Date:

NOM:

Université de Nice

Département de Mathématiques

Prénom:

Groupe:

Année 2011-2012 Licence MASS 2e année

Fiche TD3 Probabilité, loi d'une v.a., et espérance

Exercice 1 (Modèle CRR: probabilité risque-neutre \mathbb{P}^*) Rappelons qu'on avait $S_k = S_{k-1}U_k$, avec $U_k = (\frac{u}{d})^{\delta J_k}d$. On dit que \mathbb{P}^* est une probabilité risque-neutre sur $(\Omega, \mathcal{P}(\Omega))$ si¹ $\mathbb{E}^*(U_k) = 1$, où \mathbb{E}^* désigne l'espérance calculée pour la probabilité \mathbb{P}^* .

1. Déterminer $p := \mathbb{P}^*(\{U_k = u\})$ et $1 - p = \mathbb{P}^*(\{U_k = d\})$ en fonction de u et d.

Par definition, m veut $1 = t\mathbb{E}^*(U_k) = pu + (t-p)cl = p(u-cl) + cl$ Il funt et il milit clane che choisis $p = \frac{1-d}{u-d}$ et clane $1-p = \frac{u-d-1+d}{u-d} = \frac{u-1}{u-d}$

 $p = \frac{1 - d}{u - d}$ $1 - p = \frac{u - 1}{u - d}$

2. On suppose que S_{k-1} est connu et vaut s; montrer que $\mathbb{E}^*(sU_k) = s$.

Comme IE^* est lineaire et que $IE^*(U_R)=1$ m a $IE^*(SU_R)=S$ $IE^*(U_R)=S$ $IE^*(U_R)=S$ $IE^*(U_R)=S$

3. On appelle "contrat dérivé sur S_k de fonction de paiement φ " tout contrat payant $C_k := \varphi(S_k)$ (à la date k, lorsque S_k sera connu). On appelle "portefeuille de couverture" de ce contrat la combinaisons (à détenir si on veut "couvrir" ce contrat) de a actions et b euros telle que $aS_k + b = \varphi(S_k)$. Si $S_{k-1} = s$, determiner la composition (a, b) à la date k-1 d'un portefeuille de couverture, en fonction de $c^+ := \varphi(su)$ et $c^- := \varphi(sd)$.

Om switgere $S_{k} = S_{k}$ on $S_{k} = S_{k}$ of an vent give $a S_{k} + b = \varphi(S_{k})$ eline $\begin{array}{c}
as u + b = C^{+} & | +1 | -d \\
as d + b = C^{-} & | -1 | u \\
a = \frac{C^{+} - C^{-}}{S(u - d)} = \frac{as(u - d) + v = C^{+} - c^{-}}{0 + b(u - d) = uC^{+} - dC^{-}} \Rightarrow b = \frac{uC^{-} - clC^{+}}{u - d}
\end{array}$

 $a = \frac{C^+ - C^-}{\Delta(u - d)}$ $b = \frac{uC^- - dC^+}{u - d}$

¹nous verrons ultérieurement le sens de cette hypothèse sibylline

²au prochain chapitre nous verrons que le membre de gauche est, de fait, une espérance contionnelle (lorsqu'on suppose les v.a. U_k indépendantes), se note $\mathbb{E}^*(S_k \mid \{S_{k-1} = s\})$ et se lit "l'espérance de S_k sachant que S_{k-1} est égale à s".

4. Calculer, en fonction de c^+ et c^- le prix $as + b =: c_{k-1}$ de ce portefeuille à la date k-1.

$$\mathcal{L}_{R-1} = as + b = \frac{c^+ - c^-}{\beta(u-d)} s + \frac{uc^- - dc^+}{u-d} = \frac{c^+(1-d) + c^-(u-1)}{u-d}$$

$$c_{k-1} = C^{+} \frac{1-d}{u-d} + C^{-} \frac{u-1}{u-d}$$

5. Montrer que
$$c_{k-1} = \mathbb{E}^*(\varphi(sU_k))$$
.
$$\mathbb{E}^*(\varphi(sU_k)) = p \varphi(su) + (1-p)\varphi(sd) = \frac{1-d}{u-d}C^+ + \frac{u-1}{u-d}C^- = C_{k-1}C(apus 4.-b)$$

Exercice 2 (Loi de Poisson) Soit $\lambda > 0$; on dit qu'une v.a. suit une loi de Poisson si et seulement si $X(\Omega) = \mathbb{N}$ et $\mathbb{P}(\{X = k\}) = c\frac{\lambda^k}{k!}$ (avec 0! := 1). Nous verrons ultérieurement pourquoi la loi de Poisson est la loi des "évènements rares".

1. Déterminer la valeur de la constante
$$c$$
 il funt sue $l = \mathbb{P}(\mathcal{Q}) = \mathbb{P}(\dot{\mathcal{Q}}) + \mathbb{P}(\dot{\mathcal{Q}}) = \mathbb{P}(\dot{\mathcal{Q}}) + \mathbb{P}(\dot{\mathcal{Q}}) + \mathbb{P}(\dot{\mathcal{Q}}) = \mathbb{P}(\dot{\mathcal{Q}}) + \mathbb{P}(\dot{\mathcal{Q}) + \mathbb{P}$

Il fant donc $c = \frac{1}{2+\lambda} = e^{-\lambda}$

2. Calculer
$$\mathbb{E}(X)$$
. Indication: utiliser que $\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}$.

$$|\mathbb{E}(X)| = \sum_{k=0}^{\infty} k \mathbb{P}(\{X=k\}) = \sum_{k=0}^{\infty} k e^{\lambda} \frac{\lambda^{k}}{k!} = e^{\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} = e^{\lambda$$

 $\mathbb{E}(X) =$

3. Soit Y := g(X), avec g(x) := x(x-1). Calculer $\mathbb{E}(Y)$. $|\mathbb{E}(Y)| = |\mathbb{E}(X(X-1))| = \sum_{k=1}^{\infty} k(k-1) e^{\lambda} \frac{\lambda^{k}}{k!} = e^{\lambda} \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} = e^{\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}$ $= e^{\lambda} \lambda^2 \sum_{i=1}^{\infty} \frac{\lambda^i}{e^i} = e^{\lambda} \lambda^2 e^{\lambda} = \lambda^2$

$$\mathbb{E}(Y) = \int_{-2}^{2} \mathbb{E}(Y) = \mathbb{E}(X(X-1)) = \mathbb{E}(X^{2}-X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)$$

4. En déduire $Var(X) := \mathbb{E}(X^2) - (\mathbb{E}(X))^2$. Donner ci-contre votre réponse Var(X) = Var(X) =