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Feynman categories, derived modular envelopes and moduli spaces

Moduli space of bordered Riemann surfaces

Definition (moduli space for oriented surfaces/ribbon graphs)

Mg ,n moduli space of hyperbolic metrics on a surface Sg ,n of
genus g with n punctures where χ(Sg ,n) < 0 and n > 0.

MG moduli space of admissible metrics on ribbon graph G .

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

Mg ,n '
⋃

GMG where the metric ribbon graphs G are of type
(g , n) and at least trivalent.

Proposition (Igusa)⋃
GMG ' |nerve(rbg ,n)| where the ribbon category rbg ,n is

generated by orientation preserving edge contractions between
ribbon graphs of type (g , n).
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Moduli space of bordered Riemann surfaces

Definition (bordered case)

Mp1,...,pν
g ,s moduli space of hyperbolic metrics on a surface Sp1,...,pν

g ,s

of genus g with s punctures and ν cyclic boundary components
containing pi > 0 marked points respectively.

Theorem (Penner, Igusa, B-K)

Mp1,...,pν
g ,s '

⋃
GMG ' |rbp1,...,pν

g ,s | where the flagged ribbon graphs
G are of type (g , s; p1, . . . , pν) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with χ < 0)!(involutive hyperbolic surface)
(flagged ribbon graph with χ < 0)!(involutive ribbon graph)
involution = orientation-reversing with separating fixpoint set
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Moduli space of bordered Riemann surfaces

Remark (dual point of view: Harer, Kaufmann-Penner)

nerve(rbg ,n) ∼= (quasi-filling arc systems on Sg ,n)op

nerve(rbp1,...,pν
g ,s ) ∼= (quasi-filling arc systems on Sp1,...,pν

g ,s )op

Purpose of the talk

define surface-modular operads (cf. Markl)

show that the functor

J : (planar-cyclic operads) −→ (surface-modular operads)

induces homotopy equivalences

LJ!(1)(g , s; p1, . . . , pν) 'Mp1,...,pν
g ,s

(cf. Costello, Giansiracusa)
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Feynman categories

Proposition (May-Thomason, Elmendorf-Mandell, Hermida)

Each coloured operad O(i1, . . . , ik ; i) induces a symmetric
monoidal category FO having as objects ordered sequences of
colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

FO contains the invertible unary operations of O as subgroupoid
VO such that (VO)⊗ ' Iso(FO) (we call VO a framing of FO).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are coreflective inside framed sym. monoidal
categories. The essential image consists of Feynman categories.

Definition (Kaufmann-Ward)

A Feynman category F is a sym. mon. cat. with framing
V⊗ ' Iso(F) such that hereditary and size conditions are satisfied.
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Feynman categories

Lemma (O-algebra=FO-operad)

Any O-algebra extends to a strong sym. mon. functor FO → Sets.

Proposition (Kaufmann-Ward)

Any Feynman functor j : F→ F′ induces an adjunction

j! : F-operads −→ F′-operads : j∗

such that the left adjoint is given by pointwise left Kan extension

(j!P)(A′) = colimj(−)↓A′P(−).

Proposition (B-K, cf. Street-Walters’ comprehensive factorisation)

Any Feynman functor j : F→ F′ factors essentially uniquely as a
connected Feynman functor followed by a covering where j is
connected (resp. a covering) iff j!(1) = 1 (resp. F ∼= elF′(j!(1))).
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Symmetric, cyclic and modular operads

Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric
operads. Its associated Feynman category FS = Fsym has

as objects disjoint unions of rooted corollas

as morphisms disjoint unions of rooted trees

composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category Fcyc for cyclic operads has

as objects disjoint unions of corollas

as morphisms disjoint unions of trees

composition induced by tree insertion
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composition induced by graph insertion
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j : Fcyc → Fmod followed by a covering k : Fmod → Fctd

where Fmod is the Feynman category for modular operads.

