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Abstract: In [1] we investigated a class of Navier-Stokes systems which is

motivated by models for electrorheological fluids. We obtained an existence

result for a weak solution under mild monotonicity assumptions for the viscosity

tensor. In this article, we continue the analysis of such systems, but with

various notions of quasimonotonicity instead of classical pointwise monotonicity

assumptions. Moreover we allow the external force to be of a more general form.

1 Introduction

1.1 Retrospect of former results

In this paragraph we introduce some notations, and we recall the main results es-
tablished in [1] in order to relate them later on with the new results which we derive
below.

Let Ω ⊂ IRn be a bounded open domain with Lipschitz boundary. In [1] we consid-
ered the following Navier-Stokes system for the velocity u : Ω × [0, T ) → IRn and
the pressure P : Ω × [0, T ) → IR

∂u

∂t
− div σ(x, t, u, Du) + (u · ∇)u = f − gradP on Ω × (0, T ) (1)

div u = 0 on Ω × (0, T ) (2)

u = 0 on ∂Ω × (0, T ) (3)

u(·, 0) = u0 on Ω (4)

Here, f ∈ Lp′(0, T ; V ′) for some p ∈ [1 + 2n
n+2

,∞), where V consists of all functions

in W 1,p
0 (Ω, IRn) with vanishing divergence. Moreover u0 ∈ L2(Ω; IRn) is an arbitrary

initial condition satisfying div u0 = 0, and σ satisfies the conditions (NS0)–(NS2)
below. We allow the viscosity tensor σ to depend (non-linearly) on x, t, u and Du.

The problem (1)–(4) with the u-dependence of σ is motivated by the study of elec-
trorheological fluid flows, as explained in the introduction of [1].

To fix some notation, let IIMm×n denote the real vector space of m × n matrices
equipped with the inner product M : N = MijNij (with the usual summation
convention).
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The following main assumptions are imposed on the viscosity tensor σ:

(NS0) (Continuity) σ : Ω×(0, T )× IRn× IIMn×n → IIMn×n is a Carathéodory function,
i.e. (x, t) 7→ σ(x, t, u, F ) is measurable for every (u, F ) ∈ IRn × IIMn×n and
(u, F ) 7→ σ(x, t, u, F ) is continuous for almost every (x, t) ∈ Ω × (0, T ).

(NS1) (Growth and coercivity) There exist c1 > 0, c2 > 0, λ1 ∈ Lp′(Ω × (0, T )),
λ2 ∈ L1(Ω × (0, T )), λ3 ∈ L(p/α)′(Ω × (0, T )), 0 < α < p, such that

|σ(x, t, u, F )| 6 λ1(x, t) + c1(|u|
p−1 + |F |p−1)

σ(x, t, u, F ) : F > −λ2(x, t) − λ3(x, t)|u|α + c2|F |p

(NS2) (Monotonicity) σ satisfies one of the following conditions:

(a) For all (x, t) ∈ Ω × (0, T ) and all u ∈ IRn, the map F 7→ σ(x, t, u, F ) is a
C1-function and is monotone, i.e.

(σ(x, t, u, F )− σ(x, t, u, G)) : (F − G) > 0

for all (x, t) ∈ Ω × (0, T ), u ∈ IRm and F, G ∈ IIMn×n.

(b) There exists a function W : Ω × (0, T ) × IRn × IIMn×n → IR such that
σ(x, t, u, F ) = ∂W

∂F
(x, t, u, F ), and F 7→ W (x, t, u, F ) is convex and C1 for

all (x, t) ∈ Ω × (0, T ) and all u ∈ IRn.

(c) σ is strictly monotone, i.e. σ is monotone and (σ(x, t, u, F )−σ(x, t, u, G)) :
(F − G) = 0 implies F = G.

We recall that the main point is that, in (a) and (b), it is not required that σ is
strictly monotone or monotone in the variables (u, F ) as it is usually assumed in
previous work.

We will work with the following function spaces: Let

�
:= {ϕ ∈ C∞

0 (Ω; IRn) : div ϕ = 0}.

Then, V denotes the closure of
�

in the space W 1,p(Ω; IRn). A classical result of
de Rham shows, that this space is

V = {ϕ ∈ W 1,p
0 (Ω; IRn) : div ϕ = 0}.

In addition, we will have to work with W s,2(Ω; IRn), where s > 1 + n
2
. Then, we

denote by
Vs := the closure of

�
in the space W s,2(Ω)

and

Hq := the closure of
�

in the space Lq(Ω), and

H := H2.

