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SUMMARY

In order to numerically solve the interior and the exterior Dirichlet problems for the Laplacian operator,
we have presented in a previous paper a method which consists in inverting, on a finite element space,
a non-singular integral operator for circular domains. This operator was described as a geometrical
perturbation of the Steklov operator, and we have precisely defined the relation between the geometrical
perturbation and the dimension of the finite element space, in order to obtain a stable and convergent
scheme in which there are non-singular integrals. We have also presented another point of view under
which the method can be considered as a special quadrature formula method for the standard piecewise
linear Galerkin approximation of the weakly singular single-layer potential.

In the present paper, we extend the results given in the previous paper to more general cases for
which the Laplace problem is set on any ¥°° domains. We prove that the properties of stability and
convergence remain valid. Copyright © 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Let © be a simply connected, bounded, open domain in R2, the boundary I" of which is
assumed to be regular. For the sake of simplicity, we will suppose that I" is ¥>°. We denote
by L the length of I' and by x its parametrization by the curvilinear abscissa, i.e x(-) is the
restriction to [0,L] of a ¥°° L-periodic function, and

I'={x(t), t€[0,L], |x'(t) =1 vte[0,L]} (1)

If n, is the outward unit normal vector at the point x €', and if » is a positive integer, we
define the function x"(-) by

xM(t)=x(t) + gnx(,), te0,L] (2)

where 0 is a positive number.
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558 P. DREYFUSS AND J. RAPPAZ

With these functions, we can define a family of curves (I'™)%°, surrounding Q (if the
parameter J is chosen sufficiently small or n big) by

™= {x"(t), t€[0,L]} (3)

Now, let ug € H'*(T") be a given function on I" and let u € H'() be an harmonic function on
Q) satisfying u=u, on the boundary I'. Here #'/?(I') and H'(£2) denote the classical Sobolev

spaces of functions on I' or €. It is easy to show that if x does not belong to 2=QUT,
then we have

= ou _ oG
v ¢ €0 /r Gl ) () dsy = /F e () ds, 4)

where G denotes the Green kernel and 0G/0n, its external normal derivative with respect to
the variable y, i.e. if xeR?, yeT

1

Glx.y) =~ 5 log br — y| (5)
E _ ()C B ya”y)
any(X,J’)— 27I|X* y|2 (6)

where (.,.) is the scalar product, and |-| the Euclidian norm in R2.

Let us assume that we are only interested in knowing the normal derivative 0u/0n, on I
instead of the whole « in Q. If we call { the unknown 0u/0n, on I', the integral of which is
vanishing, we are in a position to give a variational formulation of (4) which is as follows:

Find { € H, "*(T) satisfying

ety 2 [ s [asGeiome = [ as [as e om0

where H~1/(T") is the dual space of H/(T"), the duality pairing being denoted by (.,.) 11
and
H0_1/2(P):{y eH"2T): (3,1)_12.12=0}

Remark that in (7) the symbol ‘integral’ takes the meaning of duality (.,.)_i/2 1. As we said
in the introduction of our previous paper [1], problem (7) is ill-posed because the continuous
bilinear form a,: H, "*(T') x H; "*(T) — R defined by

CeHy (D), peHy P a(Lp)= / @ / ds, Gx, )G ®)
() T

does not satisfy the ‘inf-sup condition’ of Babuska—Ladyzenskaja (see Reference [2] for
instance). It means the problem of finding (GHO_I/ 2(I‘) satisfying

a (& 0) = (1 9) 12,12, Yuu GHoil/z(F("))

where ¢ is given in H'2(I'™), has in principle no solution, except if g is the trace of a
harmonic function on T'™.

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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However, if R, : H'?(I') — H">(I'™) is the operator given by
oG
W eI (R = [ S0y ds ©)
v

then we know that the problem of finding CEHJI/ 2(I‘) such that

Ve Hy AT ay(C, 1) = (i Rutto) —12,12 (10)

has at least one solution (it suffices to take { = 0u/0n, when u is the harmonic function in 2
satisfying u=u, on the boundary I'). In this paper, we attack the numerical approximation
of problem (10) by using a Galerkin method. By splitting up I" and I'™ into n + 1 simple

arcs of curves I',I3,...,T,,; and Fl("),Fz("),...,F}fi)l, respectively, and by defining X, and
n+1

Y, as subspaces of piecewise constant functions on (I})!", and (I}("))ﬁf of HO_'/z(I‘) and
Hy '*(D™), respectively, we consider the problem of finding {, € X, satisfying

Vi, € Yoo au(Cns ) = (tns Rutho) —1/2,12 (11)

We will prove that if we use a good choice for the splitting of I' and '™, then problem
(11) has a unique solution {, which converges to { = 0u/0n, when n tends to infinity. We
will give error estimates between {, and (.

