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SUMMARY

In order to numerically solve the interior and the exterior Dirichlet problems for the Laplacian operator,
we present here a method which consists in inverting, on a )nite element space, a non-singular integral
operator. This operator is a geometrical perturbation of the Steklov operator, and we precisely de)ne
the relation between the geometrical perturbation and the dimension of the )nite element space, in order
to obtain a stable and convergent scheme. Furthermore, this numerical scheme does not give rise to
any singular integral.

The scheme can also be considered as a special quadrature formula method for the standard piece-
wise linear Galerkin approximation of the weakly singular single layer potential, the special quadrature
formula being de)ned by the introduction of a neighbouring curve.

In the present paper, we prove stability and we give error estimates of our numerical scheme when
the Laplace problem is set on a disk. We will extend our results to any domains by using compact
perturbation arguments, in a second paper. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Let C be a simply connected, bounded, open domain in R2, the boundary D of which is
assumed regular. For the sake of simplicity, we will suppose in the following that D is C∞.
The spaces H 1(C); H 1=2(D); H−1=2(D) will denote the classical Sobolev spaces of functions
on C or D. The duality H−1=2(D); H 1=2(D) will be denoted by 〈: ; :〉−1=2;1=2. If u0 is given in
H 1=2(D), we are looking for a function u in H 1(C) satisfying

Eu = 0 in C

u = u0 on D
(1)
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848 P. DREYFUSS AND J. RAPPAZ

It is well known that problem (1) has a unique solution u and it is easy to show that if x
does not belong to IC=C∪D, then we have

∀x =∈ IC:
∫

D
G(x; y)

9u
9ny

(y) dsy =
∫

D

9G
9ny

(x; y)u0(y) dsy (2)

where G denotes the Green kernel and 9G=9ny its external normal derivative with respect to
the variable y; i.e. if x∈R2; y∈D:

G(x; y) =− 1
2�

log |x − y| (3)

9G
9ny

(x; y) =− (x − y; ny)
2�|x − y|2 (4)

where (: ; :) is the scalar product, |:| the Euclidian norm in R2 and ny the outward unit normal
vector at point y.

Let us assume that we are only interested in knowing the normal derivative 9u=9ny on
D instead of the whole u in C. Then if D̃ is the boundary of a regular, simply connected,
bounded, open domain C̃ containing IC, and if we call � the unknown 9u=9ny on D, the integral
of which is vanishing, we are in the position to give a variational formulation of (2).

Find �∈H−1=2
0 (D) satisfying

∀
∈H−1=2
0 (D̃):

∫
D̃

dsx
∫

D
dsyG(x; y)�(y)
(x)=

∫
D̃

dsx
∫

D
dsy
9G
9ny

(x; y)u0(y)
(x) (5)

where H−1=2
0 (D)= {�∈H−1=2(D): 〈�; 1〉−1=2;1=2 = 0}. Clearly speaking, problem (5) posseses at

least one solution � because it suKces to take �= 9u=9ny when u is the solution of problem
(1). The uniqueness is a delicate thing (see Reference [1] for instance).

Our numerical method is built on the Galerkin approximation of integral formulation (5)
called ‘Kupradze integral equation’. Historically, this formulation was introduced by Kupradze
(cf. Reference [2]). Since this equation is ill-posed, classical numerical methods to solve it
are very unstable. This fact was shown by Christiansen (cf. References [3; 4]). The Tikhonov
regularization can be used in order to put right this situation but we obtain a method which
converges slowly (cf. Reference [5; p:327]). Nevertheless, engineers have empirically found
how to construct stable and eQective numerical methods (cf. Reference [6]), which are some-
times used nowadays. In order to explain it, we de)ne the Hilbert spaces X and Y by
X =H−1=2

0 (D) and Y =H−1=2
0 (D̃). In view of numerically solving problem (5), we de)ne the

continuous bilinear form ã :X × Y →R by

�∈X; 
∈Y : ã(�; 
)=
∫

D̃
dsx
∫

D
dsyG(x; y)�(y)
(x) (6)

Unfortunately, the bilinear form ã(: ; :) does not satisfy the ‘inf–sup’ conditions of Babuska–
Ladyzenskaja (see Reference [7] for instance) because the problem of )nding �∈X satisfying
ã(�; 
)= 〈
; g〉−1=2;1=2 for all 
∈Y , where g is given in H 1=2(D̃), has in principle no solution,
except if g is a trace of an harmonic function on D̃. It follows that if we de)ne the operator

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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R̃ :H 1=2(D)→H 1=2(D̃) by (R̃u0)(x)=
∫
D(9G=9ny)(x; y)u0(y) dsy; ∀x∈ D̃, then the problem of

