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Part 1. Motivation



Part 1. Motivation

a. General philosophy



Basic purpose

e Interacting particles/players

d particles
players
financial agents
neurons

o controlle in mean-field interaction

dynamical

. states «w stochastic differential
non-static

o particles have
equation

interaction of symmetric type
interaction with the whole population
no privileged interaction with some particles

o mean-field e

e Associate cost functional with each player
o find equilibria w.r.t. cost functionals

o shape of the equilibria for a large population?



Different notions of equilibria

e Players may decide of the strategy on their own

o no way that the particles minimize their own costs
simultaneously

o find a consensus inside the population?
o no interest for a particle to leave the consensus
o notion of Nash equilibrium in a game
e Center of decision may decide of the strategies for all the players
o “Chief says what the companies will do”
o minimize the global cost to the collectivity
o different notion of equilibrium ~» seek a minimizer

¢ Both cases ~» asymptotic equilibria?



Asymptotic formulation

e Paradigm

law of large numbers

o mean-field/symmetry e~ propagation of chaos

o reduce the asymptotic analysis to one typical player with
interaction with a theoretical distribution of the population?

o description of asymptotic equilibria in terms of

player’s private state
theoretical distribution of the population

o decrease the complexity to solve asymptotic formulation first
e Program
o Existence of asymptotic equilibria? Uniqueness? Shape?

o Use asymptotic equilibria as quasi-equilibria in
finite-player-systems

o Prove convergence of equilibria in finite-player-systems



Different Kinds of asymptotic formulation

o Asymptotic formulation of Nash equilibria

o Mean-field games theory!

Lasry-Lions (2006)

Huang-Caines-Malhamé (2006)

Cardaliaguet, Achdou, Gomes, Porreta (PDE)

Bensoussan, Carmona, D., Kolokoltsov, Lacker, Yam (Probability)

o PDE or probabilistic analysis ~» both meet with the concept of
master equation (last lecture)

o Central center of decision

o optimal control of McKean-Vlasov stochastic differential
equations

o PDE point of view «» HJB equations in infinite dimension



Part 1. Motivation

b. An introductory example



Purpose of the modeling

e Model for inter-bank borrowing and lending

o model introduced by Fouque and Ichiba (2013), Carmona,
Fouque and Sun (2014)

oNbanksi=1,...,N and a central bank

e Interaction between banks

o bank i may Le(;lr(rlot\(:/ from bank j
e Control
lending to

o banks control central bank

borrowing from

lending

e Cost for .
borrowing

fixed by the regulator

o Nash equilibria?

o N large?



Mean-field interaction between the banks

e (Log)-monetary reserve of bank i ~» X!

borrow from ol 7 X{ > X;:
lend to Xﬁ <X!
borrowing

j _ 7 ] _ P
lending ~ a (X; — X;) ~ (a/N) (X; — Xp)

o rate a of

N
. 1 S
dx;za(NZX{—x;)dH...
L
er—’

| X7
4
o d_tt ~» instantaneous rate of lending/borrowing
e Xy = empirical mean
o mean-field interaction with reverting to the empirical mean

o XV mean state of the population (may be used for systemic risk)



Controlled stochastic dynamics

borrowing from

. central bank
lending to

e Controlled rate of

dX!=a (XN -X)dt+aldt+...

negative ~» lending
o . .
positive ~» borrowing

e Noisy perturbations

dX! =a (XN - X)dt+ ol dt + o dW!

oWi=p W +T-p2 W
S~ ——
independent common
o (W), (WhHy,,...,(WN),) : indep. Brownian motions ~»

symmetric structure (original paper ~> role of W in systemic risk)