In Reference [1] we have presented a complete history of the method: it was introduced
in its first form by Kupradze [3] and studied by Christiansen (cf. References [4,5]). But the
scheme was unstable for the reasons we have explained. Later engineers have empirically
found how to construct a stable method, which is sometimes used nowadays (cf. for instance
References [6—8]). Our contribution in this work and in Reference [1] is to mathematically
prove a stability property of the method and to establish results of convergence. Moreover,
we give the rules for the choice of a quadrature formula when we want to numerically
compute {,. We have also explained in Reference [1] how the proposed scheme can be
considered as a special quadrature formula method for the standard piecewise linear Galerkin
approximation of the single-layer potential. From this point of view, the proposed method is
related to a class that has been studied for many years, from the early papers [9,10] up to
recent papers (Reference [11] for instance). Nevertheless, the special quadrature obtained by
introducing a neighbouring curve does not fall into a category which has been analysed in
a previous work. The numerical analysis we present here shows that the efficiency of our
scheme is asymptotically of the same order than the methods currently used, but its major
feature resides in the simplicity of the ideas used for its construction. It can also be used
(but without rigourous justification) in the case when the curve has corners (cf. Reference
[7]), and the same simple ideas can be applied in the 3D case (cf. Reference [8]). It may be
the main reason which has motivated engineers to employ it. We point out that similar but
unstable methods seem to have a certain success with engineers (see for instance References
[12,13]). In addition to the papers [9—11] for a review of classical boundary element methods,
we refer to References [14—17]. In practice, the boundary element methods are often used in
combination with finite element methods (cf. Reference [18] for a reference article). We can
see in Reference [19] or [20] how our method can be used with finite element methods in
order to simulate a two-dimensional induction heating problem. See also Reference [21] for
a reference book on the applications of integral methods in the acoustic and electromagnetic
fields. Another interesting non-singular method has been presented in Reference [22].

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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2. DISCRETIZATION AND CONVERGENCE

In order to discretize problem (10) by using the Galerkin method (11), we set A=L/(n+ 1),
ti=jh, j=0,1,...,n+ 1, ti1p=(j + 3)h, j=0,1,....n. To these points we associate the
corresponding points on I' and I'™ by using the parametrizations (1), (2), which are

xj:x(tj), 0<]<n+1, Xjt+1/2 :X(tj+1/2), OS]SI’! (12)
A =x), 0<j<n+ 1, XD, =x"(G,0), 0<j<n (13)

Now we can define

[={xeR% x=x(1), t€[tj_1pp,tir1]}, 1<j<n (14)
D ={x€R* x=x(t), 1€ [tyr1,L]U[0,71]} (15)
[ = {xeR%: x=x"(t), te[tioiptippl}, 1<j<n (16)
I = {x € R x=x"t), t€[tyr12, L1U[0,112]} (17)
and we recall that
X, = {)LeHO*I/z(F): Alr, is constant, i=1,2,...,n+ 1} (18)

Y, ={neH; AT®): p

o is constant, i=1,2,...,n+ 1} (19)

Our main result is the following:

Theorem 2.1. There exists do>0 such that for all 6 €]0,Jy[, problem (11) has a unique
solution {, €X, for any integer » and we have lim,_ o ||0u/0n — {,||—12,r =0, where u is the
harmonic function in € satisfying u =u( on the boundary I

Moreover, if du/on € H'(T"), there exists a constant C independent of 7 such that
ou ' C
- < _
on n3/2

—1/2,T

We can remark that in the circular case, i.e. when T is a circle, then Theorem 2.1 is exactly
Theorem 2.1 of Reference [1]. The object here is to generalize the proof for any ¢°° closed
curve. The main idea of this proof is related to a well-known property of the Steklov operator
(see for instance Reference [15, p. 299]). It consists here in showing that the bilinear form
a, given in (8) can be written as the sum of the bilinear form corresponding to the circular
case, with another bilinear form b, with regular integrand. Moreover, when »n tends to infinity,
this form b, tends (in the sense of the norm on the natural spaces) to a bilinear form which
still has a regular integrand. In other words, the perturbation b, is ‘uniformly compact’. This
property allows us to prove the stability and convergence of scheme (11).