)nding �∈X such that

∀
∈Y : ã(�; 
)= 〈
; R̃u0〉−1=2;1=2 (7)

has a solution �, but it is ill-posed. In the following, we attack the numerical approximation
of problem (7) by using a Galerkin method. By splitting up D and D̃ into n + 1 simple
arcs of curve D1;D2; : : : ;Dn+1 and D̃1; D̃2; : : : ; D̃n+1, respectively, we can look for a piecewise
constant function � on Dj; 16j6n + 1, satisfying (7) for all piecewise constant function 

on D̃j; 16j6n + 1. Actually, this method does not work when n is very large except if we
choose D̃ very close to D. In practice, the Galerkin method is eKcient when the distance
between D and D̃ is of the same order as the smallest arc of curve splitting up D and D̃. For
this reason it is necessary to choose D̃ by taking into account the degree of accuracy of the
approximation. To do this we replace D̃ by (D(n))∞n=1 which will be a family of curves D(n)

surrounding C and converging to D when n tends to in)nity. We split up D and D(n) into
n + 1 simple arcs of curve denoted by D1;D2; : : : ;Dn+1 and D(n)

1 ;D(n)
2 ; : : : ;D(n)

n+1, respectively, and
we de)ne

Xn = {�∈H−1=2
0 (D): �|Di is constant; i=1; 2; : : : ; n + 1}

Yn = {
∈H−1=2
0 (D(n)): �|D(n)

i
is constant; i=1; 2; : : : ; n + 1}

The discrete problem corresponding to (7) consists in )nding �̂n ∈Xn such that

∀
n ∈Yn: an(�̂n; 
n)= 〈
n; Rnu0〉−1=2;1=2 (8)

where an(: ; :) is de)ned by ã(: ; :) in which D̃ is replaced by D(n) and where Rn :H 1=2(D)→
H 1=2(D(n)) is de)ned by

∀x∈D(n): (Rnu0)(x)=
∫

D

9G
9ny

(x; y)u0(y) dsy (9)

Remark that dimXn =dim Yn = n and problem (8) is a linear system of n equations for n
unknowns. A consequence of the fact that (7) is ill-posed is that often the approximate
problem (8) is unstable. The goal of this paper is to establish how we have to choose D(n)

and its splitting (together with the splitting of D) in order to obtain the stability of the
numerical scheme (8) and the convergence of �̂n to 9u=9ny when n tends to in)nity. We also
establish error estimates between �̂n and 9u=9ny. Moreover, we give the rules for the choice
of a quadrature formula when we want to numerically compute �̂n. This quadrature rule does
not aQect the stability and convergence properties of the scheme. In particular, if � denotes
the normal derivative of u on D then we have

‖�̂n − �‖−1=2;D =O

(
1

n3=2

)
(10)

Note that instead of (8) one can also consider the problem of )nding �n ∈Yn such that

∀
n ∈Xn:
∫

D
dsx
∫

D(n)
dsyG(x; y)�n(y)
n(x)=

∫
D
u0(x)
n(x) dsx (11)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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In fact, problem (11) is a linear system in which appears the same matrix as in (8), and thus
it is stable under the same conditions. Moreover, by using the arguments developed in this
paper, one can prove that the same estimate (10) holds, where in this case � is the solution
of the weakly singular single layer equation

∀
∈H−1=2
0 (D):

∫
D

dsx
∫

D
dsyG(x; y)�(y)
(x)=

∫
D
u0(x)
(x) dsx

Thus, the proposed scheme can also be considered as a special quadrature formula method
for the standard piecewise linear Galerkin approximation of the weakly singular single layer
potential. Under this point of view, the method is related to a class that has been studied for
many years, from the early papers [8; 9] up to recent papers (Reference [10] for instance).
Nevertheless, the special quadrature obtained here by introducing a neighbouring curve does
not fall in a category which has been analysed in a previous work.

The numerical analysis we present here show that the eKciency of our scheme is asymp-
totically of the same order than the method currently used, but its major feature resides in
the simplicity of the ideas used for its construction. It can be also used (but without rigorous
justi)cation) in the case when the curve has corners, and the same simple ideas can be applied
in the 3D case (cf. Reference [11]). It may be the main reason which has motivated engineers
to employ it. We point out that similar but unstable methods seem to have a certain success
with engineers (see, for instance, References [12; 13]).

In addition to the papers [8–10], for a review of classical boundary element methods, we
refer to References [5; 14–16]. In practice, the boundary element methods are often used in
combination with )nite element method (cf. Reference [17] for a reference article). We can
see in References [18] or [19] how our method can be used with )nite element methods
in order to simulate a two-dimensional induction heating problem. Another interesting non-
singular method has been presented in Reference [20].

In the present paper, we analyse the only circular case where the Laplace problem is set
on a disk. We obtain similar results when the Laplace problem is set outside the disk. In a
second paper we use compact perturbation arguments to treat the general case.

