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Abstract We consider d-dimensional chains of (an)harmonic oscillators we perturb
by a noise conserving energy or energy and momentum. We review the thermal
conduction properties we obtained for these systems ([8], [1], [6], [2]) and conclude
by several open questions.

1 Introduction

The derivation of phenomenological laws from a microscopic description of the
matter is one of the goals of statistical mechanics. Among them Fourier’s law is
probably one of the simple: when a small gradient ∇T of temperature is applied to
a material, in the steady state, the energy flux J is proportional to the gradient of
temperature

J =−κ∇T

The proportionality coefficient κ is called the thermal conductivity. Despite its sim-
plicity and the interest it has in the physical and mathematical community the deriva-
tion of Fourier’s law from a microscopic model remains one of the main open ques-
tion of nonequilibrium statistical mechanics ([17], [11], [15]).

In insulating crystals heat is transported by lattice vibrations, and since the pio-
neering work of Debye, systems of coupled anharmonic oscillators have been used
as microscopic models for heat conduction. They are classical system of particles
interacting through a nearest neighbour interaction potential V and which are in an
external potential W . The Hamiltonian H is given by

Cédric Bernardin
Université de Lyon, CNRS (UMPA)
Ecole Normale Supérieure de Lyon,
46, allée d’Italie,
69364 Lyon Cedex 07 - France.
e-mail: cbernard@umpa.ens-lyon.fr

1



2 Cédric Bernardin

H = ∑
x∈Λ

(
|px|2

2mx
+W (qx)+ ∑

|y−x|=1
V (qx−qy)

)
, Λ ⊂ Zd

where mx,qx, px denotes the masse, position and momentum of the particle with
equilibrium position x ∈Λ .

It is well known that harmonic chains, because of their infinitely many conserved
quantities, have infinite conductivity and do not obey Fourier’s law ([19]). This be-
cause phonons can traverse ballistically along the chain. It is often expected that
enough strong nonlinearity or disorder (like the presence of random masses) causes
scattering between phonons and should imply a sufficiently fast decay of correla-
tions for heat current and hence a normal conductivity. A rigorous treatment of a
nonlinear system, even the proof of the existence of the conductivity coefficient,
seems to be out of reach of current mathematical techniques. In this context the
understanding of the coupled effect of nonlinearity and disorder is a challenge.

The situation is in fact more complex. In some low dimensional systems (d ≤ 2)
anomalous thermal conductivity is observed numerically and experimentally in nan-
otubes technology. The anomalous conductivity in low dimension has attracted a lot
of attention in the literature, and it has been suggested that conservation of momen-
tum is an important ingredient. There is no agreement, theoretically and numerically,
about the exact dependance of the conductivity with the size of the system ([17]).

Hence it makes sense to look at simple models which incorporate the important
features that one believes are necessary to see normal transport. The main difficulty
in Hamiltonian dynamics with a large number of degrees of freedom is to show
that they behave ergodically, e.g. that the only time invariant measures locally ab-
solutely continuous w.r.t. Lebesgue measure are, for infinitely extended spatial uni-
form systems, of the Gibbs type. For some stochastic lattice gases it can be proven
but it remains a challenging problem for Hamiltonian dynamics. Taking advantage
of mathematical techniques developed in the hydrodynamic limits communauty we
introduce hybrid models between purely Hamiltonian systems and purely stochastic
models which remain mathematically tractable but are sufficiently close to realis-
tic systems to reproduce at least qualitatively what is observed for these systems.
We consider chains of oscillators perturbed by a stochastic noise conserving en-
ergy or energy and momentum. These stochastic perturbations are here to simulate
(qualitatively) the effective (deterministic) ergodicity coming from the Hamiltonian
dynamics.

The paper is organized as follows. In section 2 we introduce a model of coupled
oscillators perturbed by a noise: the first noise conserves only energy and the second
one conserves energy and momentum. In section 3 we review linear response theory
and Green-Kubo formula. Section 4 is devoted to the study of a chain of oscillators
with the noise conserving only energy. For the harmonic homogenous harmonic
chain we show Fourier’s law is valid and compute the conductivity. For anharmonic
chains we provide lower and upper bounds. The effect of disorder is considered
in subsection 4.3. Then we consider the energy-momentum conserving model in
section 5 and show that in the homogenous harmonic case a breakdown of Fourier’s
law holds for low dimensional momentum conserving systems. We provide also
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upper bounds for the conductivity in the anharmonic case. We conclude the paper
by open question in section 6.

Notations : The canonical basis of Rd is noted (e1,e2, . . . ,ed) and the coordinates
of a vector u ∈ Rd are noted (u1, . . . ,ud). Its Euclidian norm |u| is given by |u| =√

(u1)2 + . . .+(ud)2 and the scalar product of u and v is u · v.
If N is a positive integer, Td

N denotes the d-dimensional discrete torus of length
N and we identify x = x+ kNe j for any j = 1, . . . ,d and k ∈ Z.