We begin by introducing some notations in order to compare the general case with the
circular case.

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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We denote by I' the unit circle centred at the origin in R2, and by I'™ its associated
curve (which is also a circle centred at the origin). By using the complex notation, we have

I'={z(t)eC: z(t)=e®V" tc[0,L]} (20)

™= {Z(") ecC: z"(t)= (1 + i) Gy e [O,L]} (21)

Moreover, we denote by X, and ¥, the finite dimensional spaces corresponding to X, and ¥,
in the circular case, i.e.

X, = {4 eHofl/z(F): MF} is constant, i=1,2,...,n+ 1} (22)

Y,={ueH; HT™): p

o is constant, i=1,2,...,n+ 1} (23)

where fi,fi(n) are defined as in (14), (17) by replacing x(¢),x"(¢) by z(¢),z"(¢).
We consider the operators #: H~"*(I')— H~Y2(I"), r: H="2(T'") — H=V*(T') and #: H '
(I'™) — H=Y2(T") defined by the following relations (see Figure 1):

def

ROE0) =S L(0)={(x(1)),  Vie[0,L] (24)
(r)(x(1)) = u(x"(1)),  Vte[0,L] (25)

BN
B

Figure 1. The operators 7, r and 7 for the change of variable.

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570



562 P. DREYFUSS AND J. RAPPAZ

(Fr)(z(1)) = w(z"(1)), Vte[0,L] (26)

Since we consider regular parametrizations, these operators are isomorphisms, i.e. they are
linear bounded, invertible with a bounded inverse.

Let 4 be a function defined on I'. We can remark that if the mean value of 4 on I is
vanishing, then the mean value of 1 of I is still vanishing because |x'(#)| = 1. In consequence,
the spaces X, and X, are uniformly isomorphic via the application #. It is also easy to
show that #(¥,)=X,, but in general we do not have r(¥,)=X, (we have only r(Y,) =
X,/R), because |x("| is not necessarily constant. This fact is technically problematic, and it
is convenient to correct this situation. Remark first that if y(¢) is the curvature of I' at point
x(t), then we have

(O 0] <0, vie0,1] @7)
and since |x'(¢)|=1, then [x"’(¢)| is close to 1 when ¢ is sufficiently small or n big. We
next introduce the operators M : H~V/2(I'™) - R and 7#: H~V/>(I'™)— H~Y*(T") defined by

1
M=o [ ) ds, (28)
Il Je
Fu=ru—Mp (29)

where |I'| =L is the measure of T
We have the following result:

Lemma 2.1. There exists a positive constant C independant of n such that
Co _ ;
My < ==l ypren. Vpe Hy AT (30)

Moreover, there exists do >0 such that for 0 <0 <do, the operator 7 maps isomorphically and
uniformly the spaces ¥, onto the spaces X, for all integer n.

Proof. Let e H, ">(T™). Since |x'(¢)| =1, we have
L L
i = | [ (ru)(X(t))dt’ - ‘ / u(x(’”(t)dt‘

- / U (0] e+ / (1= ) (1) do
0 0

0
< ‘/F(”) :u(x)dsr +E/r")}()€)||(}"u)(x)|dsx

Co
<0+ 7|\H||—1/2,r(~>

with C = [|y][i/2,0]|7||=1/2.1/2,0- Consequently, we have obtained (30).