2. THE CIRCULAR CASE

In this section, we assume that D is a circle centred at the origin with radius c. The curves
D(n) will also be some circles centred at the origin with radius cn¿c. We will use the complex
notation to describe D and D(n), i.e.

D = {z(t)∈C: z(t)= ceit ; t ∈ [0; 2�]} (12)

D(n) = {z(n)(t)∈C: z(n)(t)= cneit ; t ∈ [0; 2�]} (13)

The main factor which will appear in the following is the ratio �n between cn and c, i.e.
�n = cn=c. In order to discretize D and D(n), we set h=2�=(n + 1); tj = jh; j=0; 1; : : : ; n +
1; tj+1=2 = (j+1=2)h; j=0; 1; : : : ; n. To these points we associate the corresponding points on

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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D and D(n), that is to say

zj = ceitj ; 06j6n + 1; zj+1=2 = ceitj+1=2 ; 06j6n (14)

z(n)j = cneitj ; 06j6n + 1; z(n)j+1=2 = cneitj+1=2 ; 06j6n (15)

Now we can de)ne

Dj = {z(t)∈C: z(t)= ceit ; t ∈ [tj−1=2; tj+1=2]}; 16j6n (16)

Dn+1 = {z(t)∈C: z(t)= ceit ; t ∈ [tn+1=2; 2�]∪ [0; t1=2]} (17)

D(n)
j = {z(n)(t)∈C: z(n)(t)= cneit ; t ∈ [tn−1=2; tn+1=2]}; 16j6n (18)

D(n)
n+1 = {z(n)(t)∈C: z(n)(t)= cneit ; t ∈ [tn+1=2; 2�]∪ [0; t1=2]} (19)

and we recall that

Xn = {�∈H−1=2
0 (D): �|Di is constant; i=1; 2; : : : ; n + 1} (20)

Yn = {
∈H−1=2
0 (D(n)): 
|D(n)

i
is constant; i=1; 2; : : : ; n + 1} (21)

Our main result is the following:

Theorem 2.1. Assume that �n =1 + �=n where � is a positive number. Then there exists
�0¿0 such that for all �∈ ]0; �0[, problem (8) has a unique solution �̂n ∈Xn for any integer
n and we have limn→∞ ‖9u=9n− �̂n‖−1=2;D =0, where u is the solution of (1).

Moreover, if 9u=9n∈H 1(D), there exists a constant C independent of n such that∥∥∥∥9u9n − �̂n

∥∥∥∥
−1=2;D

6
C
n3=2

Before proving this theorem, we establish three technical lemmata. In the following we
will use Fourier technical arguments and for this reason we will work in the complex spaces
H−1=2

0 (D); H−1=2
0 (D(n)). We de)ne the sesquilinear form a :H−1=2

0 (D)×H−1=2
0 (D)→C by

�̂; 
̂∈H−1=2
0 (D): a(�̂; 
̂)=

∫
D

dsx
∫

D
dsyG(x; y)�̂(y)
̂(x) (22)

where I
 is the complex conjugate of 
. When 
∈H−1=2
0 (D(n)) we set 
̂(x)=
(�nx) for x∈D

and we have 
̂∈H−1=2
0 (D). In the following ã(: ; :) and an(: ; :) are also considered as sesquilin-

ear forms on the complexi)ed Sobolev spaces H−1=2.
Now we are in the position to set the eigenproblem which consists in looking for �̂∈Xn;

�̂ 
=0 and !∈C satisfying

∀
∈Yn: an(�̂; 
)=!a(�̂; 
̂) (23)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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By setting v̂m(z)= (z=c)m; z ∈D⊂C and by de)ning V̂n :H 1(D)→L2(D) by

V̂nv̂(z)= v̂(zj); z ∈Dj; j=1; 2; : : : ; n

V̂nv̂(z)= v̂(zn+1); z ∈Dn+1

we obtain the following main result:

Lemma 2.1. The eigenproblem (23) possesses the solutions

!m = �n

∑
p∈Z �

−|m+p(n+1)|
n |m + p(n + 1)|−3∑
p∈Z |m + p(n + 1)|−3 ; �̂m =V̂nv̂m; m=1; 2; : : : ; n (24)

Proof. We begin by setting vk(z)= (z=cn)k ; z ∈D(n), and we calculate for any integer m
and k ∈Z:

an(v̂m; vk) =
∫

D(n)
dsx
∫

D
dsyG(x; y)v̂m(y)vk(x)