If F is a function from Zd (or Td
N) into R then the (discrete) gradient of F in the

direction e j is defined by (∇e j F)(x) = F(x + e j)−F(x) and the Laplacian of F is
given by (∆F)(x) = ∑

d
j=1
{

F(x+ e j)+F(x− e j)−2F(x)
}

.

2 The models

In this section we introduce deterministic nonlinear chains on a multidimensional
lattice perturbed by a stochastic noise. The stochastic perturbations are such that
they exchange momentum between particles with a local random mechanism that
conserves total energy or total energy and total momentum.

2.1 Closed system

We first consider the closed system with periodic boundary conditions. The atoms
are labeled by x ∈ Td

N . Momentum of atom x is px ∈ Rd , its displacement from its
equilibrium position is qx ∈ Rd and its mass is mx > 0. The configuration space is
given by ΩN = {(qx, px) ∈ Rd×Rd ; x ∈ Td

N}. The Hamiltonian is given by

HN = ∑
x∈Td

N

[
|px|2

2mx
+W (qx)+

1
2 ∑
|y−x|=1

V (qx−qy)

]
.

We assume that V and W have the following form:

V (qx−qy) =
d

∑
j=1

Vj(q j
x−q j

y), W (qx) =
d

∑
j=1

Wj(q j
x).

and that Vj,Wj are smooth, non-negative and even. We call V the interaction poten-
tial, and W the pinning potential. The case where W = 0 will be called unpinned.

In the sequel we will refer to the (α,ν)-harmonic case:

Vj(r) = αr2, Wj(q) = νq2, α > 0, ν ≥ 0 (1)
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for which explicit and generic results can be obtained.
The generator LN of the dynamics is defined by

LN = AN + γSN

where AN is the Liouville operator corresponding to the Hamiltonian HN

AN = ∑
x

{
∂pxHN ·∂qx −∂qxHN ·∂px

}
and SN is the generator of the Markovian noise. The parameter γ > 0 regulates
the strength of the noise. It acts only on momenta and is local. It consists in an
infinitesimal exchange of momenta preserving some conservation laws. The first
conservation law we impose is the energy conservation. Since the noise acts only on
momenta it is equivalent to require conservation of kinetic energy. This corresponds
to the so-called energy conserving noise. If we require also the conservation of total
momentum then we get a second noise we call the energy-momentum conserving
noise. Let us denote πx = px/

√
mx. In the homogeneous case mx = 1, πx = px.

The two noises have the following form

SN =
1
4

d

∑
i, j=1

∑
x,z∈Td

N ,
|x−z|=1

(X i, j
x,z)

2

where X i, j
x,z is equal to

X i, j
x,z = π

j
z ∂π i

x
−π

i
x∂

π
j
z

for the energy conserving noise and equal to

X i, j
x,z = (π j

z −π
j

x )(∂π i
z
−∂π i

x
)− (π i

z−π
i
x)(∂π

j
z
−∂

π
j
x
).

for the energy-momentum noise if d ≥ 2. If d = 1 in order to conserve total momen-
tum and total kinetic energy, we have to consider a random exchange of momentum
between three consecutive atoms ([2]).

The interpretation of the vector fields is the following. To be specific we take d =
1 and consider the energy conserving noise. In this case Xx = X1,1

x,x+1 = (πx+1∂πx −
πx∂πx+1). Observe that Xx is the vector field tangent to the circle Cx = {(πx,πx+1); π2

x +
π2

x+1 = 1} so that X2
x generates a diffusion on Cx. In fact it is nothing else than a

standard Brownian motion on the circle. The generator SN corresponds to a sys-
tem of coupled Brownian diffusions preserving the kinetic energy ∑x∈Td

N
|πx|2. The

energy-momentum conserving noise is defined by a similar procedure but the sur-
face Cx has to be replaced by the surface of constant kinetic energy and constant
momentum. In dimension 1, this surface is reduced to a point and it explains why
we have to consider a three-body interaction.

Because the noise conserves energy, a family of stationary translations invari-
ant probability measures for LN is given by the Gibbs measures. In the energy
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conserving case they are parametrized by inverse temperature β = T−1 and in the
energy-momentum conserving model by inverse temperature β and mean momen-
tum average p̄. We denote the Gibbs measure with inverse temperature β = T−1 and
zero momentum average by µN,T . It is given by

µN,T (dqdp) = Z−1
N,T exp(−βHN)dqdp

where ZN,T is the partition function. Expectation with respect to µN,T is denoted by
〈·〉N,T . Remark that in L2(µN,T ) the Hamiltonian vector field AN is antisymmetric
and the noise SN is symmetric.