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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For peH, (™), we have

- 0
e v = M= (1= ) -

where o is a positive constant. This proves that for o sufficiently small, the operator 7 is
an isomorphism (uniformly in »n) between HO_I/ 3(I'™) and HO_]/ (I"). Moreover, it is easy to
show that 7(Y,)C X,, and we can conclude. O

We now define the bilinear forms

ap H-V2MYyx H VM) R and a:H 2T)xH 2T')—=R by

1 L L
dn(C,u)Z—E/O Ix(”)'(t)\df/0 log [21"(1) — ()| {(x(s))u(x (1)) ds €19)

1 L L
i == [ ar [ log () — )Gt ds (32)

We have the following result:

Lemma 2.2. a({,{)"? is a norm equivalent to ||-|| /.- on Ho_l/z(l") and for all £>0, there
exists 0p such that if 0 <0<y, then

|an(Cr~'0) — a9

sup <e, forall n>1 (33)

(ex, a6, o)

Proof. Clearly for all C,,ueHO_l/z(F), we have

L L .
G =5 [t [ Toglz() — o)A ds
2 A
= [ s [ i s

where f,ﬂEHO_'/z(f‘) are defined by (=4 and i=7u.

It is well known (see Reference [23] for instance) that this last bilinear form is coercive
on Hy '*(I") and consequently @((,¢)? is a norm equivalent to | - ||_i o on Hy "*(T).

Let now { € X,. We have by using (27):

21|@, (L1 — a0

L L
- \— / dr / log [2() — 2()|{(x())(r (1)) ds
0 0

+ /0 Car /0 " log [2(1) — 2(5)/C(r(s))2(x(1)) ds

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570



564 P. DREYFUSS AND J. RAPPAZ

L , L
+ / (1 — ™' (1)))dr / log [2(1) — 2(s)|E(x(s ) (1)) ds
0 0

L2
<—
2n

1 o A_1? A A
M(g/,l)/fn de/deyG(x,y)C(y)(r IC)(X)*/fdsx/fdsyG(x,y)é'(y)é’(x)

L L
2 [l [ gl - o) etats0 6| ds

By using Lemma 2.2 of Reference [1], together with the property of equicontinuity in £ (H ~'/?
(0,L),H'2(0,L)) of the operator {(x(.)) — fOL log |2/(.) — z(s)|{(x(s)) ds (cf. [19, p. 35]), we
can conclude that (33) holds. |

Now we write the form a,({, ), {€Hy "A(T"), peH, "*(T'™) given in (8) as follows:

o= [ a5, [ 45,66

= [l [ o 0) - oo e s

x((2) — x(s)|

() = 2(s)) SR (D) ds

R 1 L L
=aC =5 [ W0l [ og

Let us define the bilinear forms
by:H 2Ty x H'2(I'™) =R and b: H~*(I') x H~ (') = R by

1 L L (M) (+) —
bt == [ ol [ logmax(s»u(x(")m)ds (34)

_ x (1) — x(s)|
= [ a [ 1og MO N o (35)
Clearly with these definitions we have

an(Co )= a,(Cp) + ba(Cp), Ve HTAT), YueH'(T™) (36)

If a: H~'2(T')x H~'*(I') - R is defined by

a(lop)= /F ds, /F ds, G(x, y){( )u(x)

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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we analogously obtain

a(l, ) =a(l, u) + b(C, p) (37)

Since we have evaluated a(.,.) — @,(.,.,), it remains to compare b,(.,.) to b(.,.).
Lemma 2.3. We have
lim sup |ba(C,r ™ 1) = b(C, )| =0 (38)

n—oo P —
Luen—12()
I —q2r=llull —1/2,7=!

Proof. By subtraction of (35) from (34) and by considering inequality (27), it suffices in
the first step to set

(1) — x()].|z(#) — z(s)|
(1) = x()|.[z20(2) — 2(s)|

@n(s,t)=log
and to prove that
lim (| @y|[1(0,p =0 (39)
n—0o0

The complete proof of (39) is given in Reference [19, Lemma 1.17]. However, we give here
a sketch of the proof to make the reading easier. We can easily verify that when s = ¢ mod L,
we have

0 .
fDn (s,¢)= lim
oS n—0o0

0

0= lim ¢,(s.0)= lim s.0) (40)
where the first equality is still valid if s=¢mod L. Since I' is a regular curve, the function
log |z(¢) — z(s)|/|x(¢) — x(s)| is in €°°(0,L)*>. Moreover, by developing some calculations (see
Reference [19, pp. 46—47]), it is not difficult to prove that the first partial derivative with
respect to s and ¢ of the functions log |x("(¢) — x(s)|/|z"(¢) — z(s)| are uniformly bounded
with respect to n. Consequently, the convergence of ¢, to 0 is uniform in [0,L]>. Moreover,
by using Lebesgue’s theorem, we can see that the convergence of 0¢,/0s and d¢, /0t to zero
hold in L?(0,L)?, and thus we obtain (39).
In the second step we use a Fourier analysis to show that