=−ccn
2�

∫ 2�

0
ds
∫ 2�

0
log |ceit − cneis|eimte−iks dt

=−ccn
2�

∫ 2�

0
e−iks ds

∫ 2�

0
log |cei(t−s) − cn|eimt dt

By using a change of variable we obtain

∫ 2�

0
log |cei(t−s) − cn|eimt dt =

∫ 2�−s

−s
log |cei$ − cn|eim(s+$) d$

= eims
∫ �

−�
log |cei$ − cn|eim$ d$

= eims
∫ �

−�
log |c2 + c2

n − 2ccn cos($)|1=2eim$ d$

By using an elementary result (see Reference [3]) we conclude that

∫ 2�

0
log |cei(t−s) − cn|eimt dt =

{− �
|m|�

−|m|
n eims if m 
=0

2� log cn if m=0

It follows that

an(v̂m; vk)=
�
|m|�

−|m|
n �kmccn when m 
=0 (25)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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By an analogous calculation we obtain with 
̂(x)=
(�nx); x∈D:

a(v̂m; v̂k)=
�
|m|�kmc2 when m 
=0 (26)

Let now %j be the characteristic function of [tj−1=2; tj+1=2] if 06j6n and %n+1 be the charac-
teristic function of [t0; t1=2]∪ [tn+1=2; tn+1]. We verify that the complex Fourier series of %j is
given by

%j(t) =
∞∑

k=−∞
cjkeikt (27)

cjk =
sin(k�=(n + 1))

k�
e−iktj ; j = 0; 1; : : : ; n + 1; k 
=0 (28)

cj0 =
1

n + 1
; j = 0; 1; : : : ; n + 1 (29)

Now we de)ne Vneimt by

Vneimt =
n+1∑
j=1

eimtj%j(t) (30)

By replacing (27)–(29) into (30) we obtain from a standard calculation

Vneimt =
n + 1
�

sin
(

m�
n + 1

) ∞∑
p=−∞

(−1)p

m + p(n + 1)
ei(m+p(n+1))t ; 16m6n (31)

Now let m be equal to 1; 2; : : : ; n. By using (31) and the de)nitions of V̂n and v̂m we have

V̂nv̂m(z)=
n + 1
�

sin
(

m�
n + 1

) ∞∑
p=−∞

(−1)p

m + p(n + 1)
v̂m+p(n+1)(z) (32)

for all z ∈D.
It suKces to use (25) and (32) to show that if 16m; k6n, we have

an(V̂nv̂m;Vnvk)=
(
n + 1
�

)2
sin2

(
m�

n + 1

)
�ccn

∞∑
p=−∞

�−|m+p(n+1)|
n

|m + p(n + 1)|3 �mk (33)

By using (26) instead of (25), together with (32), we obtain

a(V̂nv̂m; V̂nv̂k)=
(
n + 1
�

)2
sin2

(
m�

n + 1

)
�c2

∞∑
p=−∞

1
|m + p(n + 1)|3 �mk (34)

By setting !m = �n
∑

p∈Z �
−|m+p(n+1)|
n |m+p(n+1)|−3=

∑
p∈Z |m+p(n+1)|−3 we obtain for all

16k; m6n:

an(V̂nv̂m;Vnvk)=!na(V̂nv̂m; V̂nv̂k) (35)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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The fact that V̂nv̂k for k =1; 2; : : : ; n is a basis of Xn which is orthogonal with respect to
the scalar product a(: ; :) together with (35) proves our lemma.

Remark 2.1. It is well known (see Reference [21] for instance) that a(: ; :) is a scalar
product on H−1=2

0 (D) and the norm ‖�̂‖= a(�̂; �̂)1=2 is equivalent to ‖�̂‖−1=2;D. Moreover, from
relations (25) and (26) we obtain that an(v̂m; vk)= �1−|m|

n a(v̂m; v̂k) for all k and for all m 
=0.
Because �n¿1 and (v̂m)m∈Z∗ is an Hilbertian basis of H−1=2

0 (D), this last equality proves that
an(: ; :) cannot satisfy a inf–sup condition on X ×Y .

In order to have a family of curves (D(n))∞n=1 which converges to D, we choose from now
cn = �nc with

�n =1 +
�
n

(36)

where � is a positive number. With this choice we have the following result:

Lemma 2.2. For all ”¿0 there exists �0¿0 such that if 0¡�¡�0, then

sup
�̂∈Xn

|an(�̂; �)− a(�̂; �̂)|
a(�̂; �̂)

6” for all n¿1 (37)

where we denote by � the function belonging to Yn and de)ned by �(z)= �̂(�−1
n z); z ∈D(n):

Proof. In Lemma 2.1 we have seen that �̂m =V̂nv̂m are the eigenvectors of (23) corre-
sponding to the eigenvalues !m de)ned in (24). We set �m(:)= �̂m(�−1

n :). When �̂∈Xn, we
can write �̂=

∑n
m=1 (m�̂m because �̂m is an orthogonal basis of Xn with respect to the scalar

product a(: ; :). Moreover, we have by using Lemma 2.1 and relation (25):

|an(�̂; �)− a(�̂; �̂)| =
∣∣∣∣∣∣

n∑
l;m=1

(m(l(an(�̂m; �l)− a(�̂m; �̂l))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

l;m=1

(1−!m)(m(la(�̂m; �̂l)