2



Furthermore, let � denote the space defined by

� := {v ∈ Lp(0, T ; V ) : ∂tv ∈ Lp′(0, T ; V ′)},

where the integrals are to be understood in the sense of Bochner and the time-
derivative means here the vectorial distributional derivative. We recall that � is
continuously embedded in C0([0, T ]; H) and we always identify v ∈ � with its
representative in C0([0, T ]; H).

The main result we have proved in [1] is the following:

Theorem 1 Assume that σ satisfies the conditions (NS0)–(NS2) for some p ∈ [1+
2n

n+2
,∞). Then for every f ∈ Lp′(0, T ; V ′) and every u0 ∈ H, the Navier-Stokes

system (1)–(4) has a weak solution (u, P ), with u ∈ � , in the following sense: For
every v ∈ Lp(0, T ; V ) there holds

∫ T

0

〈∂tu, v〉dt +

∫ T

0

∫

Ω

σ(x, t, u, Du) : Dv dx dt+

+

∫ T

0

∫

Ω

(u · ∇)u · v dx dt =

∫ T

0

〈f, v〉dt,

u(0, ·) = u0.

The weak solution in Theorem 1 is more than a classical weak solution and in
particular the energy equality is satisfied (see Remark in [1, p. 245] for more details).

For the proof we used a Faedo-Galerkin method. By using the assumptions in
(NS1) we constructed a Galerkin sequence (um) of approximating solutions. Several
compactness properties were then established in [1] which allowed to extract a subse-
quence um converging weakly to some u in Lp(0, T ; V ). But then, the monotonicity
assumptions (NS2) (a) or (b) do not allow to use the classical monotonicity method
(like in [9]) in order to pass to the limit in the Galerkin equations. To overcome
this difficulty we then used a refinement of the monotone operator method (inspired
by [3]) which involves the theory of Young measures. To this end, we studied the
Young measure ν(x,t) generated by the sequence of gradients (Dum), and obtained a
div-curl inequality which was the key ingredient to pass to the limit in the Galerkin
equation. This inequality was formulated as follows:

Lemma 2 (A div-curl inequality) The Young measure ν(x,t) generated by the
gradients Dum of the Galerkin approximations um has the property, that for all
s ∈ [0, T ]:

∫ s

0

∫

Ω

∫

IIMn×n

(
σ(x, t, u, λ) − σ(x, t, u, Du)

)
:
(
λ − Du

)
dν(x,t)(λ)dxdt 6 0. (5)

In a final step we have shown that the existence result in Theorem 1 follows from the
div-curl inequality whenever we use one of the monotonicity conditions in (NS2).
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Moreover we have derived some additional properties of the Galerkin approxima-
tions: In case (NS2) (a) there holds σ(x, t, um, Dum) ⇀ σ(x, t, u, Du) in Lp′(Ω ×
(0, T )) (for a subsequence), in case (b) we have in addition σ(x, t, um, Dum) →
σ(x, t, u, Du) in Lβ(Ω × (0, T )), for all β ∈ [1, p′), and in case (c), we even have
Dum → Du in Lα(Ω × (0, T )) for all α ∈ [1, p).

1.2 Extension of the results to quasimonotone viscosity ten-
sors

In this paper we intend to consider quasimonotonicity assumptions for σ rather
than the classical pointwise monotonicity: Instead of (NS2) (a), (b) or (c) which are
pointwise monotonicity conditions, we consider the assumptions (NS2) (d) and (e)
below which represent monotonicity in an integrated form. Moreover we consider
equation (1) with a source term which is allowed to be of a more general form. More
precisely, we replace f ∈ Lp′(0, T ; V ′) by f satisfying the assumption (Hf):

(Hf) f : Ω × (0, T ) × R
n × M

n×n → R
n is a Carathéodory function in the sense

(NS0). Moreover we assume that one of the following additional conditions
hold:

(i) For a constant β < p− 1 and a function λ4 ∈ Lp′(Ω× (0, T )) there holds

|f(x, t, u, F )| 6 λ4(x, t) + C
(
|u|β + |F |β

)
.

(ii) In addition to (i), the function f is independent of the fourth variable, or,
for a.e. (x, t) ∈ Ω × (0, T ) and all u ∈ R

n, the mapping F → f(x, t, u, F )
is linear.

We now introduce the definitions of quasimonotonicity which we are going to use:

Definition 3 A function η : IIMn×n → IIMn×n is called strictly quasimonotone,
if there exist constants c > 0 and r > 0 such that

∫

Ω

(η(Du) − η(Dv)) : (Du − Dv)dx > c

∫

Ω

|Du − Dv|rdx

for all u, v ∈ W 1,p
0 (Ω).