Cost functional

e Cost functional = penalize high borrowing/lending activities

T
Ji((xl,...,aN) = E[g(X; —X?) +]0‘ S( X; _Xiv ,aﬁ)dt
global rate

o depends on all the controls through XV
o penalize high borrowing from/lending to central bank

o incite borrowing/lending = easier to borrow from central bank
if low reserve

e Linear-quadratic functionals

fx,m, @) = &® + €(m — x)* — 2qea(m — x)

glx,m) = cz(x - m)2

o XN > X! = lower cost if @; > 0

o q € (0,1)~ fixed by the regulator



Ansatz for the asymptotic Nash equilibrium

e Simplify ~» no common noise W

o law of large numbers = XY stabilizes around some
deterministic m;

o m; should stand for the theoretical mean of any bank at the
equilibrium

e Focus on one bank only with dynamics
dX[ =da (mt _Xl‘) dt + a; dt + O'dW[

o the bank does not see the others anymore ~» cost functional

T
@) = E[gCer.mr) + [ f0tm i
0

o minimize!

o consensus means that optimal path has m, as mean at time ¢



Case of a common noise

e If common noise W°

o law of large numbers becomes conditional law of large numbers

v, U',..., UM, ... iid. rv.s (with values in R)
¢ : R — R bounded Borel measurable function

= Plimy—e 3 2y $(U, U%) = E[¢(U", UO)U°]) = 1

o m; should stand for the conditional mean of any bank at the
equilibrium given the realization of W°

e Focus on one bank only with dynamics

dX; = a(m, — X;) dt + a; dt + o |1 — p2dW, + O',OthO

o consensus means that optimal path has m;, as conditional mean
at time ¢



Part I. Motivation

c. Toolbox for the solution



Program

e Solve standard optimization problem (1st Lecture)

o parameterized by some input (state of the population at
equilibrium)

o consider the case when the input may be random (think of the
case when p # 0 in the previous example)

o need for a nice characterization of the optimal state in terms of

the input

may use PDE arguments (HJB equation)
may use probabilistic arguments (FBSDEs)

o finite horizon only!
e Solve a fixed point condition (2nd and 3rd Lectures)
o in order to characterize the asymptotic equilibrium

o fixed point condition of the McKean-Vlasov type ~» need to
revisit the theory of McKean-Vlasov SDEs (2nd Lecture)



Part II. Stochastic optimal control & FBSDEs



Part II. Stochastic optimal control & FBSDEs

a. Stochastic optimal control problem



Basic controlled dynamics

e Controlled stochastic dynamics
dX; = b(X;, y, a)dt + o(Xy, py, )dWy,  t€[0,T]
(Wio<i<r B.M. with values in R? on (Q, F = (F)o<<r> P)

o may consider time dependent coefficients

article
of the p
ent

o X, ~» state in RY at time ¢

o (uy)o<<7 denotes some environment (think of it as a the mean of
a probability distribution or as the probability distribution itself)

may take value in a general Polish space X
example: X = space of probability measures on R (see Lecture 2)

o (ay)o<t<T denotes control process
with values in A c R¥, closed and convex
and F-progressively measurable



Basic controlled dynamics

e Controlled stochastic dynamics
dX[ = b(X[, t, a’,)dt + O-(X[, t, Q’[)dW[, te [0, T]
(Wy)o<i<r B.M. with values in R? on (Q,F = (F7)o<i<r, P)

o may consider time dependent coefficients

article
of the p
ent

o X, ~» state in RY at time ¢

may take value in a general Polish space X
example: X = space of probability measures on R (see Lecture 2)

o (ay)o<t<T denotes control process
with values in A c R¥, closed and convex
and F-progressively measurable



Controlled dynamics in a random environment

e Allow (u;)o<s<7 to be random
o Think of the case p # 0 in the introductory example

e Controlled stochastic dynamics
dX; = b(X;, p, a)dt + o(Xy, py, a)dWy + o (Xt,,ul’ a/t)dW

(Wio<i<r B.M. with values in R? on (Q', F' = (F;"Yo</<1, P")

(W Yo<t<r B.M. with values in R on (Q°, F0 = (7:0)0<[<T, P%)
e Equation set on (Q,F,P) = (Q° x Q!,F' o F!,PY @ P!)