∣∣∣∣∣∣ =
∣∣∣∣∣

n∑
m=1

(1−!m)(2
ma(�̂m; �̂m)

∣∣∣∣∣
6 max

16m6n
|1−!m|a(�̂; �̂)

In order to prove Lemma 2.2, it remains to show that for all ”¿0 there exists �0¿0 such
that if 0¡�6�0, then we have

max
16m6n

|1−!m|6”; ∀n¿1 (38)

where !m is explicitly given by (24).
Let m be an integer in [1; n] and de)ne *p = |m+p(n+1)| with p∈Z. Because we have the

development (1 + x)−*p =1− x*p(1 + x̃)−(1+*p), where x̃∈ (0; x); x¿0, we have the existence

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863
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of a number +p ∈ (0; �) satisfying

(
1 +

�
n

)−*p

=1− �
n
*p
(
1 +

+p
n

)−(1+*p)
(39)

Since �n =1 + �=n, we have 1− �−*p
n = �=n*p(1 + +p=n)−(1+*p) and consequently

�n −!m = �n − �n

∑∞
p=−∞ �−*p

n *−3
p∑∞

p=−∞ *−3
p

= �n

(
1−

∑∞
p=−∞ �−*p

n *−3
p∑∞

p=−∞ *−3
p

)

= �n
�
n

∑∞
p=−∞ (1 + +p

n )−(1+*p)*−2
p∑∞

p=−∞ *−3
p

It follows that

|�n −!m|6�n
�
n

∑∞
p=−∞ *−2

p∑∞
p=−∞ *−3

p
(40)

Now we evaluate an upper bound for
∑∞

p=−∞ *−2
p and a lower bound for

∑∞
p=−∞ *−3

p .
• We have

∞∑
p=−∞

*−2
p =

∑
p¿0

1
(m + p(n + 1))2

+
∑
p¿1

1
(p(n + 1)−m)2

=
1

(n + 1)2


∑

p¿0

1
(p + m=(n + 1))2

+
∑
p¿1

1
(p−m=(n + 1))2




=
1

(n + 1)2


 (n + 1)2

m2 +
(n + 1)2

(n + 1−m)2
+
∑
p¿1

1
(p + m=(n + 1))2

+
∑
p¿2

1
(p−m=(n + 1))2




By using the following inequalities:

∑
p¿1

1
(p + m=(n + 1))2

6
∫ ∞

m=(n+1)

dx
x2 and

∑
p¿2

1
(p−m=(n + 1))2

6
∫ ∞

1−m=(n+1)

dx
x2

we obtain
∞∑

p=−∞
*−2
p 6

1
m2 +

1
(n + 1−m)2

+
1

n + 1

(
1
m

+
1

n + 1−m

)
(41)
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• In the same way, we have

∞∑
p=−∞

*−3
p =

1
(n + 1)3


∑

p¿0

1
(p + m=(n + 1))3

+
∑
p¿1

1
(p−m=(n + 1))3




and by using the following inequalities:

∑
p¿0

1
(p + m=(n + 1))3

¿
∫ ∞

m=(n+1)

dx
x3 and

∑
p¿1

1
(p−m=(n + 1))3

¿
∫ ∞

1−m=(n+1)

dx
x3

we obtain
∞∑

p=−∞
*−3
p ¿

1
2(n + 1)

(
1
m2 +

1
(n + 1−m)2

)
(42)

Due to (41) and (42) we obtain∑∞
p=−∞ *−2

p∑∞
p=−∞ *−3

p
62(n + 1)

(
1 +

m(n + 1−m)
m2 + (n + 1−m)2

)
(43)

By setting

g(x)=
x(n + 1− x)

x2 + (n + 1− x)2
=

1
2

(
(n + 1)2

x2 + (n + 1− x)2
− 1
)

we easily show that maxx∈[1; n] g(x)= g((n + 1)=2)6 1
2 . Consequently, relation (43) implies∑∞

p=−∞ *−2
p∑∞

p=−∞ *−3
p
63(n + 1) (44)

By using (40), we )nally obtain

|�n −!m|63�n�
n + 1
n

66��n for all n¿1 (45)

It suKces to write �n =1 + �=n to conclude that (38) is true.

A corollary of Lemma 2.2 is

Lemma 2.3. By setting �n =1 + �=n; there exists �0 and (¿0 independent of n such that
for 0¡�¡�0 we have

an(�̂; �)¿(‖�̂‖2
−1=2; D; ∀�̂∈Xn; ∀n¿1 (46)

Proof. This is a direct consequence of Lemma 2.2 together with Remark 2.1.