We say that η is strictly p-quasimonotone, if

∫

IIMn×n

(η(λ) − η(λ̄)) : (λ − λ̄)dν(λ) > 0

for all homogeneous W 1,p gradient Young measures ν with center of mass λ̄ = 〈ν, id〉
which are not a single Dirac mass.
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Remarks: (a) Note that the notion of p-quasimonotonicity is phrased in terms of
gradient Young measures. Notice that although quasimonotonicity is “monotonicity
in integrated form”, the gradient of a quasiconvex function is not necessarily strictly
p-quasimonotone. A simple example of a strictly p-quasimonotone function is the
following: Assume that η satisfies the growth condition

|η(F )| 6 C |F |p−1

with p > 1 and the structure condition
∫

Ω

(η(F + Dϕ) − η(F )) : Dϕ dx > c

∫

Ω

|Dϕ|pdx

for a constant c > 0 and for all ϕ ∈ C∞
0 (Ω) and all F ∈ IIMn×n. Then η is strictly

p-quasimonotone. This follows easily from the definition if one uses that for every
W 1,p gradient Young measure ν there exists a sequence (Dvk) generating ν for which
(|Dvk|

p) is equiintegrable (see [5], [7]).

(b) In [10], Zhang introduced the following notion of quasimonotonicity: The con-
tinuous function η : IIMN×n → IIMN×n is quasimonotone (in the sense of Zhang) if
for every F ∈ IIMN×n, every open subset G of IRn and every ϕ ∈ C1

0 (G; IRN ) there
holds ∫

G

η(F + Dϕ) : Dϕdx > 0.

However, he uses a stronger notion of quasimonotonicity to prove his results, namely,
that ∫

G

η(F + Dϕ) : Dϕdx > c

∫

G

|Dϕ|pdx (6)

for a fixed constant c > 0, along with the growth condition

|η(F )| 6 C|F |p−1 (7)

for some constant C > 0. We would like to indicate that our definition of strict p-
quasimonotonicity can be considered as a generalization of Zhang’s notion of quasi-
monotonicity. In fact, a function which is quasimonotone in the sense of Zhang,
i.e. which satisfies (6) and (7), is strictly p-quasimonotone. To see this, we consider
a homogeneous W 1,p gradient Young measure ν with center of mass λ̄ := 〈ν, id〉 and
which is not a single Dirac mass. Then (for some fixed domain G), there exists a
sequence (ϕk) in C∞

0 (G) such that the sequence of gradients (Dϕk) generates ν and
such that (|Dϕk|) is equiintegrable (see Remark (a)). By (6) there holds

∫

G

η(F + Dϕk) : Dϕkdx > c

∫

G

|Dϕk|
pdx. (8)

The sequence (|Dϕk|) is equiintegrable and, by (7), (η(F + Dϕk) : Dϕk) is also
equiintegrable. Hence by Ball’s fundamental theorem on Young measures (see [2]),
we obtain from (8), that

∫

G

∫

IIMn×n

η(F + λ) : λdνx(λ)dx > c

∫

G

∫

IIMn×n

|λ|pdνx(λ)dx,
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and since ν, by hypothesis, is homogeneous,
∫

IIMn×n

η(F + λ) : λdν(λ) > c

∫

IIMn×n

|λ|pdν(λ).

A substitution λ = λ′ − λ̄, and the special choice F = λ̄ yields
∫

IIMn×n

η(λ′) : (λ′ − λ̄)dν(λ′) > c

∫

IIMn×n

|λ′ − λ̄|pdν(λ′) > 0 (9)

since ν is not a single Dirac mass. Moreover,
∫

IIMn×n

η(λ̄) : (λ′ − λ̄)dν(λ′) = η(λ̄) :

∫

IIMn×n

λ′dν(λ′)

︸ ︷︷ ︸

=λ̄

−η(λ̄) : λ̄

∫

IIMn×n

dν(λ′)

︸ ︷︷ ︸

=1

= 0.

(10)
If we subtract (10) from (9), we arrive at

∫

IIMn×n

(η(λ′) − η(λ̄)) : (λ′ − λ̄)dν(λ′) > 0,

and hence η is strictly p-quasimonotone. We end this remark by noting that we can
replace the power p on the right hand side of (6) by any power r > 0 and still have
the same conclusion. ♦

So, in addition to (NS2) (a), (b) and (c), we will now consider the conditions:

(NS2) (Monotonicity) σ satisfies one of the following conditions:

(d) for a.e (x, t) ∈ Ω × (0, T ) and all u ∈ R
n, the function F → σ(x, t, u, F )

is strictly quasimonotone.