2.2 Open system

We now consider the case where the system is in contact with thermal baths at
different temperatures T` and Tr. Thermal baths are given by Ornstein-Uhlenbeck
processes with the corresponding temperature. To simplify notations we take d = 1.
The configuration space is now given by χN = {(px,qx)∈R×R; x = 1, . . . ,N}. The
generator of the evolution has the form

L̃N =
N

∑
x=1

{
∂pxH̃N ·∂qx −∂qxH̃N ·∂px

}
+

γ

2

N−1

∑
x=1

(X1,1
x,x+1)

2 +
1
2
(
T`∂

2
p1
− p1∂p1

)
+

1
2
(
Tr∂

2
pN
− pN∂pN

)
We have to specify boundary conditions for H̃N . For example one can define

H̃N =
N−1

∑
x=1

[
|px|2

2mx
+W (qx)+

1
2 ∑
|y−x|=1

V (qx−qy)

]
.

with q0 and qN+1 fixed.
Even if one can prove there exists a unique stationary probability measure 〈·〉N,ss

for the process, there is in general no formula to express it. The only case where
one knows 〈·〉N,ss is the equilibrium case T` = Tr = T where the stationary measure
is given by the Gibbs measure at temperature T . Otherwise the probability measure
〈·〉N,ss is called a nonequilibrium stationary state.

3 Thermal conductivity and linear response theory

In this section we review briefly linear response theory and Green-Kubo formula for
thermal conductivity. Derivation of the Green-Kubo formula is heuristic and even



6 Cédric Bernardin

its (mathematical) existence is a challenging problem. Roughly speaking Green-
Kubo formula is the space-time variance of the total current at equilibrium. Thermal
conductivity is a transport coefficient defined by considering the system out of equi-
librium. Linear response theory express the fact that if temperatures T` and Tr are
different but close then a linear approximation is valid and the thermal conductiv-
ity κ(T ) is equal to the Green-Kubo formula κGK(T ). Such a formula belongs to
the family of fluctuation-dissipation theorems since it relates dissipation (i.e. the
thermal conductivity) to fluctuations (i.e. fluctuations of the total current).

Defining the energy of the atom x as

Ex =
1

2mx
p2

x + W (qx) +
1
2 ∑

y:|y−x|=1
V (qy−qx)

the energy conservation law can be read locally as

Ex(t)−Ex(0) =
d

∑
k=1

(
Jx−ek,x([0, t])− Jx,x+ek([0, t])

)
where Jx,x+ek([0, t]) is the total energy current between x and x + ek up to time t.
This can be written as

Jx,x+ek([0, t]) =
∫ t

0
jx,x+ek(s) ds+Mx,x+ek(t)

In the above Mx,x+ek(t) are martingales that can be written explicitly as Itô stochastic
integrals.

The instantaneous energy currents jx,x+ek satisfy the equation

LNEx =
d

∑
k=1

(
jx−ek,x− jx,x+ek

)
and it can be written as

jx,x+ek = ja
x,x+ek

+ γ js
x,x+ek

(2)

The first term in (2) is the Hamiltonian contribution to the energy current

ja
x,x+ek

=−
1
2
(∇V )(qx+ek −qx) ·

(
πx+ek

m1/2
x+ek

+
πx

m1/2
x

)

=−1
2

d

∑
j=1

V ′j(q
j
x+ek
−q j

x)

(
π

j
x+ek

m1/2
x+ek

+
π

j
x

m1/2
x

)

while js
x,x+ek

is the noise contribution.
For the energy conserving noise we have
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js
x,x+ek

=−
1
d

∇ek |πx|2

In the energy-momentum conserving case, in d ≥ 2, it is

js
x,x+ek

=−∇ek |πx|2

and in d = 1 is

js
x,x+1 =−∇ϕ(πx−1,πx,πx+1)

ϕ(πx−1,πx,πx+1) =
1
6
[π2

x+1 +4π
2
x +π

2
x−1 +πx+1πx−1−2πx+1πx−2πxπx−1]

The particular form of js is not very important. What is relevant is the fact that
js
x,x+ek

is a discrete gradient ∇ek φx of a local function φx. It means a weak form of
Fourier’s law is valid at the microscopic level as soon as we can relate φx to the
(macroscopic) local temperature. Observe that it is not the case for the Hamiltonian
part of the current and one of the main difficulties is to express ja as the sum of a
discrete gradient and a small term (see (10)).

3.1 Nonequilibrium setting

We consider the system out of equilibrium (see subsection 2.2) in contact with two
heat baths at different temperatures T` and Tr in the first direction. The conductivity
κ(T ) is defined by the thermodynamic limit

κ(T ) = lim
T`,Tr→T

lim
N→∞

〈 j0,e1〉N,ss

T`−Tr

We have seen in the introduction one expects that for one and two dimensional
systems conserving momentum such a limit is equal to infinity. In order to estimate
this divergence one can study the finite size thermal conductivity

κN(T ) = lim
T`,Tr→T

〈 j0,e1〉N,ss

T`−Tr
(3)

Under suitable conditions his quantity is well defined even for purely Hamiltonian
chains but it is not straightforward. It is often expected that

lim
N→∞

κN(T ) = κ(T )

but it is not obvious since there is an exchange of limits.
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3.2 Green-Kubo formula

The difficulty arising in the study of κ(T ) is that we have no explicit representation
of the nonequilibrium stationary state 〈·〉N,ss. Since T` and Tr are close it is suggestive
to use a perturbative approach to compute κ(T ).