L L
[ dnp(s,t)u(s)z(r)\ <l Il -1z @1)

for all Yy € H'(0,L)?, and all {, uc€ H~'2(0,L). By using relationships (34) and (35), we write
for {,uc H=V*(T)

|bn(C9r_]:u) - b(cs :u)|

R b () = x(s))
| - [ log i (o L) ds

1
<7
2n

L L
N % /0 d /0 Pu(s. L (x(5))u(x(1)) ds

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570



566 P. DREYFUSS AND J. RAPPAZ

By using (27) together with |x'(¢)| = 1, the fact that sup, ;) ¢ ..y | l0g [x"(2) —x(s)|/]z" () —
z(s)| is uniformly bounded with respect to n, and relationships (41) and (39), we
obtain (38). O

Lemma 2.4. There exists dp and o >0 independent of »n such that the bilinear form a,(.,.)
given by (8) satisfies

an(cﬂﬁilé)}aHCHz—l/Z,Fa VCGXM vna V5<50 (42)

Proof. By using relationships (36) and (37), we write for all {€X,:

an(Cr™ ') = an(Cr™ ) + bu(Gr 1)
=a((,0) +a(Cr™'0) — a0 + bu(Cr™ ') = B D)

It is well known that a(.,.) is a coercive form on Hofl/ 2(I“) (see Reference [23] for instance).
So, it suffices to use Lemmas 2.2 and 2.3 in order to conclude. O

Proof of Theorem 2.1. Lemma 2.4 together with Lemma 2.1 implies a uniform ‘inf-sup’
condition for J <4, i.e,
inf s alpza nzl 43)

€X, €Yy

121 s o=t !
& / —
VZEZ2 el pon =1

where o is a positive constant independent of 7.
In fact, let {€X, and pe Y, satisfying ||{||_ir=1 and ||| _;2rm=1. We consider the
function ¢ € X, defined by ¢ =7u. By using Lemma 2.1 we have

l¢ll-120=C>0

where C is a constant independent of x and n. Moreover, since #u=ru—Mu, then u=r"'o+
My and consequently we have

sup @, (Gp) = sup a(lrle) = sup fan({ M)
HEY, pEX, HEY,
HllH_I/zﬁr(ﬂ)fl lloll 12,0 =€ H“H—l‘z,r(”) =1

> Can(L,r™'0) = Al -1 v IMul| -y 2,000,
where 4 is a positive constant independent of n. At this point, by using Lemma 2.4 together
with Lemma 2.1 we obtain (43), and then it is easy to conclude as in Reference [1]. |
3. NUMERICAL INTEGRATION
In order to solve the discrete problem (11), we have to build the matrix of coefficients
Aij=a,(¢;, ;) and the vector of coefficients B; = (), R,uoy), where 1<i, j<n, and (¢;)}_,,

(Y;);_, are the natural basis of X, and Y,, respectively.

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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In particular, we have to numerically evaluate expressions of the form

/ ds, [ ds,G(x,y) (44)
5" I

[ s [ ds 0 Sl (45)

That is to say, we have to define a numerical quadrature in order to compute (44) and (45)
and to replace the scheme (11) by the following:
find {, € X, such that

dn(gns ,un):C_n(,un)s v,un S Yn (46)

where an(Cn,un) and ¢,(u,) are the perturbations of an(Cn,un) and cn(,un) (un,R Uo)—1/2,1/2
due to the use of the numerical quadrature.

In Reference [1], for the circular case, we have presented and analysed a quadrature for-
mula such that the perturbated scheme was stable and as efficient as the scheme with exact
integration (i.e. ||, — {||_1o.r = O(1/n¥?)). 1t is easy to prove that the same results are still
valid for the general case we have treated. However, we next present another quadrature for-
mula that can also be employed. As in Reference [1], the formula we consider is based on
the Gauss quadrature formula, but instead of keeping a constant number of integration points
and using a subdivision of the arcs I; or Fk(”), we use here a changeable number of integra-
tion points without any subdivision of the arcs. It is then possible to substantially reduce the
computational cost of the corresponding scheme.