(e) for a.e (x, t) ∈ Ω × (0, T ) and all u ∈ R
n, the function F → σ(x, t, u, F )

is strictly p-quasimonotone.

The main result we prove in this paper is the following:

Theorem 4 Assume that σ satisfies the conditions (NS0) and (NS1) for some p ∈
[1 + 2n

n+2
,∞). Let u0 be given in H. Then we have:

(i) If σ satisfies on of the condition (NS2) (c), (d) or (e) then for every f sat-
isfying (Hf) (i), the Navier-Stokes system (1)–(4) has a weak solution (u, P ),
with u ∈ � .

(ii) If σ satisfies on of the condition (NS2) (a) or (b) Then for every f satisfying
(Hf) (ii) the same conclusion holds.

Remark: The notion of a solution u ∈ � in Theorem 4 is the same as in Theo-
rem 1: We have u(0, ·) = u0 and there holds

∫ T

0

〈∂tu, v〉dt +

∫ T

0

∫

Ω

σ(x, t, u, Du) : Dv dx dt +

∫ T

0

∫

Ω

(u · ∇)u · v dx dt =

=

∫ T

0

∫

Ω

f(x, t, u, Du) · v dx dt ∀v ∈ Lp(0, T ; V ).
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1.3 Organization of the paper

In Section 2 we will resume the relevant results presented in [1, Section 1–6]. We
will prove first that for every f satisfying (Hf) (i) we can construct a Galerkin
sequence um of approximating solutions. In a second step we will show that the
convergence properties for um established in [1] remain valid. We will then recover
the same properties for the Young measure associated to (um, Dum), and actually
the div-curl inequality holds again.

In Section 3 we pass to the limit m → ∞ in the Galerkin equations and prove Theo-
rem 4. Like in [1], the key ingredient for identifying the weak limit σ(x, t, um, Dum) ⇀
σ(x, t, u, Du) (where u is the weak limit in Lp(0, T ; V ) of a relabeled subsequence
of um) is the div-curl lemma (unless for the easier situation when (NS2) (d) holds).
In the cases (NS2) (c), (d) or (e) we also get that Dum → Du in measure, which
allows to conclude the first part of Theorem 4. In the situation (NS2) (a) or (b), this
additional property of convergence does not hold in general and we have to consider
the stronger assumption (Hf) (ii) instead of (Hf) (i) in order to identify the weak
limit in f(x, t, um, Dum) ⇀ f(x, t, u, Du).

2 The Galerkin approximation

2.1 The Galerkin base

Let the functions wi ∈ Vs be a Galerkin base, as introduced in [1, Section 2]. We have
shown that W := {w1, w2, . . .} is an orthonormal Hilbert base of H. In particular,
the L2-orthogonal projector Pm : H → H onto span(w1, w2, . . . , wm), m ∈ N is
defined by the formula

Pmu =

m∑

i=1

(wi, u)Hwi. (11)

Of course, the operator norm ‖Pm‖ � (H,H) = 1. We have also shown that ‖Pm‖ � (Vs,Vs) =
1 and that Pm converges pointwise to the identity in � (Vs, Vs).

2.2 The Galerkin approximation

Let m ∈ N. In the (Faedo-)Galerkin method one makes an Ansatz for approximating
solutions um of the form

um(x, t) =

m∑

i=1

cmi(t)wi(x), (12)

where cmi : [0, T ) → IR are supposed to be continuous bounded functions. We take
care of the initial condition (4) by choosing the initial coefficients cmi := cmi(0) =
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(u0, wi)L2 such that

um(·, 0) =
m∑

i=1

cmiwi(·) → u0 in L2(Ω) as m → ∞. (13)

We try to determine the coefficients cmi(t) in such a way, that for every m ∈ N the
system of ordinary differential equations

(∂tum, wj)H +

∫

Ω

σ(x, t, um, Dum) : Dwjdx + b(um, um, wj) =

=

∫

Ω

f(x, t, um, Dum) · wjdx (14)

(with j ∈ {1, 2, . . . , m}) is satisfied in the sense of distributions. In (14), we used
the shorthand notation

b(u, v, w) :=

∫

Ω

((u · ∇)v) · w dx.

Let ε, J, r and K be the quantities introduced in [1, Section 3.1]. For any j =
1, . . . , m we can verify (by using the assumption (Hf)) that the function Θ : J×K →
R defined by

Θ(t, c1, . . . , cm) :=

∫

Ω

f(x, t,

m∑

i=1

ciwi,

m∑

i=1

ciDwi) · wjdx

is a Carathéodory function. Moreover we obtain the estimate:

|Θ(t, c1, . . . , cm)| 6 C

∫

Ω

λ4(x, t)dx + C,

where C may depend on m and r but is independent of t. These results allow to
conclude as in [1, Section 3.1] that there exists a local solution for equation (14).
This solution um is on the form (12) and it verifies (14) in the sense � ′(0, ε′), for
some ε′ > 0 which, for the moment, may depend on m.