Performing a first order development in the stationary state 〈·〉N,ss we get that

κ(T ) = κ
GK(T )

where the Green-Kubo formula for the conductivity κGK(T ) is given by ([23], pp.
188–190)

κ
GK(T ) = lim

t→∞
lim

N→∞

1
2T 2t ∑

x∈Td
N

EN,T [Jx,x+e1([0, t])J0,e1([0, t]) ] (4)

Here EN,T indicates the expectation with respect to the equilibrium dynamics starting
with the Gibbs measure < · >N,T at temperature T . This definition itself is formal
since we have to prove existence of the limits.

By standard stochastic calculus and a time-reversal argument ([2]) one can es-
tablish the following equality

1
2T 2t ∑

x
EN,T (Jx,x+e1([0, t])J0,e1([0, t]))

= (2T 2Ndt)−1EN,T

([
∑
x

∫ t

0
ja
x,x+e1

(s)ds
]2
)

+
γ

d

(5)

Here the term γ/d is due to the presence of the noise. This is the first term
which is of interest. In view of the Green-Kubo formula the anomalous behavior
of the conductivity should appear in a slow time-decay of the time correlation of the
(Hamiltonian part) of the current.

Let us denote
Je1 = ∑

x∈Td
N

ja
x,x+e1

In order to study the large time behavior of

C(t) = lim
N→∞

CN(t), CN(t) = (2T 2tNd)−1EN,T

([∫ t

0
Je1(s)ds

]2
)

we study the asymptotics as N→∞ and then λ → 0 of the Laplace transform LN(λ )
of tCN(t)

LN(λ ) =
∫

∞

0
e−λ ttCN(t)dt

By stationarity and integration by parts, we have
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LN(λ ) =
1

λ 2T 2

∫
∞

0
dte−λ tEN,T [Je1(t)Je1(0)]

Denote by etLN the semigroup generated by LN and remark that Je1(t) = etLN Je1
then

LN(λ ) =
1

λ 2T 2〈Je1 ,(λ −LN)−1Je1〉N,T (6)

A normal finite conductivity corresponds (in a Tauberian sense) to a positive
finite limit of λ 2LN(λ ) as N → ∞ and then λ → 0. In this case, the conductivity
κ(T ) should be equal to the following form of the Green-Kubo formula

κ
GK(T ) = γ/d + lim

λ→0
lim

N→∞
N−d〈Je1 ,(λ −LN)−1Je1〉N,T (7)

No general argument gives the existence of the limits in (4) and in (7) nor that if
they exist they are equal.

Observe that Green-Kubo formula (4) predicts only the value of the thermal con-
ductivity κ(T ) (defined in the nonequilibrium setting). If the thermal conductivity
is infinite it says a priori nothing about the behavior of the finite size thermal con-
ductivity κN(T ) defined by (3). To overcome this problem we define the truncated
Green Kubo formula by

κ
GK
N (T ) = (2T 2NdtN)−1EN,T

([
∑
x

∫ tN

0
ja
x,x+e1

(s)ds
]2
)

+
γ

d

where tN = N/vs with vs the sound velocity defined by

vs = lim
k→0
|∂k1ω(k)|

and where

ω(k) =

(
d

∑
j=1

W ′′j (0)+4Vj
′′(0)sin2(πk j)

)1/2

is the dispersion relation of the approximated linear system. This definition of the
conductivity of the finite system is motivated by the following consideration: in
the harmonic case the finite size thermal conductivity κN(T ) can be obtained by
this truncation technique (in a rigorous way) and we expect this is still valid for
the anharmonic chain. In the linear interactions approximation ∇kω(k) is the group
velocity of the k-mode waves, which are the heat carriers, and typically vs is an upper
bound for these velocities. Consequently tN is the typical time a low k (acoustic)
mode takes to cross around the system once (see[17]). Typically vs is of order one
and we will take vs = 1 in the sequel.
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4 Energy conserving model

In this section we state the results obtained for the energy conserving noise. As
expected one can not obtain infinite conductivity for this model since momentum
is not conserved. In the homogenous harmonic case one computes explicitly the
Green-Kubo formula κGK(T ) and also the conductivity κ(T ) in the one-dimensional
unpinned system. It turns out that κ(T ) = κGK(T ) so that predictions of linear re-
sponse theory is valid although the proof does non use perturbative arguments. In
the anharmonic homogenous case one can establish lower and upper bounds for
κGK(T ) indicating a positive finite conductivity. The proof of the convergence of
the Green-Kubo formula in the anharmonic case remains open. We are also inter-
ested in the effect of disorder (random masses) in the energy conserving model. This
is the contain of subsection 4.3.

4.1 Homogenous harmonic chain

Here we consider the homogenous (α,ν)-harmonic case (1) with all masses equal
to 1.

