Mathématiques pour la Biologie (semestre 2) : Feuille-réponses du TD 6
Un modèle d'épidémie

En 1979, une épidémie de rage, en provenance d'Europe orientale, est arrivée en France, principalement par l'Est. Les renards étaient l’un des vecteurs de la rage. En notant S les individus sains et I les individus infectés on peut proposer comme modèle de transmission de la rage, tenant compte de la contamination des renards sains par des renards malades le modèle suivant (r, K, β, u étant des constantes positives) :

\[
\begin{align*}
S'(t) &= r(S(t) + I(t)) \left(1 - \frac{S(t)}{K}\right) - \beta S(t)I(t) \\
I'(t) &= \beta S(t)I(t) - uI(t)
\end{align*}
\]

(1)

1. Préciser quelle est, selon ce modèle, la dynamique de la population de renards lorsqu'il n'y a pas d'individus infectés.
Lorsque $I(t)=0$, on a $S'(t) = rS(t) \left(1 - \frac{S(t)}{K}\right)$. On reconnaît une dynamique logistique : la population présente donc une croissance amortie et tend vers K.

2. Même question s'il n'y a que des individus infectés (et plus aucun individu sain).
Lorsque $S(t) = 0$, $I'(t) = -uI(t)$. On reconnaît une dynamique exponentielle : la population va décroître exponentiellement vers 0 (extinction) : $I(t) = I(0) e^{-ut}$.

3. Indiquer ce que représente chacun des paramètres r, K, β, u et justifier ce modèle.
r et le taux de naissance intrinsèque de la population bactérienne.
K et la capacité de résistance de la population saine.
β est le taux de mortalité de individus infectés.
u est le taux d'interaction (ou d'infection) entre S et I.

4. Pour étudier le système plus facilement, réécrire le système en remplaçant les coordonnées S et I par x et y et en supposant que $r = 1, K = 2, \beta = 1$, et $u = 1$.

\[
\begin{align*}
x' &= (x + y) \left(1 - \frac{x}{2}\right) - xy \\
y' &= xy - y
\end{align*}
\]

5. Calculer l'isocline $y' = 0$ (dite horizontale) et en déduire les coordonnées des trois points d'équilibres du système.
L'isocline $y' = 0$ a pour équation $xy - y = 0$. Cela donne la réunion de deux droites $y = 0$ et $x = \frac{y}{x}$.
Pour calculer les équilibres, on pose
\[
\begin{align*}
x' &= 0 & \Leftrightarrow & \begin{cases} x'(1 - \frac{x}{2}) = 0 \\
y = 0
\end{cases} \Rightarrow x = 0 \\
y = 0 & \Leftrightarrow & \begin{cases} x = 0 \\
y = 0
\end{cases}
\end{align*}
\]
ou $x = \frac{3}{2}$, $y = 0$.
6. Calculer la matrice jacobienne $A(x, y)$ du système et en déduire les systèmes linéarisés au voisinage des trois points d'équilibre.

$$A(x, y) = \begin{pmatrix} \frac{dx}{dx} & \frac{dy}{dx} \\ \frac{dx}{dy} & \frac{dy}{dy} \end{pmatrix} = \begin{pmatrix} 1 - x & 3y \\ y & x - 1 \end{pmatrix}$$

au point d'équilibre $(1, 0)$, le linéarisé est $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3 & -y \\ y & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

au point d'équilibre $(0, 1)$, le linéarisé est $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

au point d'équilibre $(0, 0)$, le linéarisé est $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

7. Déduire de la question précédente la nature des points d'équilibre. On pourra vérifier si les résultats obtenus sont compatibles avec le tracé des trajectoires ci-dessous:

Remarque: $x=x, y=1$

- Au point $A_1(1, 1)$, $A = \begin{pmatrix} -\frac{3}{2} & -1 \\ -1 & 0 \end{pmatrix}$ donc $\det(A) = \frac{3}{2}$

- Au point $B_1(0, 0)$, $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ donc $\det(A) = 0$

- Au point $C_1(0, 1)$, $A = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$ donc $\det(A) = 1$

- Au point $B_1(0, 0)$, $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ donc $\det(A) = 0$

8. En étudiant la dynamique de l'épidémie selon le nombre d'individus infectés à l'instant initiale, pensez-vous que, selon ce modèle, l'épidémie restera maîtrisée?

Si le nombre d'individus S et I connaître au point $H(3, 3)$, la trajectoire se dirige vers la gauche en montant peu, proche d'être vers l'équilibre $(1, 1)$. Le nombre d'individus sain, décrir vers à équilibre (inférieur à sa capacité biotique) et le nombre d'individus infectés va commencer par croître pour décrire une fonction vers une valeur limite : l'épidémie est donc maîtrisée.