Partiel du 6 Novembre 2014.

Durée: 1h 30.

Les documents, calculatrices, téléphones et appareils électroniques ne sont pas autorisés. Le sujet est composé de 4 exercices.

Exercice 1. Questions de cours.

Donner les énoncés des résultats ou les définitions suivants. On ne demande pas les démonstrations.

- a) Donner la définition de suite convergente.
- b) Enoncer le théorème de convergence pour les suites monotones.
- c) Donner la définition de suites adjacentes.
- d) Donner un résultat de convergence relatif aux suites adjacentes.

Exercice 2. Un peu d'arithmétique. Les questions 1), 2) et 3) sont totalement indépendantes.

- 1) On veut démontrer par l'absurde que $\sqrt[3]{2}$ est irrationnel. On suppose donc qu'il existe des entiers a et b supérieurs à 1 tels que $a \wedge b = 1$ et $\sqrt[3]{2} = a/b$. Raisonner comme en Td pour aboutir à une contradiction.
- 2) Soient a, b, c trois entiers relatifs. On rappelle l'égalité $pgcd(ac,bc) = |c| \times pgcd(a,b)$. Démontrer que si a|bc et si pgcd(a,b) = 1 alors a|c.
- **3)** a) Donner l'énoncé du lemme d'Euclide.
- b) Prouver par récurrence l'énoncé suivant, qui a été vu en cours mais non démontré : soit p un nombre premier et a_1, \ldots, a_m des entiers relatifs. Si p divise le produit $a_1 a_2 \cdots a_m$, alors p divise a_1 , ou p divise a_2 , ..., ou p divise a_m .

Exercice 3. Avec des pgcd et des ppcm.

- 1) a) Soit p_1, \ldots, p_r des premiers deux à deux distincts. On se donne $\alpha_1, \ldots, \alpha_r$ et β_1, \ldots, β_r des entiers naturels. Montrer que pgcd $\left(\prod_{j=1}^r p_j^{\alpha_j}, \prod_{j=1}^r p_j^{\beta_j}\right)$ divise ppcm $\left(\prod_{j=1}^r p_j^{\alpha_j}, \prod_{j=1}^r p_j^{\beta_j}\right)$.
 b) Peut-il exister un couple d'entiers relatifs (a,b) vérifiant le système $\left\{\begin{array}{l} \operatorname{pgcd}(a,b) = 9 \\ \operatorname{ppcm}(a,b) = 116 \end{array}\right\}$?
- 2) Soit a et b deux entiers strictement positifs tels que pgcd(a,b) = 9 et ppcm(a,b) = 117.
- a) Montrer que 9 divise à la fois a et b. Il existe donc deux entiers strictement positifs a' et b' tels

que a = 9a' et b = 9b'.

b) Que valent pgcd(a', b'), ppcm(a', b') et a'b'?

c) En déduire les valeurs possibles du couple (a',b') puis celles du couple (a,b).

Exercice 4. Moyenne arithmético-harmonique. On se donne $a_0 > b_0 > 0$ et on considère la suite récurrente $(a_n, b_n)_{n \geq 0}$ définie pour $n \in \mathbb{N}$ par

$$a_{n+1} = \frac{a_n + b_n}{2},$$
 $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}.$

- 1) a) Montrer, à l'aide d'une récurrence, que, pour tout $n \in \mathbb{N}$, a_n et b_n sont bien définis et strictement positifs.
- b) Pour $n \in \mathbb{N}$, montrer que $a_{n+1} \geqslant b_{n+1}$.
- 2) a) Etudier la monotonie des suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$.
- b) Etablir la convergence des suites $(a_n)_{n>0}$ et $(b_n)_{n>0}$.
- c) Montrer qu'elles ont la même limite, notée x.
- 3) a) Montrer que le produit a_nb_n ne dépend pas de n.
- b) Déterminer x en fonction de a_0 et b_0 .