω/Γ_‡-operads=tree/graph-hyperoperads
(Getzler-Kapranov) Ω/Γ₊-monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. # Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\! oldsymbol{1}})$ • Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) • $\Omega/\Gamma_{\leftarrow}$ -monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\uparrow\uparrow}}:\Gamma_{\uparrow}\to\Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. # Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\! oldsymbol{1}})$ Ω/Γ_↑-operads=tree/graph-hyperoperads (Getzler-Kapranov) Ω/Γ_←-monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\uparrow\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. ## Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\!\! \perp})$ • Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) • $\Omega/\Gamma_{\leftarrow}$ -monoids=symmetric operads/properads (Vallette) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\uparrow\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. ## Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$) - Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) - Ω/Γ_↑-monoids=symmetric operads/properads (Vallette) # Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. # Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\updownarrow}$) - Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) - Ω/Γ_↑-monoids=symmetric operads/properads (Vallette) # Example (graphoidal category Γ_{\updownarrow} of Hackney-Robertson-Yau) - objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle. - every morphism decomposes into a degeneracy followed by active mono followed by inert mono. - active mono = inner face = graphix insertion inert mono = outer face = graphix embedding - $\gamma_{\Gamma_{\updownarrow}}: \Gamma_{\updownarrow} \to \Gamma$ takes a graphix to its vertex set. - units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$. ## Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$) - Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov) - Ω/Γ_{\uparrow} -monoids=symmetric operads/properads (Vallette) - A \mathbb{C} -tree $([m], A_0 \xrightarrow{} \cdots \xrightarrow{} A_m)$ consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A C-tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - \bullet \mathbb{C}^+ is the category of $\mathbb{C}\text{-trees}$ and $\mathbb{C}\text{-tree}$ morphisms - \bullet A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$. # Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C⁺ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) > ([m], A_{\bullet})$. ## Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C⁺ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet}).$ ### Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C⁺ is the category of \mathbb{C} -trees and \mathbb{C} -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) > ([m], A_{\bullet})$. ## Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C+ is the category of $\mathbb C$ -trees and $\mathbb C$ -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet}).$ ## Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C+ is the category of ${\mathbb C}$ -trees and ${\mathbb C}$ -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$. ### Theorem (cf. Baez-Dolan) - A \mathbb{C} -tree ([m], $A_0 \longrightarrow \cdots \longrightarrow A_m$) consists of [m] in Δ and a functor $A_{\bullet} : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C} . - A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$. - ullet C+ is the category of ${\mathbb C}$ -trees and ${\mathbb C}$ -tree morphisms. - A vertex is given by $([1], U \longrightarrow A) \longrightarrow ([m], A_{\bullet})$. ### Theorem (cf. Baez-Dolan) # Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseng-Heuts) #### Remark (reduced dendrices) $$\Gamma^{+}_{mono} \xrightarrow{=} \Omega_{open,prune}$$ $\Gamma^{+} \xrightarrow{=} \Omega_{reduced}$ # Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseng-Heuts) # Remark (reduced dendrices) $$\Gamma^{+}_{mono} \xrightarrow{=} \Omega_{open,prunec}$$ $$\Gamma^{+} \xrightarrow{=} \Omega_{reduced}$$ A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$. ## Proposition ($\mathbb C$ -tree insertion for extensional $\mathbb C$) \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras). ## Theorem (monadicity for extensional \mathbb{C}) The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic. #### Remark A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$. #### Proposition ($\mathbb C$ -tree insertion for extensional $\mathbb C$) \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras). #### Theorem (monadicity for extensional $\mathbb C$)
The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic. #### Remark A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$. # Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C}) \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras). #### Theorem (monadicity for extensional $\mathbb C$) The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic. #### Remark A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$. # $\overline{\mathsf{Proposition}} \ (\mathbb{C}\text{-tree insertion for extensional }\mathbb{C})$ \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras). #### Theorem (monadicity for extensional $\mathbb C)$ The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic. #### Remarl A hypermoment category $\mathbb C$ is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb C}$. # Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C}) \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that $(\mathbb{C}$ -operads) $\simeq (\mathcal{F}_{\mathbb{C}}$ -algebras). #### Theorem (monadicity for extensional $\mathbb C)$ The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic. #### Remark The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} . | \mathbb{C} | Δ | Θ_n | Ω | Гţ | |-----------------------------------|-----------------------------|----------------------|---------------|-----------------| | $\mathbb{C}_{\operatorname{Seg}}$ | $[0] \rightrightarrows [1]$ | cell-incl. of | edge-incl. of | edge-incl. of | | | | glob. <i>n</i> -cell | corollas | dir. corollas | | C-gph | graph | <i>n</i> -graph | multigraph | dir. multigraph | | C-cat | category | <i>n</i> -category | col. operad | col. properad | ## Theorem (coloured monadicity for strongly unital $\mathbb C)$ The forgetful functor from C-categories to C-graphs is monadic Thanks for your attention! The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} . | \mathbb{C} | Δ | Θ_n | Ω | Г₽ | |-----------------------------------|--------------------------|----------------------|---------------|-----------------| | $\mathbb{C}_{\operatorname{Seg}}$ | [0] ightrightarrows [1] | cell-incl. of | edge-incl. of | edge-incl. of | | | | glob. <i>n</i> -cell | corollas | dir. corollas | | \mathbb{C} -gph | graph | <i>n</i> -graph | multigraph | dir. multigraph | | \mathbb{C} -cat | category | <i>n</i> -category | col. operad | col. properad | # Theorem (coloured monadicity for strongly unital $\mathbb C)$ The forgetful functor from C-categories to C-graphs is monadic Thanks for your attention! The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} . | \mathbb{C} | Δ | Θ_n | Ω | Г | |-----------------------------------|--------------------------|----------------------|---------------|-----------------| | $\mathbb{C}_{\operatorname{Seg}}$ | [0] ightrightarrows [1] | cell-incl. of | edge-incl. of | edge-incl. of | | | | glob. <i>n</i> -cell | corollas | dir. corollas | | \mathbb{C} -gph | graph | <i>n</i> -graph | multigraph | dir. multigraph | | \mathbb{C} -cat | category | <i>n</i> -category | col. operad | col. properad | #### Theorem (coloured monadicity for strongly unital $\mathbb C)$ The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic. Thanks for your attention ! The Segal core $\mathbb{C}_{\operatorname{Seg}}$ is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if $\mathbb{C}_{\operatorname{Seg}}$ is dense in \mathbb{C}_{in} . | \mathbb{C} | Δ | Θ_n | Ω | Г | |-----------------------------------|--------------------------|----------------------|---------------|-----------------| | $\mathbb{C}_{\operatorname{Seg}}$ | [0] ightrightarrows [1] | cell-incl. of | edge-incl. of | edge-incl. of | | | | glob. <i>n</i> -cell | corollas | dir. corollas | | \mathbb{C} -gph | graph | <i>n</i> -graph | multigraph | dir. multigraph | | C-cat | category | <i>n</i> -category | col. operad | col. properad | #### Theorem (coloured monadicity for strongly unital $\mathbb C$) The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic. Thanks for your attention !