This local solution can be extended to the whole interval [0, T ) independent of
m. To do this one can use the arguments presented in [1, Section 3.2]. More
precisely, let τ be arbitrary in the existence interval. We have to replace the term
III =

∫ τ

0
〈f(t), um〉dt by III =

∫ τ

0

∫

Ω
f(x, t, um, Dum) ·umdxdt. By using the growth

condition (Hf) (i) we then obtain

III 6 ‖λ4‖Lp′ (Ω×(0,T ))‖um‖Lp(Ω×(0,T )) + C‖um‖
β+1
Lp(0,T ;V ).

This inequality, in combination with the estimates for the terms I and II from [1,
Section 3.2] which remain unchanged, permits again to obtain the estimate

|(cmi(τ))i=1,...,m|
2
IRm = ‖um(·, τ)‖2

L2(Ω) 6 C̄

for a constant C̄ which is independent of τ (and of m). It follows that the functions
cmj can be extended to the whole interval [0, T ] and um(x, t) =

∑m
j=1 cmj(t)wj(x)

is a solution (not necessarily unique) of (14) in the sense � ′(0, T ). Moreover we
obtain again

‖um‖C0([0,T ];L2(Ω)) 6 C. (15)
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2.3 Basic convergence properties

We easily recover the basic convergence properties presented in [1, Section 4.1],
i.e. we may extract a subsequence, still denoted by um, verifying

um
∗
⇀ u in L∞(0, T ; H) (16)

um ⇀ u in Lp(0, T ; V ) (17)

− div σ(x, t, um, Dum) ⇀ χ in Lp′(0, T ; V ′) (18)

for some u ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H) and χ ∈ Lp′(0, T ; V ′). Moreover, by using
(17) together with (Hf) (i) we may also assume that

f(x, t, um.Dum) ⇀ ξ in Lp′(Ω × (0, T )) (19)

for some ξ ∈ Lp′(Ω × (0, T )).

The principal difficulty will be, as in [1], to show that χ = − div σ(x, t, u, Du).
Moreover here, we will also have to identify ξ with f(x, t, u, Du).

2.4 Convergence in measure

We recall first that for any q satisfying 2 < q < p∗ := np
n−p

we have the following
chain of continuous injections:

V
i

↪→ Hq
i0
↪→ H

γ
∼= H ′ i1

↪→ V ′
s . (20)

Here, H ∼= H ′ is the canonical isomorphism γ between the Hilbert space H and its
dual. We take over from [1] the notation j ◦ i to denote the canonical injection of V
into V ′

s , that is, for u ∈ V :

〈j ◦ i ◦ u, v〉 =

∫

Ω

uv dx ∀v ∈ Vs.

Next, we consider the time derivative of um in � ′(0, T ; V ′
s), which is in fact a

function in Lp′(0, T ; V ′
s) given by the formula :

〈∂t(j ◦ i ◦ um), v〉 =

∫

Ω

∂tum(x, t)Pmv(x)dx = −

∫

Ω

σ(x, t, um, Dum) : D(Pmv)dx−

− b(um, um, Pmv) +

∫

Ω

f(x, t, um, Dum)Pmvdx ∀v ∈ Vs, a.e. t ∈ (0, T ).

(21)

By using the fact that um is a bounded sequence in Lp(0, T ; V ) together with the
growth property (Hf) (i) we obtain

∣
∣
∣
∣

∫

Ω

f(x, t, um, Dum).Pmvdx

∣
∣
∣
∣
6 C‖v‖Vs

‖f(x, t, um, Dum)‖L1(Ω) 6 γm(t)‖v‖V s,
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where (γm) is a bounded sequence in Lp′(0, T ).

Consequently we obtain :

|〈∂t(j ◦ i ◦ um), v〉| 6 Cm(t)‖v‖Vs
(22)

where (Cm) is a bounded sequence in Lp′(0, T ).

Remark: The estimate (25) in [1, p. 255] needs to be modified in the following way:
C ∈ Lp′(0, T ) should be replaced by (Cm), a bounded sequence in Lp′(0, T ), like here
in estimate (22). This modification has no consequence on the results presented as
we will see in the sequel.

From (22) we conclude indeed, that {∂tj ◦ i ◦ um}m is a bounded sequence in
Lp′(0, T ; V ′

s).