Let d be the distance between the arcs l“k(") and I}, we define the scaled distance d by

- 2d
d== (47)

where h=L/(n+ 1) is the length of the arcs I}, /=1,...,n+ 1.

Lemma 3.1. Assume that I' and u, are analytlcal data, and suppose that we use a standard
m x m points Gauss quadrature formula with m > 2 log n/ log(1+d) for the numerical evaluation
of (44) and (45). Then the perturbated scheme (46) has the same properties of stability and
convergence than scheme (11), and we obtain the same order of accuracy (it means, Theorem
2.1 still holds when we use this kind of numerical integration).

Proof. If, for j=1,...,n, we denote by ¢, the affine mapping from [—1,1] onto [t;_;.,
ti112], then we have

/r(”) ds, dSy G(x, y)——/ ds/ Gi(s,t)dt (48)

/F,‘(") ds, dSy MO(J’)« (x y)= Z ds/ Gy(s,t)dt (49)

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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where
Gi(s,1) = Ix(”)'(S)\G(x(")(wk(S)),X(qoz(f))),

@@n—uwﬁn WW%@DM@OW%@WMD

For o =1,2, we denote by e}, the errors due to the approximation of (48) and (49) by using a
m x m points Gauss quadrature formula defined by the weights w,...®,, and the integration
points (y,...,{,. The important fact we use in the sequel is that the functions G, and G,
admit an analytic extension for both variables s and ¢, and so we can estimate the errors
e}, by using the theory of Davis—Rabinowitz (see Reference [24, Chapter 4.6]). In order to

simplify the proof, we introduce the function G defined by
G(s,1) = X" (i(s)) = x(1(1))] "

This function G is more ‘singular’ than G; and G,, in the sense that, for n sufficiently large,

there exists a constant C >0 such that

07 G,(s,1)
0shr ot

OPG(s,1)

Sohah S0 (50)

max max
Pi+p2=P (s,t)€[—1,1]?

(s,1)| <C max max
Bitp=P (s,)€E[-1 1

for «=1,2, and for all integer P.
Consequently, the errors ef, can be bounded by the error ¢; due to the approximation

of the integral h?/4 f_ll ds f_ll G(s,t)dt by using a m x m points Gauss quadrature formula.
Moreover, since for m fixed, this error €, is increasing when d is decreasing, we still have

ef 1 <Cé <Ch? ‘/ ds/ f(s, t)—EZcow,f(C,,Cj) a=1,2 (51)

i=1j=1

where f(s,1)=(h2/4)|(s — 1)* 4+ d*| .
It is easy to show that for both variables s and ¢, this function admits an analytic extension
in the complex domain {z€ C: Im(z)<d}. Moreover, this domain is included in the ellipse

with focus at +1 and semi-axis sum equal d 4+ \/1 + d2. Then by using formula (4.6.1.11)
of Reference [24], we can obtain the estimate

<& (52)
(1 + d)m

where C is a constant independent of &, /,n,m and d. Consequently, if we take m>%log n/
log(1 + d), then we have e, <C/n*. In order to conclude, we use the results of Reference

[1] Lemma 44 and its proof ‘of Theorem 3.1. O
4. NUMERICAL RESULTS

Let © be the interior of an ellipse centred at the origin with semi-axis length a=1, b=04.
We consider the harmonic function u defined on 2 by u(x;,x;) =e" cos(x;). Let { = du/0n be

Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:557-570
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Figure 2. Relative I? error on the density.

the normal derivative of u on I' =02, and u, the restriction of u on I". With the data u, and
I', we obtain from numerical scheme (46), the function {, € X, which is an approximation of
{. For each integer n, we denote by E, = ||{ — (.|| 2/]|¢||z2, the relative L? error between the
exact solution and its approximation by scheme (44). For the numerical test, we have chosen
0=1. The results are presented in Figure 2.

By using the well-known inverse inequality: ||{[jo,r <C/n||{||=1/2.r, Y{€X,, we can verify
that this results are in agreement with Theorem 2.1.

Remark 4.1. 1f we want to solve a Laplace problem posed on the exterior of the domain
Q2 instead of its interior, we can also apply the method presented here. However, we have to
choose ¢ negative in (2) in order to build a family of auxiliary curves which are contained
in 2. A numerical example can be found in Reference [19].
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