Let us define

D =
∫

ξ∈[0,1]d

(
4α2

∑
d
j=1 sin2(πξ j)

ν +4α ∑
d
j=1 sin2(πξ j)

)
dξ

1 . . .dξ
d

We have the following theorem

Theorem 1. κGK(T ) defined by (4) is finite (pinned or unpinned) in any dimension
and given by

κ
GK(T ) =

D
γ

+
γ

d
Proof. Recall (6). A simple but crucial computation shows that

(λ −LN)−1Je1 =
Je1

λ + γ

Let DN = DN(α,ν) be the constant

DN = T−1
α

2
d

∑
k=1
〈(qk

e1
−qk
−e1

)2〉N,T =
1

Nd ∑
ξ∈Td

N

(
4α2

∑
d
j=1 sin2(πξ j/N)

ν +4α ∑
d
j=1 sin2(πξ j/N)

)

One computes easily limN→∞〈Je1 ,Je1〉N,T and after inversion of the Laplace trans-
form, one gets

CN(t) =
DN

γ

(
1+

1
γt

(1− e−γt)

)
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Then theorem follows.

Observe that if the noise becomes weaker (i.e. γ → 0), we obtain a purely ho-
mogenous harmonic chain and the thermal conductivity is infinite.

In the following theorem we study the one-dimensional unpinned system in con-
tact with two heat baths at temperature T` and Tr. We show that conductivity is finite
and coincides with the Green-Kubo formula. The proof remains valid in any di-
mension and with or without pinning as soon as we are able to prove the following
bound

∀x ∈ {1, . . . ,N}, 〈ex〉N,ss ≤C (8)

where C > 0 is independent of N. Unfortunately it has been proved only in the one
dimensional unpinned case.

Theorem 2. [8] Consider the one dimensional (α,ν)-harmonic case (1) with ν = 0.
For any γ > 0

lim
N→∞

N < jx,x+1 >= α
(
γ + γ

−1)(T`−Tr) (9)

Hence we have κ(T ) = κGK(T ) = α(γ + γ−1)

The proof of this theorem can be found in [8]. It is based on entropy production
bounds and use an explicit decomposition of the current jx,x+1 as the sum

jx,x+1 = ∇φx +LNhx (10)

where hx,φx are two explicit local functions and ∇ is the discrete gradient. Hence
the current is the sum of a dissipative part (a spatial gradient) and a fluctuating part
(a time derivative). For this reason we call this equation a microscopic fluctuation-
dissipation relation ([5],[7],[8]).

4.2 Homogenous anharmonic chain

The introduction of nonlinearity in the Hamiltonian dynamics complicates consid-
erably the problem. We do not have any proof of the existence of κGK(T ) nor κ(T ).
At least we have estimates which indicate that a finite strictly positive conductivity
is expected. By strictly positive we mean that the Hamiltonian contribution to the
Green Kubo formula (the second term in (7)) is strictly positive, the term γ/d being
only due to the noise and of no interest for the study of conduction properties of the
underlying deterministic dynamics. We consider the (formal) Green-Kubo formula
(7).

Proposition 1. Assume that

N−d〈Je1 ,Je1〉N,T ≤C

with a constant C independent of N. Then there exists a positive constant C′ inde-
pendent of N such that for any λ > 0 and N,
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N−d〈Je1 ,(λ −LN)−1Je1〉N,T ≤C′ (11)

Observe that the assumption done in this proposition is natural and is satisfied
for reasonable potentials V,W (see (12)). This shows that if Green-Kubo formula
(7) converges then κGK(T ) is finite.

Proof. Introduce the following so-called H1,λ and H−1,λ norms defined by

‖ f‖2
±1,λ = 〈 f ,(λ − γSN)± f 〉N,T

We have the following variational formula ([6])

〈Je1 ,(λ −LN)−1Je1〉N,T = sup
u

{
2〈Je1 ,u〉N,T −‖u‖2

1,λ −‖ANu‖2
−1,λ

}
To obtain the upper bound we forget the term ‖ANu‖2

−1,λ and we get

〈Je1 ,(λ −LN)−1Je1〉N,T ≤ sup
u

{
2〈Je1 ,u〉N,T −‖u‖2

1,λ

}
It is well known that

sup
u

{
2〈Je1 ,u〉N,T −‖u‖2

1,λ

}
= 〈Je1 ,(λ − γSN)−1Je1〉N,T

and a simple computation shows that

(λ − γSN)−1Je1 =
Je1

λ + γ

We are left to prove that
N−d〈Je1 ,Je1〉N,T ≤C

with a constant C independent of N. It is exactly our assumption.

We expect also a lower bound of the form

C−1 ≤ N−d〈Je1 ,(λ −LN)−1Je1〉N,T

with C > 0 independent of λ and N.
The strategy to prove such a lower bound is straightforward: we have to find a

good test function vN,λ and show that

N−1
{

2〈Je1 ,vN,λ 〉N,T −‖vN,λ‖2
1,λ −‖ANvN,λ‖2

−1,λ

}
≥C−1

Unfortunately we are not able to prove this lower bound for general V and W
but only for unpinned systems (W = 0) in d = 1. We note rx = qx+1− qx. Then
the p’s and the r’s are independent variables under the Gibbs measure 〈·〉N,T . Some
conditions on V are imposed
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Var(V ′′(r0))≤C, Var(V ′(r0))≤C

with C > 0 and Var(F(r0)) is the variance (independent of N) of F(r0) under the
Gibbs measure 〈·〉N,T .