Proof of Theorem 2.1. Lemma 2.3 implies an uniform ‘inf–sup’ condition for �∈ ]0; �0[, i.e.

inf
�̂∈Xn

‖�̂‖−1=2; D=1

sup

∈Yn

‖
‖−1=2; D(n) =1

an(�̂; 
)¿(; n¿1 (47)
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where ( is a positive constant independent of n. It follows (see Reference [7] for instance) that
problem (8) has a unique solution �̂n ∈Xn. By setting �̂= 9u=9n on D, where u is solution of
(1), we have seen that for all 
∈H−1=2

0 (D(n)) we obtain an(�̂; 
)= 〈
; Rnu0〉, and consequently
for all 
n ∈Yn we have

an(�̂− �̂n; 
n)=0 (48)

Let now ’̂n be any function of Xn. By using Lemma 2.3 and (48), we have

‖�̂n − ’̂n‖−1=2;D6
1
(
an(�̂n − ’̂n; �n − ’n)=

1
(
an(�̂− ’̂n; �n − ’n) (49)

where we denote by �n(z)= �̂(�−1
n z) and ’n(z)= ’̂n(�

−1
n z); ∀z ∈D(n):

From inequality (49) and from the uniform continuity of an with respect to n (see Reference
[18, pp. 34–35]), we deduce there exists a constant C, independent of n, such that

‖�̂n − ’̂n‖−1=2;D6C‖�̂− ’̂n‖−1=2;D

By using the triangular inequality we )nally obtain

‖�̂− �̂n‖−1=2;D6(1 + C)‖�̂− ’̂n‖−1=2;D

and consequently

‖�̂− �̂n‖−1=2;D6(1 + C) min
’̂n∈Xn

‖�̂− ’̂n‖−1=2;D (50)

The proof of Theorem 2.1 is a consequence of the fact that
⋃∞

n=1 Xn =H−1=2
0 (D) and from the

following estimate (see Reference [15] for instance):

‖�̂− Pn�̂‖−1=2;D6
C
n3=2 ‖�̂‖1;D (51)

when Pn is the orthogonal projector of L2(D) onto Xn.

3. ERRORS ESTIMATES WITH NUMERICAL INTEGRATION

In order to solve the discrete problem (8) in the circular case situation, we will have to build
the matrix of coeKcients Aij = an(’̂i; ’j); 16i; j6n, where (’̂i)

n
i=1 is a )nite element basis of

Xn. It follows that we will have to calculate expressions of the form∫
D(n)
k

dsx
∫

Dl

dsyG(x; y)= − ccn
2�

∫ tk+1=2

tk−1=2

ds
∫ tl+1=2

tl−1=2

dt log |ceit − cneis| (52)

since (’̂i)
n
i=1 are constant on Dk . Clearly speaking we take cn = �nc with �n =1+�=n and for n

suKciently large, it is diKcult to numerically evaluate the quantity
∫ tk+1=2

tk−1=2
ds
∫ tl+1=2

tl−1=2
dt log |ceit −

cneis| when k = l; l+1 or l−1, because the integrand is almost singular. Remark that we have
the same problem when we want to compute the right-hand side of (8). In the following,
we give a rule in order to numerically perform this type of integrals by keeping the rate

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:847–863



858 P. DREYFUSS AND J. RAPPAZ

of accuracy O(1=n3=2) in H−1=2
0 (D). Recall that the length of the interval [tk−1=2; tk+1=2] is h,

with h=2�=(n + 1), and consider, for a positive integer m, the points in [0; 2�] de)ned by
tk; j = tk−1=2 + j(h=m)mod 2�; 06j6m; 16k6n + 1.

For a continuous function f(s; t) on [0; 2�]× [0; 2�] (for instance f(s; t)= log |ceit − cneis|)
we have ∫ tk+1=2

tk−1=2

ds
∫ tl+1=2

tl−1=2

dtf(s; t)=
m−1∑
i=0

m−1∑
j=0

∫ tk; i+1

tki

ds
∫ tl; j+1

tlj

dtf(s; t)

and by changing the variables s and t:

∫ tk+1=2

tk−1=2

ds
∫ tl+1=2

tl−1=2

f(s; t)=
h2

4m2

m−1∑
i=0

m−1∑
j=0

∫ 1

−1
d0
∫ 1

−1
d+fki;lj(0; +) (53)

with fki;lj(0; +)=f(tk; i + (0 + 1)=2(h=m); tl; j + (+ + 1)=2(h=m)).
Let now J (g)=

∑r
p=1wpg(0p) be a numerical quadrature formula with r integration points

−1601¡02¡ · · ·¡0r61 and weights w1; w2; : : : ; wr . We assume that this formula is exact
for polynomials PM of degree M , that is to say for all g∈PM we have

J (g)=
∫ 1

−1
g(0) d0 (54)

An approximation of (53) will be

∫ tk+1=2

tk−1=2

ds
∫ tl+1=2

tl−1=2

dtf(s; t)≈ h2

4m2

m−1∑
i=0

m−1∑
j=0

r∑
p=1

r∑
q=1

wpwqfki; lj(0p; 0q) (55)

