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Moment categories and operads

Introduction

Summary (active/inert factorisation system)

moments
 moment category

units
 operad-type

plus
 Segal presheaf

C C-operad C-monoid C∞-monoid
Γ sym. operad comm. monoid E∞-space
∆ non-sym. operad assoc. monoid A∞-space
Θn n-operad n-monoid En-space
Ω tree-hyperoperad sym. operad ∞-operad
Γl graph-hyperoperad properad ∞-properad

Related concepts (replacing “inert part” with  )

Operator category (Barwick  pullback structure)
Operadic category (Batanin-Markl  fibre structure)
Feynman category (Kaufmann-Ward  sym. monoidal structure)
Categorical pattern (Chu-Haugseng  ∞-categorical context)
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Moment categories

Definition (moment category)

A moment category is a category C with an active/inert
factorisation system (Cact ,Cin) such that

(1) each inert map admits a unique active retraction;

(2) if the left square below commutes then the right square as well

A
f

+- B A
f

+- B

A′

i
∧

6

+
g

- B ′

i ′

∧

6

A′

r +
?

+
g

- B ′

+ r ′

?

where r , r ′ are the active retractions of i , i ′ provided by (1).
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Moment categories

Lemma (inert subobjects vs moments)

For each object A of a moment category C there is a bijection
between inert subobjects of A and moments of A, i.e.
endomorphisms φ : A→ A sth. φ = φinφact =⇒ φactφin = 1A.

Put mA = {φ ∈ C(A,A) |φactφin = 1A}
For f : A→ B define f∗ : mA → mB by

A
f - B

with f∗(φinφact) = ψinψact .

Aφ

φact +
?

φin
∧

6

+
f ′

- Bψ

ψin

∧

6
+ ψact

?
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Moment categories

Proposition (left regular band – skew-commutativity)

The moment set mA is a submonoid of C(A,A) consisting of
idempotent elements satisfying the relation φψφ = φψ.

Example (Segal’s category Γ Γop = finite sets and partial maps)

m
(n1,...,nm)
−→ n active provided n1 ∪ · · · ∪ nm = n. (partition)

m
(n1,...,nm)
−→ n inert provided all ni are singleton. (embedding)

Example (simplex category ∆)

[m]
f→ [n] is active provided f is endpoint-preserving, i.e.

f (0) = 0, f (m) = n.

[m]
f→ [n] is inert provided f is distance-preserving, i.e.

f (i + 1) = f (i) + 1 for all i .
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Moment categories

Definition (units, elementary moments, nilobjects)

A moment φ is centric if φin is the only inert section of φact .

A unit is an object U sth. 1U is the only centric moment but
mU 6= {1U}, and every active map with target U admits
exactly one inert section.

A moment is elementary if it splits over a unit. The set of
elementary moments of A is denoted elA ⊂ mA.

An object without elementary moments is called a nilobject.

Example (Γ and ∆)

0 is the nilobject, and 1 the unit of Γ. Elementary inert
subobjects 1 > - n are elements. Cardinality of eln is n.

[0] is the nilobject, and [1] the unit of ∆. Elementary inert
subobjects [1] > - [n] are segments. Cardinality of el[n] is n.
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Moment categories

Definition (C-operads for unital moment categories C)

A C-operad O in a symmetric monoidal category (E,⊗, IE) assigns
to each object A of C an object O(A) of E, together with

a unit IE → O(U) in E for each unit U of C;

a unital, associative and equivariant composition
O(A)⊗O(f )→ O(B) for each active f : A +- B, where
O(f ) = ⊗α∈elAO(Bf∗(α)).

Example (Γ and ∆)

Γ-operads=symmetric operads:
Om ⊗On1 ⊗ · · · ⊗ Onm → On1+···+nm for each m +- n.

∆-operads=non-symmetric operads:
Om ⊗On1 ⊗ · · · ⊗ Onm → On1+···+nm for each [m] +- [n].
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Moment categories and operads

Moment categories

Definition (unital moment categories)

For every object A, elA has finite cardinality and receives an
essentially unique active morphism UA +- A from a unit.

Proposition (universal role of Γ)

For every unital moment category C there is an essentially unique
cardinality preserving moment functor γC : C→ Γ.

Definition (wreath product of unital moment categories A,B)

Ob(A o B) = {(A,Bα) |A ∈ Ob(A), α ∈ elA,Bα ∈ Ob(B)}
(f , f βα ) : (A,Bα) −→ (A′,B ′β) where f βα for each β ≤ f∗(α).

