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On the profinite fundamental group of a connected Grothendieck topos

Finite objects in a Grothendieck topos

Problem (finite objects)

finite set = finite sum of singletons

finite covering = covering map with finite fibres

finite object in a topos = ?

Definition (an object X of a Grothendieck topos γ : E → S is)

locally finite if there is a cover (Ui )i∈I of 1E such that
X × Ui

∼= γ∗({1, . . . , ni})× Ui in E /Ui for each i ∈ I ;

decomposition-finite if it is a finite sum of connected objects;

finite if it is locally finite and decomposition-finite.

Theorem

A connected Grothendieck topos is finitely generated if and only if
it is equivalent to BG for a profinite group G .
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Finite objects in a Grothendieck topos

Proposition (TFAE for an object X in a Grothendieck topos E )

X locally finite

there is a globally supported U such that X × U is a finite
cardinal in E /U (Johnstone)

X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

the singleton map {−} : X → ΩX factors through 2X

and the induced map (X ∗, ·)→ (2X ,∨) is an epimorphism.

Corollary (a sheaf F on a topological space E is)

locally finite if and only if Et(F)→ E is a finite covering

decomposition-finite if and only if π0Et(F) is finite
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On the profinite fundamental group of a connected Grothendieck topos

Pretopos spanned by finite objects

Lemma

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of
a morphism between finite objects is complemented.

Definition

A pretopos is an exact and extensive category. A pretopos is
embedded in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos E with finite 1E )

the full subcategory Ef of finite objects of E is an embedded
pretopos in which all subobjects are complemented.
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On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Definition (Grothendieck SGA1)

A Galois category C is a pretopos with complemented subobjects
and with an exact conservative fibre functor FC : C → Sf .

Theorem (for any connected Grothendieck topos γ : E → S )

the pretopos Ef of finite objects of E is a Galois category for an
essentially unique fibre functor FEf

: Ef → Sf .

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such
that A× γ∗(Aut(A)) ∼= A× A.
A Galois object A is said to split X if X × A is constant in E /A.
Spl(A) is the full subcategory of objects of E split by A.



On the profinite fundamental group of a connected Grothendieck topos

Galois categories

Remark (intrinsic cardinality of finite connected objects)

The category Spl(A) is equivalent to the category BAut(A) of
Aut(A)-sets via M 7→ X = A×Aut(A) M.

Each finite connected object X is contained in a “smallest”
category Spl(A). The Aut(A)-set M may be identified with
E (A,X ) via a canonical isomorphism

γ∗(E (A,X ))× A = γ∗γ∗(X
A)× A

∼=−→ X × A.

Remark (intrinsic cardinality of finite objects)

Each B � A induces Spl(A) ⊂ Spl(B) and E (A,X ) ∼= E (B,X ).

If X =
∐

i∈π0(X ) Xi and Ai splits Xi then each A splitting a
connected component of

∏
Ai splits all Xi and

E (A,X ) =
∐

i∈π0(X ) E (Ai ,Xi ).
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On the profinite fundamental group of a connected Grothendieck topos

Atomic Grothendieck toposes

Definition

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of “atoms”.

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos P embedded in a connected Grothendieck topos E
sth. each object of P is a sum of atoms and the latter form a set,
the subcategory sP of E is an atomic Grothendieck topos and
sP ↪→ E is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos E )

the subcategory Esf is a pointed, atomic Grothendieck topos.
The surjective “Galois point” GE : Ssf → Esf is right adjoint to
the “fibre functor” FE : Esf → Ssf .
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On the profinite fundamental group of a connected Grothendieck topos

Profinite fundamental group

Proposition

The automorphism group Aut(GE ) carries a unique profinite
topology such that Esf ' BAut(GE ).

Proof.

Efc is an atomic site: Esf = Sh(Efc) ' BAut(GE ).

Definition (profinite fundamental group)

π̂(E ) = Aut(GE )

Examples

E “finitely gen.” iff E = Esf iff E = BG for profinite group G

π̂(Sh(E )) = π̂1(E ) (profinite completion)

π̂(Et(k)) = Gal(k̄/k) (with Krull topology)
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