[¢] (XI‘)OSIST deﬁned on Q

o (a)o<i<r defined on Q

o (t;)o<i<7 defined on Q°

continuous and adapted to F°



Typical set of assumptions

e Coefficients
o (o, )(x, 4, @) = (o, %) (x, 1) ~> uncontrolled volatility
o growth

b, @)| + lo(x, 1, @)] + 07 (x, 1, @)
< C(1 + x| + dx(0x, ) + |ar])

where dx distance on X and Ox some element in X

o b, o and 0¥ Lipschitz in all the variables (too strong for the first
lecture but useful for the sequel)

e Assumptions on the processes
. T
o control processes satisfy E fo |l ?dt < o0

o inputs (if random) satisfy E[sup,,.7(dx(Ox, 1))*] < oo



Typical set of assumptions

e Coefficients
o (0,0, ,@) = (0,0 (x, )~> uncontrolled volatility

o growth

b(x.t,@)| + o (x, 1, @)| + |0 (x, 1, @)|
< C(1 + |x| + |)
o b, o and 0¥ Lipschitz in all the variables

e Assumptions on the processes

. T
o control processes satisfy E fo |l ?dt < o0



Cost functional

e Environment (u,)o<<7 is fixed throughout the analysis
o fix as well initial condition & € L*(Q, %o, P; RY)

e Given an admissible control @ = (a;)o<i<T
o Unique solution (X" )o<;<r With X{ = &

o Cost functional of the type

T
J(O/)=E[8(Xr,ﬂr)+fo S X, pag, )t

o f ~» running cost, g ~» terminal cost

o assume f and g continuous and at most of quadratic growth

I e, s @) + g0, )l < C(1 + xl + dx(Ox, ) + lal)?

e Goal is to minimize J(a)!



Cost functional

o fix as well initial condition & € L*(Q, %o, P; RY)
e Given an admissible control @ = (a;)o<i<T
o Unique solution (X" )o<;<r With X{ = &

o Cost functional of the type

T
J(@) = B[gXr, 1)+ f FXs 1, )]
0

o f ~» running cost, g ~» terminal cost

o assume f and g continuous and at most of quadratic growth
et @)l + gl )l < C(1 + +lal)?

e Goal is to minimize J(a)!



Part II. Stochastic optimal control & FBSDEs

b. Interpretation of the value function



Backward representation of the cost functional

e Simplified assumption

o Assume coefficients and o~! bounded in (x, i) and A bounded

o Case when F is generated by (W,, W,O)OS,ST and &, o
deterministic

e Dynamical version of the cost ~» backward representation of the
remaining cost functional

o for a given @ = (@y)o<i<T
Y= E[g(X",uT) + ftTf( s> Hs» @s5)ds ’ Tf]
o martingale representation of g(X%, ur) + fOT fXE, ag, us)ds
Y7 = g(X7, 1)

T T T
+ f FX2, s, ag)ds — f ZdW, — f 70 qw?
t t t

T
o where E[f (|ZS“|2 + |Z?,a|2)ds] < o0 (Z as arow vector)
0



A first backward SDE

e Consider another ™ ( candidate for optimality)

o mimic equation of Y* but turn it into a backward SDE
. T
Y = g(X%,ur) + f FOX ) ds
t

T
b [z o (b0t ) — B )
t
kind of default

T * T *
- [ zraw - [ 2o awe
t t

o coefficient is Lipschitz continuous in Z*" ~» extension of the
martingale representation theorem ~» existence and uniqueness of a
solution (Pardoux and Peng, 1990)

o (Z,"* Jo<r<T and (Z?’“* Jo<i<T F-progressively measurable with

T
E[ f (1Ze" 2 + |Z?"’*|2)ds] < o0
0



Change of probability measure

e Make use of Girsanov theorem

dP* T
—F = C&Xp (f (b(Xga/ls’ CI:) - b(X;l’,us, a’s)) dw;
0

dP
2
ds)

1 T
- f JbX 1 8) = X 1)
0
!

eLet W) =W, - f (b(Xf’,,us,a: ) — b(X{, ﬂs,as))ds
0

o Under P*, (W}, W9)o</<7 2d-dimensional B.M. w.r.t F

e Connection with (X,“* Yo<t<T

dX" = b(X®, iy, X )dt + o(X®, u)dW + (X, ;) dw?

