- 1. Soient X un espace affine non vide de dimension $n \ge 2$, H_1 , H_2 , H_3 trois hyperplans affines parallèles entre eux et distincts, D et D' deux droites dont la direction n'est pas incluse dans celle de H_1 .
- **a.** Montrer que chacune des droites D et D' intersectent les hyperplans H_1 , H_2 , H_3 en des points qu'on notera A_1 , A_2 , A_3 et A'_1 , A'_2 , A'_3 respectivement.
- **b.** Montrer qu'on a $\frac{\overline{A_1 A_2}}{\overline{A_1 A_3}} = \frac{\overline{A_1' A_2'}}{\overline{A_1' A_3'}}$.

(Considérer une projection affine sur D' et sa restriction à D.

- 2. Théorème de Desargues. Dans le plan soient ABC et A'B'C' deux triangles sans sommet commun et dont les côtés sont parallèles deux à deux ((AB) est parallèle à (A'B'), etc.). Montrer que les droites (AA'), (BB') et (CC') sont concourantes ou parallèles. (Utiliser une homothétie de centre le point de concours des droites (AA') et (BB') si celles-ci s'intersectent ou une translation sinon.)
- 3. Soit X un espace affine non vide de dimension finie.
- \mathbf{a} . Montrer que la composée de deux homothéties-translations de X est une homothétie-translation.
- **b.** Soit f une application affine injective $X \to X$. Montrer que f est une homothétie (de rapport $\neq 0$) ou une translation si et seulement si f transforme toute droite en une droite qui lui est parallèle
- c. On suppose X de dimension 2. Soit f une application d'ensembles $X \to X$ telle que pour toute droite D de X, le sous-ensemble $f(D) \subset X$ est une droite parallèle à D. Montrer que f est une homothétie ou une translation. (Utiliser l'exercice 11 de la feuille 3.)
- **d.** Le résultat précédant est il toujours vrai en dimension ≥ 3 .
- **4.** Soient X un espace affine et f, g deux homothéties de X. Montrer que f et g commutent $(f \circ g = g \circ f)$ si et seulement si f et g ont même centre. (Commencer par supposer que X est de dimension 1.)
- 5. Soient X un espace affine non vide de dimension finie et $f: X \to X$ une application affine de partie linéaire φ . On suppose que les sous-espaces vectoriels $\operatorname{Ker}(\varphi-\operatorname{Id})$ et $\operatorname{Im}(\varphi-\operatorname{Id})$ sont en somme directe. Montrer qu'il existe un unique vecteur $v \in \operatorname{Ker}(\varphi-\operatorname{Id})$ et une unique application affine g possédant un point fixe tels que $f=t_v\circ g$. Montrer qu'on a $t_v\circ g=g\circ t_v$.
- **6.** On rappelle (cf cours d'algèbre linéaire) que si E est un espace vectoriel et $\varphi: E \to E$ est une application linéaire vérifiant $\varphi^2 = \operatorname{Id}$ (on dit que φ est un idempotent) alors il existe F_+, F_- sous-espaces vectoriels de E stables par φ tels que $E = F_+ \oplus F_-$, la restriction de φ à F_+ est l'identité, la restriction de φ à F_- est $-\operatorname{Id}$.

Soient X un espace affine et $f: X \to X$ une application affine de partie linéaire φ .

a. On suppose $f^2 = \text{Id}$. Montrer que f admet un point fixe (utiliser l'exercice précédent).

On note $\mathcal F$ l'ensemble des points fixes de f et G le sous-espace vectoriel $\mathrm{Im}(\varphi+\mathrm{Id})$ de \overrightarrow{X} . Montrer que pour tout point M de X, f(M) est caractérisé par les deux propriétés suivantes :

- Le vecteur $\overrightarrow{Mf(M)}$ est dans G.
- Le milieu du segment [M, f(M)] est dans \mathcal{F} .

On dit que f est la symétrie par rapport à \mathcal{F} parallèlement à G.

- **b.** On suppose $\varphi^2 = \operatorname{Id}_{\overrightarrow{X}}$. A t-on $f^2 = \operatorname{Id}_X$?
- 7. Soit f l'application $\mathbb{R}^3 \to \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \frac{1}{11} \begin{pmatrix} 9x + 2y - 6z + 38 \\ 2x + 9y + 6z + 17 \\ -6x + 6y - 7z - 29 \end{pmatrix}.$$

- a. Montrer que f est affine et déterminer sa partie linéaire φ . f admet elle un point fixe?
- **b.** Montrer que le plan P d'équation x y + 3z + 3 = 0 est stable par f et que la restriction de f à P est une translation de vecteur \overrightarrow{u} à déterminer.
- **c.** Montrer que l'application $g = t_{-\overrightarrow{u}} \circ f$ est une symétrie par rapport à P parallèlement à une direction à déterminer.