We set Inkl(f) as the left-hand side of (55) and Jnkl(f) as its right-hand side. Then it is
well known that if f∈CM+1( ICkl) with Ckl =(tk−1=2; tk+1=2)× (tl−1=2; tl+1=2), then we have the
following estimate:

|Inkl(f)− Jnkl(f)|6Ch2
(

h
m

)M+1

max
(1+(2=M+1

max
(s; t)∈Ckl

∣∣∣∣ 9M+1f
9s(19t(2

(s; t)
∣∣∣∣ (56)

where C is a constant independent of n;m and f but is depending on M .
Now we are able to establish an approximation of the discrete problem (8) by using above

quadrature formulas. To this end, we de)ne in a similar way as (2)–(7), for �̂∈Xn; 
∈Yn:

N (�̂; 
) (s; t) =−ccn
2�

log |ceit − cneis|�̂(ceit)
(cneis) (57)

ãn(�̂; 
) =
n+1∑
k; l=1

Jnkl(N (�̂; 
)) (58)

S(
) (s; t) =−ccn
2�

(cneis − ceit ; eit)

|cneis − ceit |2 u0(ceit)
(cneis) (59)
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b̃n(
) =
n+1∑
k; l=1

Jnkl(S(
)) (60)

where we denote by (: ; :) the scalar product in R2 =C, i.e.

(cneis − ceit ; eit)= cn(cos t cos s + sin t sin s)− c= cn cos(t − s)− c (61)

With these notations, the approximate problem with quadrature formula consists in )nding
�̃n ∈Xn satisfying

ãn(�̃n; 
n)= b̃n(
n); ∀
n∈Yn (62)

Now we are able to establish our main result.

Theorem 3.1. Assume that �n =1 + �=n where � is a positive number and u0 ∈CM+1(D).
Moreover assume that m= n* with *¿3=(M + 1). Then; there exists �0¿0 and N0¿0 such
that for all �∈ ]0; �0[, problem (62) has a unique solution �̃n ∈Xn for any integer n¿N0.
Moreover, if 9u=9n∈H 1(D), then there exists a constant C independent of n such that∥∥∥∥9u9n − �̃n

∥∥∥∥
−1=2;D

6
C
n3=2

Before proving this result, we )rst establish:

Lemma 3.1. We assume that cn = c(1 + �=n) with �¿0 and that the quadrature formula is
exact for polynomials of degree M . Then; there exists a constant C independent of n and m
such that for all �̂∈Xn; 
∈Yn we have

|an(�̂; 
)− ãn(�̂; 
)|6Cm−(M+1)‖�̂‖L2(D)‖
‖L2(D(n)) (63)

|bn(
)− b̃n(
)|6Cnm−(M+1)‖
‖L2(D(n)) (64)

where bn(
)=
∫
D(n) dsx

∫
D dsy(9G=9ny)(x; y)u0(y)
(x):

Proof. In order to prove (62), we begin by remarking that

an(�̂; 
)=
n+1∑
k; l=1

Inkl(N (�̂; 
))

By substraction with (58) we obtain

|an(�̂; 
)− ãn(�̂; 
)|6
n+1∑
k; l=1

|Inkl(N (�̂; 
))− Jnkl(N (�̂; 
))| (65)

Now we use the error estimate (56) and we have

|an(�̂; 
)− ãn(�̂; 
)|6Ch2
(

h
m

)M+1 n+1∑
k; l=1

max
(1+(2=M+1

max
(s; t)∈Ckl

∣∣∣∣∣9
M+1N (�̂; 
)
9s(19t(2

(s; t)

∣∣∣∣∣ (66)
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Since �̂(ceit)
(cneis) is constant on Ckl, we verify, by derivating (M + 1) times the function
log |ceit − cneit |, that there exists C such that

max
(1+(2=M+1

max
(s; t)∈Ckl

∣∣∣∣∣9
M+1N (�̂; 
)
9s(19t(2

(s; t)

∣∣∣∣∣6CnM+1|�̂(ceitl)||
(cneitk )| (67)

By using a Cauchy–Schwartz inequality together with the fact that the measure of D(n)
l and

Dk is of order 1=n, we )nally obtain

|an(�̂; 
)− ãn(�̂; 
)|6Ch2
(

h
m

)M+1

nM+2

(
n+1∑
l=1

|�̂(ceitl |2
)1=2( n+1∑

k=1

|
(cneitk |2
)1=2

6Ch2
(

h
m

)M+1

nM+3‖�̂‖L2(D):‖
‖L2(D(n)) (68)

It suKces to see that h=2�=(n + 1) in order to prove (63).
In order to prove (64), we remark that for 
∈Yn:

bn(
)− b̃n(
)=
n+1∑
k; l=1

(Inkl(S(
))− Jnkl(S(
)))

and we use the same arguments as above after showing that max(s; t)∈Ckl |(9M+1=9s(19s(2)S(
)|
is bounded by CnM+2|
(cneitk )|.