T
and Yg* = E*[g(X",,UT) + f FX ) )dt
0

o reminiscent of (X,"* )o<z<r under P and J(a*) (good point as aim
at comparing with J(@))



Hamiltonian

e Compute

T
vy - vg =g f (O, 200 X0 1)
0

— H(X;x,l,l[, Ay, Z;ZO—_I(X;X’ l‘tl))) dt

o H(x,u,a,z) = f(x,u, @) + z - b(x, u, @) called Hamiltonian
o If
HX p ol Z0o ™ (X ) < HXE s 0 Z o™ (X )
othen Y& - Y2 <0

e Recall Y(‘)’* «v» J(a@*) (to be specified next) then optimality condition
should read as

a) = argmin, ,H(X®, py, a0, Z80 (X, p1r))
= a*(X;Iallt’ Z;la-il(Xl(‘y’“l))

o if a@*(x, 1, z) = argmin, .4 H(x, i, @, z) uniquely defined



FBSDE for the optimal state

e Dynamics of (X{")o<;<r under P*

dX;l = b (X;I’,ut’a*(X;lnutsZ;y*O—_l(lel’#t))) dt
+ O (XE p)dW; + o (X )WY

o coupled with the backward equation for (Y,"* )o<t<T

Y = (X% ur) + f F (X% 15, 0% (X% 2" 0 (X% 1)) dis

- f Z awy - f 20 awy?
t t

e Reformulate the equation under (P, (W, W?)Osst) instead of
P*, (W, W)oi<r)

o Claim: the forward process should be the optimal state



Statement
e Assume that, on (Q2, F, P), the FBSDE

§ + f ¢(Z*)b ’/13’ *( ’:uS’ ’/'ll‘)))
f oX s v/Js)de + O'O(X;,/Jg)dW?
0

T
Yt* = g(X*’ﬂT) + f f (X;’#_D a*(X:’#S’Z* _1( ,,us))) ds
t

T T
[z [
t t

has a unique solution for any cut-off function ¢ with
o Z* bounded by some C (indep. of ¢)
o a*(x, i, z) is the unique minimizer of @ — H(x,u, @, z)

e Then (X )o<<r is the unique optimal path when ¢(z) = z for |z| < C



Sketch of proof

e Given an admissible @ = (a;)p<;<7, solve
. T
Y? = g(X7,ur) + f FX{ s, ) ds
t

T
- f S22 o KO ) (DX ) — BX, g, ) ds
t

T * T *
— f 78 dW, — f 729" qw?
t t

o with a’ = (X*(X‘ s s, Z, _I(X 2 Hs))
e Under (P*, (W}, W? )()sst)’ get a solution to the FBSDE

o Generalization of Yamada-Watanabe ~» weak uniqueness
* L Bl * ok ozk\—1
P o (X7, Y, Z7 Jocrer =P o (X7, Y1 ZF Yogser

o J((a* (X, i1 ZF o™ (X pu)ose<r) = YO < Y = J(@) (strict)



Extension and complements

¢ Extension on the same model to the case when A is not bounded
o Need to localize over the control or use quadratic BSDE

¢ Extension to the case when F is larger than the filtration generated
by (é:v ,uO’ (le Wl‘O)OSIST)

o loose martingale representation theorem

T T T
f Z,dW, + f Z0aw? ~ f Z,dWy + My — M,
t t t

o (My)o<s<r 18 a square-integrable martingale orthogonal to
o(Wnosi<r)

e Scope of application ~» ¢ invertible and H strictly convex in «
o f strictly convex in « and b linear in «

e Connection with HJB equation when no common noise ~» next
section



Part II. Stochastic optimal control & FBSDEs

c. Stochastic Pontryagin principle



Perturbation in deterministic control

e First order optimality condition when no noise (o = o = 0)

o find (@) )o<i<r such that

T J((af + (B, - a7)))

de —

o (By)o<i<T 1s another A valued control
* d LS
o Let (formally) " = X", 0x} = —-X;' b0 andd =k = 1
&
dJ®
de

