Mathématiques pour la Biologie (semestre 2) : TD 5

Exercice 1. : On considère la dynamique suivante de deux populations en compétition

\[
\begin{align*}
 x'(t) &= (10 - y(t) - 0.5x(t))x(t) \\
 y'(t) &= (10 - 0.3x(t) - 0.5y(t))y(t)
\end{align*}
\]

(1)

1. Vérifier que le point \((0, 20)\) est bien un équilibre du système.

\[\begin{align*}
 x' &= (10 - 0.2x - 0.5 \times 0) \times 0 = 0 \\
 y' &= (10 - 0.3 \times 0 - 0.5 \times 20) \times 20 = (10 - 10) \times 20 = 0
\end{align*}\]

Donc \((0, 20)\) est bien un équilibre.

2. Calculer les deux dérivées partielles des fonctions \(f(x, y) = (10 - y - 0.5x)x\) et \(g(x, y) = (10 - 0.3x - 0.5y)y\)

\[
\frac{\partial f}{\partial x} = 10 - y - 0.5x - 0.5x = 10 - y - x \\
\frac{\partial f}{\partial y} = -x
\]

\[
\frac{\partial g}{\partial x} = -0.3y \\
\frac{\partial g}{\partial y} = -0.5y + 10 - 0.3x - 0.5y = 10 - 0.3x - y
\]

3. Calculer la matrice jacobienne \(A(x, y)\) du système en ce point d’équilibre.

\[
A = \begin{pmatrix}
 10 - y - x & -x \\
 -0.3y & 10 - 0.3x - y
\end{pmatrix}
\]

donc au point \((x, y) = (10, 20)\)

\[
A = \begin{pmatrix}
 -10 & 0 \\
 -6 & -10
\end{pmatrix}
\]

4. Déduire de la question précédente la nature de ce point d’équilibre. Puis vérifier que ce résultat est compatible avec l’allure des trajectoires évoquée par la figure ci-dessous.

\[
det A = 100 \\
\text{tr}(A) = -20 \\
\frac{\text{tr} A^2}{4} = 100
\]

Ou a \(\frac{\text{tr} A^2}{4} = \det A\) et \(\text{tr} A < 0\)

C’est un nœud stable.
Exercice 2. : On reprend le modèle (TD1) d'une population de renards et d'une population de lapins se partageant un même territoire. On rappelle l'équation de leur dynamique :

\[
\begin{align*}
\frac{dL(t)}{dt} &= 2L(t) - 0,1L(t)R(t) \\
\frac{dR(t)}{dt} &= -30R(t) + 0,05L(t)R(t)
\end{align*}
\]

(2)

Vérifier que l'unique équilibre pour lequel les deux populations coexistent est un centre.

\[
A = \begin{pmatrix} 2 - 0,1R & -0,1L \\ 0,05R & -30 + 0,05L \end{pmatrix}
\]
dont au point \((L,R) = (600,20)\)

\[
A = \begin{pmatrix} 0 & -60 \\ 1 & 0 \end{pmatrix}
\]
e dont \(\det A = 60 > 0\) et \(\text{trace} \ A = 0\)

Le point \((600,20)\) est bien un centre.

Exercice 3. : On reprend le champ de vecteurs modélisant deux espèces en compétition étudié au TD3 :

\[
\begin{align*}
x' &= (1 - x - 2y)x \\
y' &= (1 - 2x - y)y
\end{align*}
\]

(3)

Déterminer la nature des quatre points d'équilibre de ce système.

La matrice jacobienne est

\[
A = \begin{pmatrix} 1 - 2x - 2y & -2x \\ -2y & 1 - 2x - 2y \end{pmatrix}
\]

- \((0,0)\) peut être un nœud ou une spirale instable. Le dessin permet de voir qu'il s'agit d'un nœud instable.

- \((0,1)\) peut être un nœud ou une spirale stable. Le dessin permet de voir qu'il s'agit d'un nœud stable.

- \((1,0)\) peut être un nœud ou une spirale instable. Le dessin permet de voir qu'il s'agit d'un nœud instable.

- \(\left(\frac{1}{3}, \frac{1}{3}\right)\) peut être un nœud ou une spirale instable. Le dessin permet de voir qu'il s'agit d'un nœud instable.