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Comprehensive factorisation & non-commutative Stone duality

Introduction

Examples (notions of covering)

topological covering/X ! Π1(X )-set

discrete fibration/C ! set-valued presheaf on C

Purpose of the talk

general notion of covering & associated factorisation system
using Lawvere’s comprehension schemes ’70.

apply to idempotent semigroups to get non-commutative
versions of Stone duality ’37.
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Consistent comprehension schemes

Definition (category of adjunctions)

objects of Adj∗ are categories with a distinguished terminal object
morphisms of Adj∗ are adjunctions (f!, f

∗).

Definition (comprehension scheme)

A comprehension scheme on E is a pseudo-functor P : E → Adj∗
such that for each object B of E the functor

E/B // PB

(f : A→ B) � // f!(?PA)

has a fully faithful right adjoint elB : PB → E/B.
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Consistent comprehension schemes

Definition

A morphism f : A→ B is a P-covering if it belongs to the
essential image of elB .

A comprehension scheme is consistent if P-coverings compose
and are left cancellable: gf , g ∈ CovB =⇒ f ∈ CovB .

A morphism f : A→ B is P-connected if f!(?PA) ∼= ?PB .

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension
schemes and complete orthogonal factorisation systems.

Proof.

ccs induces (P-connected, P-covering)-factorisation.

(L,R)-factorisation induces ccs with elB = R/B.
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Comprehensive factorisations

Remark (Frobenius)

A ccs satisfies Frobenius reciprocity (Lawvere ’70) if and only if
P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

Sets→ Adj∗ : X 7→ (PX ,⊂) induces epi/mono-factorisation.

Cat→ Adj∗ : C 7→ PC = [Cop,Sets] induces the
comprehensive factorisation of a functor (Street-Walters ’73).

PC restricts to Posets ⊂ Cat and Gpd ⊂ Cat (Bourn ’87).

∃ccs Multicat→ Adj∗ and Feyn→ Adj∗ (B-Kaufmann ’17).

Topslsc → Adj∗ : X 7→ Shloc(X ) yields a comprehensive
factorisation of a continuous map of slsc spaces.
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Comprehensive factorisations

Remark (espace étalé)

The equivalence Sh(X ) ' {local homeomorphisms/X} restricts to
an equivalence Shloc(X ) ' {topological coverings/X}.

Lawvere ’70: ... we remark that although our discussion below of
comprehension hinges on the operation Σ, there is one structure in
which all features of hyperdoctrines except Σ exist ..., but in which
there is clearly a kind of “extension”, namely the espace étalé.

Proposition (f! for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of
categories Shloc(X ) ' Π1(X )-sets. In particular for f : X → Y ,

Shloc(X )
∃f! //

'
��

Shloc(Y )

'
��

Π1(X )-sets
Π1(f )! // Π1(Y )-sets
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Comprehensive factorisations

Proposition (homotopical characterisation of connected maps)

A map of slsc spaces f : X → Y is connected iff π0(f ) is bijective
and π1(f , x) : π1(X , x)→ π1(Y , f (x)) is surjective ∀x ∈ X .

Corollary (existence of universal coverings)

For any based slsc space (X , x) the comprehensive factorisation

U(X ,x)

covering

��
?

connected
==zzzzzzzz

x
// X

produces the universal covering of X at x .
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Distributive bands and distributive skew-lattices

Definition

A band (=idempotent semigroup) is a set (X , ·) with an
associative multiplication such that x2 = x for all x ∈ X .

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green’s D-relation)

Each band is partially ordered by x ≤ y
dfn⇐⇒ x = yxy . The

commutative bands form a reflective subcategory. The reflection is

given by X → X/D where xDy
dfn⇐⇒ x = xyx and y = yxy .
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Distributive bands and distributive skew-lattices

Definition (Schützenberger ’47)

A band is left (resp. right) regular if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke ’18)

The category of right regular bands admits a comprehensive
factorisation system lifted along the functor (X , ·) 7→ (X ,≤).

Lemma (discrete objects)

For a right regular band X tfae:

(X ,≤) is order-discrete;

(X , ·) is a right zero band (i.e. yx = x);

the terminal map X → ?RRB is a covering.
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Distributive bands and distributive skew-lattices

Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. xyz = yxz) if and only if
the semilattice reflection X → X/D is a covering.

Definition

A band X is called right distributive if

(i) X is right normal;

(ii) X/D is a (bounded) distributive lattice;

(iii) for any finite subset S of X consisting of pairwise commuting
elements the join

∨
S in (X ,≤) exists.

Example (the local sections of a sheaf form a distributive band)

We define (U, σ)(V , τ) = (U ∩ V , τeVU∩V ). Local sections
commute iff they glue. (U, σ) ≤ (V , τ) iff U ⊂ V and σ = τ|U .
(iii) expresses sheaf condition w/to finite open covers.
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Distributive bands and distributive skew-lattices

Definition (skew-lattice, Leech ’89)

A skew lattice (S ,f,g) consists of two bands (S ,f) and (S ,g)
such that the following four absorption laws hold:

(i) (y f x) g x = x = x f (x g y);

(ii) x g (x f y) = x = (y g x) f x .

Remark (lattice reflection)

The order relation of (S ,f) is dual to the order relation of (S ,g).
Green’s D-relation yields a lattice S/D, the lattice reflection of S .
(S ,f) is right regular iff (S ,g) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetric if x f y = y f x ⇐⇒ x g y = y g x .
A skew-lattice is right distributive if it is symmetric, right normal
and its lattice reflection is distributive.
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Non-commutative Stone duality

Theorem (Stone ’37)

There is a duality between the category of distributive lattices and
the category of spectral spaces.

Theorem (B-Gehrke ’18)

There is a duality between the category of right distributive bands
and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva ’13)

There is a duality between the category of right distributive
skew-lattices and the category of sheaves over Priestley spaces.
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