le=0 = Ox§(XF, UT)0:X7
T
+ f (O (1, @)OXS + Oof (X, ))(B, — ))dt
0

o with 8,x% = (9:b(xF, iy, @)OXF + Dob(XF, 1y, @)(B; — aF))dt



Deterministic Hamiltonian system

o (! path (y)o<s<r S-t. y7 = axg(x;, ur) ~ integration by parts

dJe !
0= [ O 0 ! + 3O )
0

T
+ f (8a/f(xt*nul’a;) + y[a()/b(x;’#l’ at*))(ﬁt - a:)dt
0
[e] reCOgniZe 8XH(XZ9 Mty a/;kayt) and 804H(xt, HMt, a’;\'a }’t>
T
e Solve y, = 0,g(xF, ur) + ft OH (X}, s, @, y5)ds

dJé
de

T
|8:0 = f GQH(XI*,,Ut, CV;(»)’t)(Bt - a,l*)dt
0

dJé .
. d—lg:o > 0 for any (B;)o<s<7 if and only if
F>

VBEA O HK! punaf,y)B-af)=0
with £ = OyH(x)S, piy, @, yr)



Stochastic version

e With (@] )o<<r candidate for being the optimal control, associate
*
(Y, tw )o<i<T

T
Y[(l = xg(X% 9#T)+f aXH(X[a, ’,ul‘a a,;\', Yta )dt
t

T N T N
—f ze dW,—f 7> aw?
t t

o martingale component ~» the dual variable is adapted!

o backward equation in (Yt"* Jo<s<T ~ existence and uniqueness if
Lipschitz (quite natural)

e Require now o = a*(X*", p;, Y*")
o a*(x, u,y) is the unique minimizer of a — H(x, u, @, y)
o implicit condition ~» new FBSDE

o is the forward component an optimal path? Turn the first-order
necessary condition into a sufficient condition ~» convexity



Statement
e Let o and o indep. of x and F generated by (¢, uo, (W, Wto)ogg)
e Assume that, on (QQ, F, P), the FBSDE

!

Xr=¢+ f b (X;‘,us,a*(Xs*,,us, YS*)) ds

0

!

+ f o (ug)dWy + 7O (ug)dW?
0
T
Y} = 0,8(X7, ur) +f OcH (X7, ps, @™ (X, s, YI)) ds
t

T T
= f Z,dW — f Z0aw?
t t

has a solution with
o H convex in (x, @) and strictly in @ and g convex in x
o a*(x, i, z) is the unique minimizer of @ — H(x, u, @, z)

e Then (X )o<,<r unique optimal path with & = o*(X}*, i, Y;*)



Sketch of proof

e Consider an arbitrary control @ = (a/)o</<T

e write

J(@) - J(@*) = J(@) — J(@*) - E[(X§ - X7) - 08X )]
+E[(X7 - X7) - Y7]

o [t expansion of the last term
J(@) - J(@)

= E[ X, ) = 80X a7) = (XF = X§) - Dug X )
T
+ f [H(X;la/vlt’ a’te Y[*) - H(Xt*slvlt’ a/t*)
0

- (X7 -X)- 0. HX] ) - 0 ]dt] >0
<(a;—a))  0HX], i, )



Extension and complements

e Extension to the case when F is larger than the filtration generated
by (f’ HO’ (Wh WtO)OSIST)

o loose martingale representation theorem

T T T
f ZdW, + f Z0aw? ~ f ZdW, + My — M,
t t t

o (M;)o<:<r 18 a square-integrable martingale orthogonal to
o((Wno<i<r)

e Scope of application ~» no need for o invertible but indep. of x and
H convex in (x, @)

o f convex in (x, @) and b linear in (x, @)

e Connection with HJB equation when no common noise ~> next
section



Part III. Analysis of FBSDEs



Part III. Analysis of FBSDEs

a. Small time analysis



General form of the FBSDE

e On (), F,P) with F generated by (&, uo, (W, W,O)Osst)
!
X =¢+ f b (Xs. s, Y, Zs) ds
0

!
+ f o (Xy, p1, Y)dWy + 70X, g, Y)dW?
0

T
Yl‘ = g(XTvﬂT) + f f (XS’IJSW Y\'aZ.\') ds
t

T T
- f Z,dW, — f Z0aw?
t t

ono Z in o and 0!
o (X, Y1, Z) : Q — RY x R™ x RPXM
e Call a (X;, Y;, Z;)o<i<T a solution if progressively-measurable and