Corollary (B-K)

The Fctd -operad h!(1) is “genus-labeling” and j!(1) = 1.
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Non-symmetric, planar-cyclic and surface-modular operads

Fnon-sym
I //

p(τassoc )
��

Fplan-cyc
J //

p(τplanar )

��

Fsurf -mod

p(τribbon)

��
Fsym

i
// Fcyc

j
//

h
))RRRRRRRRRRRRRRRR Fmod

k=p(τgenus)

��
Fctd

where vertical arrows are coverings, and j , J are connected.

τassoc is the Fsym-operad for associative monoids

τplanar is the Fcyc -operad for planar structures

i∗(τplanar ) = τassoc (τplanar is the “cyclic” version of τassoc)

τribbon = j!(τplanar )
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Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set j!(τplanar )(γ, n) is in bijection with either

equ. cl. of one-vertex ribbon graphs with γ loops and n flags

{(g , s; p1, . . . , pν) | n = p1 + · · ·+ pν and 1− 2g = ν + s − γ}
topological types of bordered oriented surfaces of genus g with
s punctures and ν boundaries having pi marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category Fsurf -mod can be
considered as genus-labeled “polycyclic” graphs and J(1) = 1.

Proposition (B-K)

J ↓ (g , s; p1, . . . , pν) ' rbp1,...,pν
g ,s



Feynman categories, derived modular envelopes and moduli spaces

W -construction and derived modular envelopes

Definition (Kaufmann-Ward)

A Feynman category F is cubical if there is a degree function
deg : Mor(F)→ N0 such that

deg(φ ◦ ψ) = deg(φ) + deg(ψ)

deg(φ⊗ ψ) = deg(φ) + deg(ψ)

Degree 0 morphisms are invertible

Each degree n morphism factors (up to iso) in n! ways into
degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories
Fsym,Fcyc ,Fmod ,Fnon-sym,Fplan-cyc ,Fsurf -mod are cubical. The
degree of φ is the number of edges of the representing graph Γφ.
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W -construction and derived modular envelopes

Definition (WF-construction)

Let P be an operad over a cubical Feynman category F. Put

(WFP)(B) =

 ∐
φ∈F(A,B)

P(A)×AutF(φ) [0, 1]deg(φ)

 / ∼

where identifications are on faces of [0, 1]deg(φ) according to
coarser factorisations of φ. AutF(φ) acts on both sides.
For “graphical” Feynman categories: AutF(φ) ∼= Aut(Γφ).

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category F, the category of topological
F-operads admits a transferred model structure. If P has an
underying cofibrant V-collection then WFP is a cofibrant F-operad.
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W -construction and derived modular envelopes

Example (cubically subdivided convex polytopes)

Wsym(τassoc)(rooted corolla)=associahedron

Wcyc(τplanar )(corolla)=cyclohedron

Proposition (B-K)

Let φ : F→ F′ be a functor of cubical Feynman categories.

(WF1)(B) ' |nerve(F ↓ B)|
φ!(WF1)(B ′) ' |nerve(φ ↓ B ′)|

Theorem (B-K)

J!(Wplan-cyc1)(g , s; p1, . . . , pν) ' |rbp1,...,pν
g ,s | ' Mp1,...,pν

g ,s
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Perspectives and open problems

J!(Wplan-cyc1) = (LJ!)(1) ?
no for transferred projective model structure, but yes for
transferred equivariant model structure, cf. Vogt.

Since p!(1plan-cyc) = τplanar , j!(W τplanar ) decomposes
according to p!J!(Wplan-cyc1). What about derived modular
envelopes of other cyclic operads ?

χorbi (Mg ,1) = χorbi (rbg ,1) = ζ(1− 2g) = ζ(χ(Sg ,1))
(Harer-Zagier).
What about χorbi (rbp1,...,pν

g ,s ) ?
Relationship with multi-zeta functions ?

Relationship with Kontsevich’s graph homology or a flagged
version of it ?
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