Consequently, by [1, Lemma 2], we may assume (for a further subsequence)

um → u in Lp(0, T ; Lq(Ω)) for all q < p∗ and in measure on Ω × (0, T ). (23)

2.5 A regularity result for u

The arguments developed in [1, Section 4.3] are easily carried over: I follows that
the time derivative ∂t(j ◦ i ◦ u) is given by the formula

〈∂t(j ◦ i ◦ u), v〉 =

∫

Ω

ξvdx − 〈χ, v〉 − b(u, u, v), ∀v ∈ Vs, a.e. t ∈ (0, T ). (24)

This permits again to obtain the property ∂t(j ◦ i ◦ u) ∈ Lp′(0, T ; V ′), which implies
that u ∈ � .

2.6 The limiting time values for u

We remark first that by the boundedness of the sequence ∂t(j◦i◦um) in Lp′(0, T ; V ′
s)

we may extract a subsequence (not relabeled) such that

∂t(j ◦ i ◦ um) ⇀ ∂t(j ◦ i ◦ u) in Lp′(0, T ; V ′
s). (25)

Next, by the same manner as in [1, Section 4.4], we get

um(x, 0) → u0(x) = u(x, 0) in H, (26)

um(·, T ) ⇀ u(·, T ), in H. (27)

The property (27) can be extended to all t ∈ [0, T ]. Indeed, we have:

Lemma 5 There exists a subsequence of {um} (still denoted by um) with the prop-
erty that for every t ∈ [0, T ]

um(·, t) ⇀ u(·, t) in H. (28)

By (23) the convergence in (28) is actually strong for almost all t ∈ [0, T ].
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Proof
We can take over the proof of [1, Lemma 4] with taking into account the remark
after the relation (22). The estimate (25) in [1, p. 255] is not true and we have to
replace C(t) by Cm(t), where Cm(t) is a bounded sequence in Lp′(0, T ). In fact, after
this correction the relation (25) in [1] is the same estimate as (22) in this paper.
Recall next that we consider p < ∞ and thus the boundedness of Cm in Lp′(0, T )
implies the equiintegrability property. Consequently the estimate (43) in [1] holds
true when we replace C(t) by Cm(t) and the rest of the proof follows. 2

2.7 The Young measure generated by the Galerkin approx-
imation

The sequence (or at least a subsequence) of the gradients Dum generates a Young
measure ν(x,t), and since um converges in measure to u on Ω × (0, T ), the sequence
(um, Dum) generates the Young measure δu(x,t)⊗ν(x,t) (see, e.g., [6]). Now, we collect
some facts about the Young measure ν in the following proposition:

Proposition 6 The Young measure ν(x,t) generated by the sequence {Dum}m has
the following properties:

(i) ν(x,t) is a probability measure on IIMn×n for almost all (x, t) ∈ Ω × (0, T ).

(ii) ν(x,t) satisfies Du(x, t) = 〈ν(x,t), id〉 for almost every (x, t) ∈ Ω × (0, T ).

(iii) ν(x,t) has finite p-th moment for almost all (x, t) ∈ Ω × (0, T ).

(iv) ν(x,t) is a homogeneous W 1,p gradient Young measure for almost all (x, t) ∈
Ω × (0, T ).

Proof
For (i), (ii) and (iii) see the proof of Proposition 5 in [1].

(iv) We have to show, that {ν(x,t)}x∈Ω is for almost all t ∈ (0, T ) a W 1,p gradi-
ent Young measure. To see this, we take a quasiconvex function q on IIMn×n with
q(F )/|F | → 1 as F → ∞. Then, we fix x ∈ Ω, δ ∈ (0, 1) and use inequality (1.21)
from [8, Lemma 1.6] with u replaced by um(x, t), with a := u(x, t) − Du(x, t)x and
with X := Du(x, t). Furthermore, we choose r > 0 such that Br(x) ⊂ Ω. Ob-
serve, that the singular part of the distributional gradient vanishes for um and, after

11



integrating the inequality over the time interval [t0 − ε, t0 + ε] ⊂ (0, T ), we get

∫ t0+ε

t0−ε

∫

Br(x)

q(Dum(y, t))dydt+

+
1

(1 − δ)r

∫ t0+ε

t0−ε

∫

Br(x)\Bδr(x)

|um(y, t) − u(x, t) − Du(x, t)(y − x)|dydt >

> |Bδr(x)|

∫ t0+ε

t0−ε

q(Du(x, t))dt.