T
E[ sup (|Xt|2 + |Yt|2) + f |Zt|2dt] < 0
0

0<t<T



Cauchy-Lipschitz theory in small time

e Assume that the coefficients are at of most of linear growth

|b.f, 0, 00, )@, 1,3, 2)| < C(1 + xl + dx (O, ) + Iyl + I21)
o Assume that the coefficients are measurable in all the variables and
L-Lipschitz continuous in (x, y, z) (uniformly in u)

e There exists ¢(L) such that unique solution for any initial condition

provided that
T <c(L)

e Two-point-boundary problem ~» no way to expect better
Y=y, Yi=-%, yr=xr, T=n/4

x; = Acos(?) + Bsin(¢)

y; = —A sin(?) + B cos(?) =A=0=x=0

o Xy = =Xy,

o no solution if xg # 0 and oo many if xo = 0



Sketch of proof

e Construction a contraction mapping
o With (X;)o<<7 solve the backward equation

o With (Y}, Z,)o<i<T, solve the forward equation

t
Xl, = 6 + f b (X;’ /'lS’ YSv ZS‘) ds
0
t
+ f O-(X;’#S’ YS)dWS + O-O(X;a ﬂs: YS)dW?
0

o Seek (X;)o<;<r such that X = X’
e Forward-backward constraints = no way to use Gronwall!

o Given (X,1 Jo<t<T and (Xlz)()gtST, prove that for 7 < 1

E[ sup X" - X/'P*] < ¢(L) T B[ sup |X} - X71°]

0<t<T 0<t<T

¢ Denote solution by (Xf, Yf , Zf )o<t<T



Decoupling field

o Stability estimates for 7 < ¢(L)
E[|Y5 - Y; PIFo] < Cle - €1

o Letu(0,x) = Y3, x € RY

o x — u(0,x) is a random field, T(?—measurable (reduce the
filtration u(0, x, up)), deterministic if no common noise

o Lipschitz continuous

e Choose &' = Zfil 14,x;, with A; € Fo
o ¥§ = 3N 1aYy = ZN, 14u(0,x) = u(0,&)
o approximation argument ~» Yg =u(0,¢)

e Extension to any time ¢ € [0, T, u(t, x) = Yf’x is ﬁo—measurable
o (XI5, YP%, 7% <y<r solution with X = £ € L2(Q, F;, P;RY)
o Y = u(t, &)



Connection with PDE

e Assume that no common noise W0 (o0 = 0)

0.
o Write Y*¥ = Y5 = u(r, x"%)

o If u smooth enough ~» expand as a semi-martingale and compare
. 0,¢
with dY,

o compare dW, terms ~» Zl0 4= o u(t, X:) "f)O'(x, Hr)

o compare dt terms ~» nonlinear PDE

ou(t,x) + %trace((raj (o, g, u(t, x))@ixu)
+ Oxu(t, X)b(x, puy, u(t, x), Oxu(t, X)o(x, yr))
+ (6, par, u(t, x), Oxu(t, X)o(x, 1)) = O
o terminal boundary condition u(7T', x) = g(x, ur)

o If (1y)o<i<r random ~» backward SPDE!



Examples
e Revisit the FBSDEs of Section IT when ¢ = 0

o Interpretation of the value function

o PDE writes
1
ou(t, x) + Etrace(a'a'Jr (x, u,)aixu)
+ inf[(?xu(t, X) - b(x, py, @) + f(x, g, a)] =0
€A

o HJB equation describing minimal cost when X; = x

o optimal control @} = a* (X, , d,u(t, X)) has Markov
feedback form!

e Use of the Stochastic Pontryagin principle

o Same shape for the Markov feedback form ~» decoupling field
must be d,u(t, x)!

o PDE is the derivative of HIB



Part III. Analysis of FBSDEs

b. From small to long times



Principle for an iterative construction

e Let T arbitrary ~» construct the decoupling field close to T’