Proposition 2. Under the conditions above there exists a positive constant C′ inde-
pendent of N and λ such that

C′ ≤ N−1〈Je1 ,(λ −LN)−1Je1〉N,T

Proof. We choose

vN,λ =−a∑
x

px(V ′(rx)+V ′(rx−1)) = 2aJe1

with a > 0 we will precize later. We have

ANvN,λ =−a∑
x

p2
x
(
V ′′(rx−1)−V ′′(rx)

)
Let Gλ ,N(z) the solution on TN of

(λ − γ∆)GN,λ = δ0(·)

Observe that SN(p2
x) = ∆(p2

x) then we get

(λ − γSN)−1(AnvN,λ ) =−a∑
x,z

GN,λ (x− z)p2
z
(
V ′′(rx−1)−V ′′(rx)

)
It follows that

‖ANvN,λ‖2
−1,λ = a2

∑
x,y,z

Gλ ,N(x−z)〈p2
y p2

z
(
V ′′(ry−1)−V ′′(ry)

)(
V ′′(rx−1)−V ′′(rx)

)
〉N,T

Observe now the Gibbs measure 〈·〉N,T is product. Then an easy computation shows

‖ANvN,λ‖2
−1,λ = Na2T Var(V ′′(r0))(∆GN,λ )(0)

By discrete Fourier transform we have

(∆GN,λ )(0) =
1
N ∑

k∈T

4sin2(πk/N)

λ +4γ sin2(kπ/N)
≤ γ

−1

On the other hand we have

2〈Je1 ,vN,λ 〉N,T −‖vN,λ‖2
1,λ

= 4a〈Je1 ,Je1〉N,T −4a2〈Je1 ,(λ − γSN)Je1〉N,T

= 4a〈Je1 ,Je1〉N,T −4a2(λ + γ)〈Je1 ,Je1〉N,T
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because SNJe1 =−Je1 . By a simple computation we have

〈Je1 ,Je1〉N,T = 4NT Var(V ′(r0)) (12)

If a is sufficiently small we get

N−d〈Je1 ,(λ −LN)−1Je1〉N,T ≥C−1

with C > 0 independent of N and λ .

4.3 Disordered harmonic chain

In this subsection we are interested in the effect of disorder on the thermal con-
ductivity properties. The simplest way to introduce randomness is to assume that
masses of atoms can vary from site to site according to a random sequence. We first
review basic facts for deterministic chains with random masses. As it is well known,
the presence of disorder generally induces localization of the normal modes and one
can expect to have a perfect thermal insulators (κN(T )→ 0). The only analytically
tractable model is the one dimensional disordered harmonic chain (DHC). Surpris-
ingly the behavior of the thermal conductivity depends on boundary conditions and
on the properties of the thermostats ([12], [22]). This curious phenomenon has been
studied in [14] (see also [21]) in a more general setting and it turns out that ”the
exponent [of κN] depends not only on the properties of the disordered chain itself,
but also on the spectral properties of the heat baths. For special choices of baths
one gets the ”Fourier behavior” ”. If we add a pinning potential in the DHC, κN(T )
becomes exponentially small in N.

Recently, Dhar and Lebowitz ([16]) were interested in the effect of both disorder
and anharmonicity. The conclusions of their numerical simulations are that the in-
troduction of a small amount of phonon-phonon interactions in the DHC leads to a
positive finite thermal conductivity.

We consider now the (α,ν)-harmonic chain with random masses and energy
conserving noise. The noise should simulate in some sense nonlinearity effects and
in view of the numerical simulations of [16] one would expect the model to become
a normal conductor : κN(T )→ κ(T ) with κ(T ) finite and positive. We are not able to
obtain interesting informations for κ(T ) but only for κGK(T ). Hence the behavior of
the thermal conductivity is studied in the linear response theory framework by using
the Green-Kubo formula. Behavior of the conductivity defined through Green-Kubo
formula has not been studied for DHC. It would be interesting to know what is the
order of divergence of the latter. For the perturbed DHC we obtain uniform finite
positive lower and upper bounds for the d dimensional finite volume Green-Kubo
formula of the thermal conductivity with or without pinning (Theorem 3) so that the
thermal conductivity is always finite and positive. In particular it shows the presence
of the noise is sufficient to destroy localization of eigen-functions in pinned DHC.
Linear response approach avoids the difficulty to deal with a nonequilibrium setting
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where effects of spectral properties of heat baths could add difficulties as in the case
of purely DHC. In the nonequilibrium setting, we expect that since the Green-Kubo
formula for the thermal conductivity of the perturbed DHC remains finite, it will not
depend on the boundaries.