Letting m tend to infinity in the inequality above, we obtain

∫ t0+ε

t0−ε

∫

Br(x)

∫

IIMn×n

q(λ)dν(y,t)(λ)dydt+

+
1

(1 − δ)r

∫ t0+ε

t0−ε

∫

Br(x)\Bδr(x)

|u(y, t)− u(x, t) + Du(x, t)(y − x)|dydt >

> |Bδr(x)|

∫ t0+ε

t0−ε

q(Du(x, t))dt.

Now, we let ε → 0 and r → 0 and use the differentiability properties of Sobolev
functions (see, e.g., [4]) and obtain, that for almost all (x, t0) ∈ Ω × (0, T )

∫

IIMn×n

q(λ)dν(x,t0)(λ) >
|Bδr(x)|

|Br(x)|
q(Du(x, t0)).

Since δ ∈ (0, 1) was arbitrary, we conclude that Jensen’s inequality holds true for q
and the measure ν(x,t) for almost all (x, t) ∈ Ω × (0, T ). Using the characterization
of W 1,p gradient Young measures of [7] (e.g., in the form of [8, Theorem 8.1]), we
conclude that in fact {νx,t}x∈Ω is a W 1,p gradient Young measure on Ω for almost all
t ∈ (0, T ). By the localization principle for gradient Young measures, we conclude
then, that ν(x,t) is a homogeneous W 1,p gradient Young measure for almost all (x, t) ∈
Ω × (0, T ). 2

2.8 A Navier-Stokes div-curl inequality

In this section, we prove a Navier-Stokes version of a “div-curl Lemma” which will be
the key ingredient to obtain χ = − div σ(x, t, u, Du). The results and the arguments
presented in [1, Section 6] can be carried over with only minor modifications which
we want to explain in the sequel.

In a first step we note that
∫ s2

s1

〈χ, u〉dt +
1

2
‖u(·, s2)‖

2
H =

∫ s2

s1

∫

Ω

ξ · udxdt +
1

2
‖u(·, s1)‖

2
H , ∀ 0 6 s1 6 s2 6 T.

(29)
This follows in the same way as the energy equality (46) in [1].

Next, we establish the following lemma:
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Lemma 7 (A div-curl inequality) The Young measure ν(x,t) generated by the
gradients Dum of the Galerkin approximations um has the property that for all
s ∈ [0, T ] :

∫ s

0

∫

Ω

∫

IIMn×n

(
σ(x, t, u, λ) − σ(x, t, u, Du)

)
:
(
λ − Du

)
dν(x,t)(λ)dxdt 6 0. (30)

Proof
We follow the calculations in [1, Section 6.2]. The inequality (48) in [1] can be
obtained without any change, and inequality (49) holds true if we replace 〈f, u〉 by
∫

Ω
ξudx. By using the property (19) together with (23) we then obtain that

lim
m→∞

∫ s

0

∫

Ω

f(x, t, um, Dum) · umdxdt =

∫ s

0

∫

Ω

ξ · udxdt.

Hence, by using (26) with (28) we obtain

lim inf
m→∞

∫ s

0

∫

Ω

σ(x, t, um, Dum) : Dumdxdt

6

∫ s

0

∫

Ω

ξ · udxdt −
1

2
‖u(·, s)‖2

H +
1

2
‖u(·, 0)‖2

H.

The rest of the proof is identical to the proof in [1]. 2

Remarks:

(i) In the proof of the div-curl lemma of we do not use any monotonicity assump-
tion.

(ii) An intermediary result is that, for all s ∈ [0, T ], there holds

lim inf
m→∞

∫ s

0

∫

Ω

(σ(x, t, um, Dum) − σ(x, t, u, Du)) : (Dum − Du)dxdt 6 0.

To see this, repeat the proof of Lemma 6 in [1] with the modifications indicated
above.

3 Passage to the limit

Here we will pass to the limit m → ∞ in the Galerkin equations and prove Theo-
rem 4. The first step is to identify the weak limit σ(x, t, um, Dum) ⇀ σ(x, t, u, Du).
This will follow from every monotonicity assumption listed in (NS2). In Subsec-
tion 3.1, we treat the special cases (NS2) (c), (d) and (e) for which we also obtain
the convergence Dum → Du in measure. The conclusion is then given in the last
subsection.