0 T-0 T

[ ]
[

ofort € [T — 8, T] ~ unique solution with X; = £ ~» define
decoupling field on [T — 6, T']

e Consider on [0, T — 6] new FBSDE with u(T — ¢, -) instead of
g(-, ur) as terminal condition (forget ur_s)

0 T-6 T

— I

o need to control the Lipschitz constant of «# along the induction



Construction of a solution from the decoupling field

e Construction of the decoupling field by backward induction

e Construction of a solution by forward induction

0 tl t2 T

o solve first on 1 with X = £ as initial condition and u(#1, -) as
terminal condition

o restart at 11 with X;; as new initial condition and u(¢2, -) as
terminal condition ...

e Uniqueness by backward induction



Part III. Analysis of FBSDEs

c. Convex framework



Revisiting the Pontryagin principle

e Assume
o0, oY constant
o b(x,u, @) = bo(u) + b1x + bra
0 Oyf, Oof , Oxg L-Lipschitz in (x, @)

o f convex in (x, @) with A-convexity in &

J& ) = fx, @) = (& = x) - 0f (x, @) = (& = @) - Bof (x, @)

> Ao - af?

e Unique minimizer a* (x, 41, z7) = argmin, ., H(x, i1, z, @)
o implicit function theorem ~» a* is Lipschitz
e Existence and uniqueness hold in small time

o control of the decoupling field?



Using convexity
eLetse[0,7]and x,x € RY
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Lipschitz estimate in the convex setting

e Exchange the roles of x and x” and make the sum
’ T ’ 712
0> —x) - (Y=Y ")+ /lE[f |a/;‘”*x —ar | ds Iﬁ]
t
o Stability of the forward equation

T

E[ sup [X} — X* P17 < CE[ f o2 — a2 [Pds |7—7]
t<s<T t

e Stability of the backward equation

T
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< O = x)- (T — Y%

e Deduce |u(t,x') — u(t, x)> < C(x’ = x) - (u(t,x') — u(t, x))



Part III. Analysis of FBSDEs

d. Non-degenerate case



A simple case

o Assume (for simplicity)
oo =1d, 0 = 0 (no common noise)
ob(x,u,a) =a
o f(x, p, @) = folx. ) + 5laf?
o fp and g bounded and Lipschitz
e Compute a*(x, i, z) = —ma(z) (L projection onto A)

o consider a cut-off function ¢
dX 1Y = —(ZF VA (ZE Vs + dW + TV (X, ) d WD
1
YIS = o, py)ds = SlraZ ) ds + 25 Wy
Yt = g(Xp, ur)

o unique solution in small time



Change of probability
o Let

d]P)*,t,x T 1 T
P ZCXP( fl (PraANZS)aAW, ~ 3 I |(pma) (2} ’[’x)|2ds)

o (W™ = W, = [*(¢ma) (2} )dW,)
e Under P*"*

, B.M. under P***

1<s<

*,0X _ *,1,X
dX\' - dWs

1
AV = fo QG a)ds + ((Gma) ) - 20 = S| P s
+ ZX AW
Y3 = g(X pur)
o same system but under P ~> (X, V7", ZX") <se1

o same joint distribution ~» ¥ = u(t, x) (PDE is the same)



Quadratic BSDE

e Consider x, x’ € R and let
(B2, 673,82 = (BRI = R B = o 00 = g3
e Dynamics
d(6Y}) = —6.f;,0X ds — 6.f,6ZF ds + 67} dW

o [6XX? < Clx — x|

o [8:fsl < CL18:A] < C(L+ 125 +1Z5)
e New Girsanov argument to remove 6Z*

o get a bound on Lip. x — u(¢,x)

o recall Z;""* = 0.u(s, X;"") to get a bound on Z**



Extension

e A may not be bounded

e presence of common noise

e b, f and g bounded in (x, i), C Lipschitz in x
e Regularity in

strictly convex

o blinear in @ and f at most quadratic growth
o f loc. Lip in @, with Lip(f) at most of linear growth in &

o then FBSDE characterizing optimizer is uniquely solvable (forget
cut-off and focus on solutions with bounded Z*)

o decoupling field is Lipschitz and Z* is bounded

o forward path is the unique optimal path