Theorem 3. [6] There exists a positive constant C > 0 independent of λ and N such
that

C−1 ≤ liminf
λ→0

liminf
N→∞

∫
∞

0
e−λ tN−dEN,T [Je1(t), Je1(0)]dt

≤ limsup
λ→0

limsup
N→∞

∫
∞

0
e−λ tN−dEN,T [Je1(t), Je1(0)]dt ≤C

Proof. The proof is similar to what is presented in subsection 4.2 for the anharmonic
case.

A priori the Green-Kubo formula κGK(T ) depends on the particular realization
of the masses {mx}. But a formal argument ([6]) suggests that if masses are dis-
tributed according to some stationary ergodic probability measure P∗ then κGK(T )
depends only on the statistics of the masses and not on the particular realization of
the disorder. One can write formally an infinite Green-Kubo homogenized formula
κhom.(T ) obtained by averaging over the masses. In order to define κhom.(T ) one has
to consider the infinite volume dynamics with generator L given by

L = ∑
x∈Zd

{
∂pxH ·∂qx −∂qxH ·∂px

}
+ γ

d

∑
i, j,k=1

∑
x∈Zd

(X i, j
x,x+ek

)2

and

H = ∑
x∈Zd

p2
x

mx
+(α∆ −ν)qx ·qx

Observe that the sums are taken over Zd . One can show that the dynamics with
generator L is well defined. Then we have

κ
GK
hom.(T ) = γ/d + lim

λ→0
E∗
[∫

∞

0
dte−λ t

∑
z∈Zd

ET

[
ja
0,e1

(t)τz ja
0,e1

(0)
]]

where τz denotes the shift on the configuration space and ET is the expectation cor-
responding to the infinite dynamics starting from the infinite volume Gibbs measure
with temperature T .

Theorem 4. [6] Assume that {mx} is stationary under P∗ and there are positive
constants m and m such that

P∗(m≤ mx ≤ m) = 1

The Hamiltonian contribution to the homogenized Green-Kubo formula for the ther-
mal conductivity κGK

hom.(T )− γ/d
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κ
1,1
hom.(T )− γ/d = lim

λ→0
E∗
[∫

∞

0
dte−λ t

∑
z∈Zd

ET

[
ja
0,e1

(t)τz ja
0,e1

(0)
]]

exists, is positive and finite.

Proof. The proof is based on functional analysis arguments ([4], [10], [6]).

5 Energy-momentum conserving model

We investigate the same problems as in the previous section but for the chain per-
turbed by the energy-momentum conserving noise. Momentum is then conserved by
the total dynamics if it is conserved by the Hamiltonian dynamics which is the case
if and only if the system is unpinned. Dramatic consequences in low dimensional
systems appear. In fact we prove that for unpinned systems with harmonic interac-
tions, thermal conductivity is infinite in 1 and 2 dimensions, while is finite for d ≥ 3
or for pinned systems. So thermal conductivity in our model behaves qualitatively
like in a deterministic nonlinear system, i.e. these stochastic interactions reproduce
some of the features of the nonlinear deterministic hamiltonian interactions.

For anharmonic systems, even with the stochastic noise, we are not able to prove
the existence of thermal conductivity (finite or infinite). If the dimension d is greater
than 3 and the system is pinned, we get a uniform bound on the finite size system
conductivity. For low dimensional pinned systems (d = 1,2), we can show the con-
ductivity is finite if the interaction potential is quadratic and the pinning is generic.
For the unpinned system we have to assume that the interaction between nearest-
neighbor particles is strictly convex and quadratically bounded at infinity. This be-
cause we need some informations on the spatial decay of correlations in the sta-
tionary equilibrium measure, that decay slowly in unpinned system. In this case, we
prove the conductivity is finite in dimension d ≥ 3 and we obtain upper bounds in
the size N of the system of the form

√
N in d = 1 and (logN)2 in d = 2 (see Theorem

7).

5.1 Homogenous harmonic chain

Consider first the homogenous (α,ν)-harmonic case (1) with all masses equal to 1.
In [1],[2], we obtained the following theorems.

Theorem 5. [2] In the (α,ν)-harmonic case (1), the limit defining κGK(T ) exists.
It is finite if d ≥ 3 or if the on-site harmonic potential is present (ν > 0), and is
infinite in the other cases. When finite κGK(T ) is independent of T and the following
formula holds

κ =
1

8π2dγ

∫
[0,1]d

(∂k1ω)2(k)
ψ(k)

dk +
γ

d
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where ω(k) is the dispertion relation

ω(k) =

(
ν +4α

d

∑
j=1

sin2(πk j)

)1/2

and

ψ(k) =

{
8∑

d
j=1 sin2(πk j), if d ≥ 2

4/3 sin2(πk)(1+2cos2(πk)), if d = 1

Consequently in the unpinned harmonic cases in dimension d = 1 and 2, the con-
ductivity of our model diverges. We have the following behavior for the truncated
Green-Kubo formula.

Theorem 6. [2] In the harmonic case, if W = 0:

1. κGK
N (T )∼ N1/2 if d = 1,

2. κGK
N (T )∼ logN if d = 2.