Proof of Theorem 3.1. By using Lemma 2.3 we can conclude there exists �0 and (¿0
such that for 0¡�¡�0 we have

an(�̂; �)¿(‖�̂‖2
−1=2;D; ∀�̂∈Xn; ∀n¿1 (69)

By using Lemma 3.1 with m= n* and *¿3=(M + 1) we obtain

|an(�̂; �)− ãn(�̂; �)|6C
n3 ‖�̂‖2

L2(D); ∀�̂∈Xn; ∀n¿1

By considering the inverse inequality (see Reference [15] for instance)

‖�̂‖L2(D)6C
√
n‖�̂‖−1=2;D (70)

we have

|an(�̂; �)− ãn(�̂; �)|6C
n2 ‖�̂‖2

−1=2;D; ∀�̂∈Xn; ∀n¿1 (71)

By using (69) and (71), we obtain the existence of N0 such that the following relation is
satis)ed:

ãn(�̂; �)¿
(
2
‖�̂‖2

−1=2;D; ∀�̂∈Xn; ∀n¿N0 (72)

It follows that for n¿N0, the sesquilinear form ãn(: ; :) satis)es an ‘inf–sup’ condition on
Xn×Yn and, consequently, the existence and uniqueness of solution of (62) is proven.
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By a similar calculation we obtain from (64) and (70):

|b̃n(
)− bn(
)|6 C
n3=2 ‖
‖−1=2;D(n) ; ∀
∈Yn; ∀n¿1 (73)

Now we are able to prove the error estimate of Theorem 3.1. Actually, we have

an(�̂n; 
n)= bn(
n); ∀
n ∈Yn

and

ãn(�̃n; 
n)= b̃n(
n); ∀
n ∈Yn

It follows that for all 
n ∈Yn:

ãn(�̂n − �̃n; 
n)=− b̃n(
n) + bn(
n)− an(�̂n; 
n) + ãn(�̂n; 
n) (74)

By using (72) together with (63), (70), (73) and (74) in which we take 
n = �n−�̃′n; (�̃
′
n(:)= �̃n

(�−1
n :)), we obtain the existence of a constant C such that for n¿N0:

‖�̂n − �̃n‖−1=2;D6C
(

1
n3=2 +

1
n2 ‖�̂n‖−1=2;D

)
(75)

It remains to use Theorem 2.1 in order to obtain the error estimate of Theorem 3.1.

Remark 3.1. By choosing *=1, that is to say we divide each interval [tk−1=2; tk+1=2] by
n parts, it suKces to choose a quadrature formula exact for polynomials of degree M =2
in order to keep the rate of accuracy 1=n3=2 in the norm H−1=2

0 (D). It follows that Simpson
quadrature formula is suKcient.

Remark 3.2. If we restrict the quadrature to be a Gauss–Legendre formula (with r points),
then we have M+1=2r. In this case, the numerical evaluations of all integrals require
(n*+1:r)2 computations. Since Theorem 3.1 says that it suKces to take *¿3=2r to keep the
rate of accuracy O(1=n3=2), we have interest to take * small enough. By choosing *=0:1
and r=3=2*=15 we obtain m≈ 2 if n=103 and m≈ 3 if n=105. This result shows that in
practice, it suKces to split each intervals [tk−1=2; tk+1=2] into three parts and to use a Gauss–
Legendre formula with 15 points.

Remark 3.3. In practice, it suKces to split only the ‘critical’ intervals [tk−1=2; tk+1=2] and
[tl−1=2; tl+1=2] for l= k; k − 1; k + 1 when we numerically compute (52).

4. NUMERICAL RESULTS

In the circular case, the practical interest of our method is limited, but we conclude this article
by a brief example.

Let C be the disk of radius two centred at the origin, and u the function de)ned on C by
u(x1; x2)= ex1 cos(x2); (x1; x2)∈C. Then u is harmonic on C and 9u=9n|D is the exact solution
of (2) when we put u0 = u|D. On the other hand, setting u0 = u|D, we can calculate, for any
integer n, the function �̃n which is the solution of (62) when we split each interval into three
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Figure 1. Relative L2 error.

parts and we use a Gauss–Legendre formula with 15 points. For an integer n, we denote by
En = ‖9u=9n− �̃n‖L2=‖9u=9n‖L2 ; the relative L2 error between the known exact solution and its
approximation by our method.

In Figure 1, we have represented − log10 En in function of log10 n. We can see that the
curve obtained is a straight line with a slope approximatively equal to 1.5. By using the
inverse inequalities (cf. 70) in Xn, we can see that this experimental result is a little better
than expected (slope equal one) by Theorem 3.1.
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