Proposition

Joyal’s category Θn is an iterated wreath product ∆ o · · · o∆.
Θn-operads are Batanin’s (n − 1)-terminal n-operads.
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Remark (moment category structure on Θn)

Objects of Θn correspond to n-level trees.

There is a unique unit Un, the linear tree of height n.

γΘn : Θn → Γ takes n-level tree to its set of height n vertices.

Active maps S +- T correspond to Batanin’s S∗-indexed
decompositions of T∗, where T∗ is the n-graph defined by the
inert subobjects of T whose domains are subobjects of Un.

Example (inert substructure of [2]([2],[0]) in ∆ o∆ = Θ2)
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Moment categories and operads

Moment categories

Definition (C-monoids for C with single rigid unit U)

EX (A) = homE(X⊗elA ,X ) (endomorphism-C-operad of X ).

O → EX (O-algebra structure on X ).

C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal E)

C-monoids are presheaves X : Cop
act → E such that

X (A) = X⊗elA .

X (f : A +- B) =
⊗

α∈elA X (fα : U +- Bf∗(α)).

Lemma (presheaf presentation for cartesian closed E)

C-monoids arise from presheaves X : Cop → E such that

X (N) = ∗ for every nilobject N.

X (A)
∼=−→

∏
α∈elA X (U) (strict Segal-condition).
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Moment categories and operads

Hypermoment categories

Definition (hypermoment category)

A hypermoment category C comes equipped with an active/inert
factorisation system and γC : C→ Γ such that

γC preserves active (resp. inert) morphisms;

for each A and 1 > - γC(A), there is an ess. unique inert lift
U > - A in C such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

objects (dendrices) are finite rooted trees with leaves.

every morphism decomposes into a degeneracy followed by
active mono followed by inert mono.

active mono = inner face = dendrix insertion
inert mono = outer face = dendrix embedding

γΩ : Ω→ Γ takes a dendrix to its vertex set.

units = corollas Cn, one for each n ∈ N.
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Hypermoment categories

Example (graphoidal category Γl of Hackney-Robertson-Yau)

objects (graphices) are finite directed graphs with directed
leaves and no directed edge-cycle.

every morphism decomposes into a degeneracy followed by
active mono followed by inert mono.

active mono = inner face = graphix insertion
inert mono = outer face = graphix embedding

γΓl : Γl → Γ takes a graphix to its vertex set.

units = directed corollas Cn,m, one for each (n,m) ∈ N2.

Remark (hypermoment embeddings ∆ ⊂ Ω ⊂ Γl)

Ω/Γl-operads=tree/graph-hyperoperads (Getzler-Kapranov)

Ω/Γl-monoids=symmetric operads/properads (Vallette)
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Ω/Γl-monoids=symmetric operads/properads (Vallette)
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Moment categories and operads

Plus construction

Definition (plus construction for unital hypermoment categories C)

A C-tree ([m],A0 +- · · · +- Am) consists of [m] in ∆
and a functor A• : [m]→ Cact such that A0 is a unit in C.

A C-tree morphism (φ, f ) consists of φ : [m]→ [n] and a nat.
transf. f : A→ Bφ sth. fi : Ai → Bφ(i) is inert for i ∈ [m].

C+ is the category of C-trees and C-tree morphisms.

A vertex is given by ([1],U +- A) > - ([m],A•).

Theorem (cf. Baez-Dolan)

C+ is a unital hypermoment category such that C-operads get
identified with C+-monoids.
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Moment categories and operads

Plus construction

Proposition (Ω ⊃ Γ+, cf. Chu-Haugseng-Heuts)
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Moment categories and operads

Monadicity

Definition (extensionality)

A hypermoment category C is extensional if pushouts of inert
maps along active maps exist, are inert and preserved by γC.

Proposition (C-tree insertion for extensional C)

C-trees can be inserted into vertices of C-trees. There exists a
Feynman category FC such that (C-operads)'(FC-algebras).

Theorem (monadicity for extensional C)

The forgetful functor from C-operads to C-collections is monadic.

Remark

FΓ is the coloured symmetric operad of finite rooted trees whose
algebras are symmetric operads.
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Moment categories and operads

Monadicity

Definition (Segal core for strongly unital C)

The Segal core CSeg is the subcategory of Cin spanned by nil- and
unit-objects. C is strongly unital if CSeg is dense in Cin.

C ∆ Θn Ω Γl
CSeg [0]⇒ [1] cell-incl. of edge-incl. of edge-incl. of

glob. n-cell corollas dir. corollas

C-gph graph n-graph multigraph dir. multigraph

C-cat category n-category col. operad col. properad

Theorem (coloured monadicity for strongly unital C)

The forgetful functor from C-categories to C-graphs is monadic.

Thanks for your attention !
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