13



3.1 The cases (NS2) (c), (d) and (e)

In these three cases we will prove that we may extract a subsequence with the
property

Dum → Du in measure on Ω × (0, T ). (31)

We consider first the case (NS2) (d). In this situation, elementary arguments are
actually sufficient to prove (31), and we do not need the div-curl inequality: Observe
that we have

∫ T

0

∫

Ω

|Dum − Du|r dxdt 6

6 C

∫ T

0

∫

Ω

(σ(x, t, um, Dum) − σ(x, t, um, Du)) : (Dum − Du)dxdt

6 C

∫ T

0

∫

Ω

(σ(x, t, um, Dum) − σ(x, t, u, Du)) : (Dum − Du)dxdt+

+ C

∫ T

0

∫

Ω

(σ(x, t, u, Du) − σ(x, t, um, Du)) : (Dum − Du)dxdt. (32)

We remark now that the limit inferior of the first term on the right hand side of
(32) is less than or equal to zero (see remark (ii) after lemma 7). The second term
vanishes when m tends to infinity because of (23). It follows that

lim inf
m→∞

∫ T

0

∫

Ω

|Dum − Du|r dxdt = 0,

and thus (31) holds for a subsequence.

In case (NS2) (c) we can take over the proof presented in [1]. It remains to consider
the case (NS2) (e). We suppose that ν(x,t) is not a Dirac mass on a set (x, t) ∈
M ⊂ Ω × (0, T ) of positive Lebesgue measure |M | > 0. Then, by the strict p-
quasimonotonicity of σ(x, t, u, ·), and the fact that ν(x,t) is a homogeneous W 1,p

gradient Young measure (see Section 2.7) for almost all (x, t) ∈ Ω × (0, T ), we have
for a.e. (x, t) ∈ M

∫

IIMn×n

σ(x, t, u, λ) : λdν(x,t)(λ) >

>

∫

IIMn×n

σ(x, t, u, λ)dν(x,t)(λ) :

∫

IIMn×n

λdν(x,t)(λ)

︸ ︷︷ ︸

= Du(x, t)

.

Hence, by integrating over Ω × (0, T ), we get together with Lemma 7

∫ T

0

∫

Ω

∫

IIMn×n

σ(x, t, u, λ)dν(x,t)(λ) : Du(x, t)dxdt >

>

∫ T

0

∫

Ω

∫

IIMn×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt >

>

∫ T

0

∫

Ω

∫

IIMn×n

σ(x, t, u, λ)dν(x,t)(λ) : Du(x, t)dxdt
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which is a contradiction. Hence, we have ν(x,t) = δDu(x,t) for almost every (x, t) ∈
Ω × (0, T ). From this, it follows that Dum → Du on Ω × (0, T ) in measure for
m → ∞ (see, e.g., [6]).

3.2 Conclusion

For the cases (NS2) (c), (d) and (e) there holds

σ(x, t, um, Dum) → σ(x, t, u, Du) in Lβ(Ω × (0, T )), ∀β ∈ [1, p′), (33)

f(x, t, um, Dum) → f(x, t, u, Du) in Lβ(Ω × (0, T )), ∀β ∈ [1, p′). (34)

To see this, just use (31), the boundedness of the sequences σ(x, t, um, Dum) and
f(x, t, um, Dum) in Lp′(Ω × (0, T )), and apply the Vitali convergence theorem. It
then follows that

− div σ(x, t, um, Dum) ⇀ χ = − div σ(x, t, u, Du) in Lp′(0, T ; V ′), (35)

f(x, t, um.Dum) ⇀ ξ = f(x, t, u, Du) in Lp′(Ω × (0, T )), (36)

These properties are sufficient to pass to the limit in the Galerkin equations and to
conclude the proof of Theorem 4 in case (i) (see [1, p. 266]).

For the remaining cases (NS2) (a) and (b) the property (31) does not hold in general,
but we however obtain σ(x, t, um, Dum) ⇀ σ(x, t, u, Du) in Lp′(Ω× (0, T )) by using
Lemma 7 in [1, Section 7]. This suffices to conclude the proof of Theorem 4 in case
(ii): In fact, in this situation we have assumed that f satisfies the assumption (Hf)
(ii), and it remains to show that the property (36) still holds without (31). By using
(23) we easily verify that it is true for the particular situation in (Hf) (ii), when f
is independent of the fourth variable. In the other situation we have that, for a.e
(x, t) ∈ Ω × (0, T ) and all u ∈ R

n, the mapping F → f(x, t, u, F ) is linear. Here we
argue as follows to identify the weak limit ξ in (36):

f(x, t, um, Dum) ⇀

∫

IIMn×n

f(x, t, u, λ)dν(x,t)(λ)

= f(x, t, u, ·) ◦

∫

IIMn×n

λdν(x,t)(λ) = f(x, t, u, Du),

where for the last equality we have used the property (ii) of Proposition 6.

We can now again pass to the limit in the Galerkin equations and conclude the
proof of Theorem 4 in case (ii). We end this discussion by noting, that the energy
equality (29) holds true with ξ replaced by f(x, t, u, Du) and with χ replaced by
− div σ(x, t, u, Du).
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