In all other cases κGK
N is bounded in N and converges to κGK(T ).

The interest of these theorems is that they show energy-momentum conserving
model reproduces the expected behavior of purely Hamiltonian nonlinear chains,
meaning an infinite conductivity for low dimensional unpinned systems and a finite
conductivity otherwise. Several microscopic stochastic models have been proposed
in the past but none of them has this property with respect to momentum conserva-
tion and dimension.

The strategy of the proof is very similar to the proof given for the energy conserv-
ing model. Recall (7). Then the problem is reduced to solve the resolvent equation

λuN,λ −LNuN,λ = Je1

Solving explicitly such an equation is in general very difficult. The key property of
LN is that for quadratic potentials V and W it sends a polynomial function of p’s
and q’s of degree k to a polynomial function of the same degree. Since Je1 is of
degree 2, uN,λ has to be searched in the smaller space of polynomial functions of
degree 2. Moreover the translation invariance of Je1 implies that uN,λ is in the form

uN,λ = ∑
x,y

fN,λ (x− y) px · py +∑
x,y

hN,λ (x− y)qx ·qy +∑
x,y

gN,λ (x− y) px ·qy

where fN,λ ,gN,λ and hN,λ are functions from Td
N to R. Then we obtain linear equa-

tions for fN,λ ,gN,λ and hN,λ . It turns out that fN,λ = hN,λ = 0 and that gN,λ is simply
related to the Green function of a symmetric simple random walk on Td

N . Then one
computes easily

〈uN,λ ,Je1〉N,T

and we get the result.
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5.2 Homogenous anharmonic chain

For the anharmonic chain we are not able to solve the resolvent equation

λuN,λ −LNuN,λ = Je1

Nevertheless we can use the same strategy as the one explained in subsection 4.2.
We introduce a variational formula to estimate by above

〈uN,λ ,Je1〉N,T

Extra assumptions on the potentials V and W assuring a uniform control on the
canonical static correlations have to be done. We have this control as soon as V is
strictly convex. In the pinned case W > 0, this control is “morally” valid as soon
as the infinite volume Gibbs measure is unique. Exact assumptions are given in
[9], theorem 3.1 and theorem 3.2. Hence ”general anharmonic case” will refer to
potentials V and W such that this control is valid.

Theorem 7. [2] Consider the general anharmonic case. There exists a constant C
(depending on the temperature T ) such that

• For d ≥ 3,

1. either Wj > 0 is general
2. or if Wj = 0 and 0 < c− ≤V ′′j ≤C+ < ∞ for any j,

then
κ

GK
N (T )≤C.

• For d = 2, if Wj = 0 and 0 < c− ≤V ′′j ≤C+ < ∞ for any j, then

κ
GK
N (T )≤C(logN)2.

• For d = 1, if Wj = 0 and 0 < c− ≤V ′′j ≤C+ < ∞, then

κ
GK
N (T )≤C

√
N.

• Moreover, in any dimension, if Vj are quadratic and Wj > 0 is general then
κGK

N (T )≤C.

6 Open questions

In this section we mention several open questions. From the (probably) easier to the
most difficult we have:
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• Prove (8) in the d-dimensional linear pinned or unpinned case. It should be also
valid in the nonlinear case.

• Consider the energy-momentum conserving model with linear interactions. We
have studied the thermal conductivity in the Green-Kubo framework. Consider
the same system but in contact with thermal baths at different temperatures. Can
you say something about κN(T ) ? We expect it diverges like

√
N (resp. logN)

for d = 1 (resp. d = 2) in the unpinned case and converges in the other cases
to a finite positive constant. In fact a similar unpinned one-dimensional model
has been considered in [13],[18] and numerical and analytical (but not rigorous)
results confirm this conjecture.

• Consider the (α,ν)-harmonic case with random masses and energy conserving
noise. Can you say something about the temperature dependance of κGK

hom. ? Can
you prove the almost sure convergence (w.r.t. disorder) of the Green-Kubo for-
mula to the homogenized Green-Kubo formula κGK

hom. ?

• Consider the (α,ν)-harmonic case with random masses and energy-momentum
conserving noise. We have still upper bounds for the truncated Green-Kubo for-
mula similar to the one obtained for the homogenous nonlinear chain in theorem
7. Can you obtain lower bounds? In particular do you have a positive conductiv-
ity for pinned chains ?

• Can you prove convergence of the Green-Kubo formula for nonlinear chains with
energy conserving noise ?

• Consider an homogenous nonlinear chain with energy-momentum conserving
noise. Can you obtain (non trivial) lower bounds for the truncated Green-Kubo
formula ? Can you prove convergence of the Green-Kubo formula in dimension
d ≥ 3 or for pinned systems ? Interesting and surprising numerical simulations
are provided in [3].

• Consider an homogenous nonlinear chains with energy-momentum conserving
noise in contact with two thermal baths at different temperatures. Can you say
something about κN(T ) ?

• Consider a nonlinear chain with energy-momentum conserving noise and random
masses. Can you say anything about κ(T ) or κGK(T ) ?
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