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Abstract We prove that under some global conditions on the maximum and the
minimum eigenvalue of the matrix of the coefficients, the gradient of the (weak)
solution of some degenerate elliptic equations has higher integrability than expected.
Technically we adapt the Giaquinta–Modica regularity method in some degenerate
cases. When the dimension is two, a consequence of our result is a new Hölder
continuity result for the weak solution.
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1 Introduction

Let � be an open bounded set in R
n (n equals 2 or 3), with a Lipschitz boundary.

We consider a linear, second order, self adjoint, degenerate elliptic equation with a
homogeneous Dirichlet boundary condition:

(P)

⎧⎨
⎩Lu := −∑n

i, j=1
∂

∂xi

(
aij(x)

∂u
∂x j

)
= f in �,

u = 0 on∂�.

Here f : � → R is a given function and A(x) := [aij(x)]i, j=1,..n is a given symmetric
matrix with measurable coefficients. We assume that A is positive definite almost
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everywhere in �, and we denote by λ(x), �(x) its minimum and maximum eigenval-
ues. It follows that for all η, θ ∈ R

n and a.e x ∈ � we have:

〈A(x)η, θ〉 ≤ �(x)|η||θ |, (1)

〈A(x)η, η〉 ≥ λ(x)|η|2, (2)

where 〈, 〉 denotes the scalar product in R
n.

In this paper, we will study some questions about existence, uniqueness and
regularity of weak solution for problem (P). We will also give a regularity result for
the weak solution of a class of non-linear degenerate problems which include (P).

1.1 Mathematical Background

When λ may vanish or � may be unbounded then L is called degenerate operator.
We will always assume in the following that λ is strictly positive almost everywhere
and � is finite almost everywhere. These assumptions are not sufficient to analyse
problem (P) and therefore we will also assume:

λ ∈ L1(�), (3)

λ−1 ∈ L1(�), (4)

�

λ
∈ L∞(�). (5)

For p ≥ 1, we denote by Lp(λ,�) the weighted Lebesgue space defined by

Lp(λ,�) =
⎧⎨
⎩u : � → R measurable and s.t

∫
�

λ(x)|u(x)|pdx < ∞
⎫⎬
⎭ ,

and equipped with the norm

‖u‖Lp(λ,�) =
(∫

�

λ(x)|u(x)|pdx
)1/p

.

Hence Lp(λ,�) is a Banach space. Moreover assumption (3) ensures that D(�) ⊂
Lp(λ, �) with dense injection.

Under the assumptions (3–5), the natural functional setting for problem (P) is
given by the following weighted Sobolev spaces:

W = {
u ∈ W1,1(�) : ‖u‖λ < ∞}

, (6)

W0 =
{

u ∈ W1,1
0 (�) : ‖u‖λ < ∞

}
, (7)

H = C∞(�̄)
W

, (8)

H0 = C∞
c (�)

W
, (9)

where we have used the notation

‖u‖2
λ := ‖u‖2

L2(λ,�)
+ ‖∇u‖2

L2(λ,�)
. (10)
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The spaces W, W0, H and H0 are Hilbert spaces and we have H ⊂ W ⊂ D′(�) and
H0 ⊂ W0. Notice that assumption (4) is quite necessary. If we remove it then W0 need
not be complete and the gradient of a function in H0 need not be uniquely defined
(see [40] and [31] Proposition 1.2).

Let B denote the bilinear form on D(�) associated to L:

B(u, ϕ) :=
∫
�

〈A(x)∇u(x),∇ϕ(x)〉dx. (11)

By using assumption (1) together with (5) we obtain

|B(u, ϕ)| ≤ C‖u‖λ‖ϕ‖λ ∀u, ϕ ∈ W, (12)

where C := ‖�
λ
‖L∞(�). The bilinear form B is then continuous on W and we can

consider two natural notions of weak solutions for Problem (P):

W-solution : Let f ∈ W ′
0. A function u ∈ W0 is called a W-solution of (P) if it verifies

B(u, ϕ) = 〈 f, ϕ〉W ′
0,W0 ∀ϕ ∈ W0.

H-solution : Let f ∈ H′
0. A function u ∈ H0 is called a H-solution of (P) if it verifies

B(u, ϕ) = 〈 f, ϕ〉H′
0,H0 ∀ϕ ∈ H0.

Note that in general, for n ≥ 2, H0 
= W0 (see [40]), and even for smooth second
member, we can obtain a W-solution and a H-solution for Problem (P) that are
not equal (see [40] Proposition 1.1, and [41]). When we have the equality H = W,
which also implies H0 = W0 (see [31], Remark 1.5), we say that λ is regular. Sufficient
conditions ensuring that a weight λ is regular were established in [40] and [15]. An
exact characterization of regular weights is not known. In the sequel we will assume
that

λ is a regular weight. (13)

It follows that the two notions of W-solution and H-solution are the same notion and
we call it weak solution. Clearly in this case we also have H′

0 = W ′
0. Remark that,

by definition, D(�) is dense in H0 so that H′
0 can be identified with a subspace of

D′(�). In fact (see [29] p. 8), a distribution T ∈ D′(�) is in H′
0 if and only if it can be

represented (in general non uniquely) as

〈T, ϕ〉 =
∫
�

(
f0(x)λ(x)ϕ(x) + λ(x)〈 f (x),∇ϕ(x)〉)dx ∀ϕ ∈ D(�),

with f0 ∈ L2(λ−1, �) and f ∈ (L2(λ−1, �))n.

1.2 Main Results

Instead of Eqs. 3 and 4, we will consider the following stronger assumptions for λ:

λ−1 ∈ L∞(�), (14)

λ ∈ W1,1(�), (15)

there exists σ > 2 s. t.
∫
�

|∇λ|σ
λ

3σ
2

< ∞. (16)
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Notice that condition (16) is equivalent to λ−1/2 ∈ W1,σ (�). Finally, we will consider
λ in the following class K of weights:

K := {
λ > 0 a.e in � and it satisfies Eqs. 13–16

}
.

We will consider problem (P) with a second member satisfying

f ∈ W−1,p(�), with p > n. (17)

Notice that, when λ is in the class K and p > n, we have

H0 = W0 ⊂ H1
0(�) ⊂ W1,p′

0 (�).

It follows that if f satisfies Eq. 17 then f ∈ H′
0.

Our main result is the following:

Theorem 1 Assume that λ is in the class K and Eq. 5 is fulfilled. Then, for any f ∈ H′
0,

there exists a unique weak solution u for problem (P), satisfying:

‖u‖λ ≤ C‖ f‖H′
0
. (18)

If in addition f satisfies Eq. 17 then u ∈ L∞(�) and

‖u‖L∞(�) ≤ C‖ f‖−1,p. (19)

Moreover there exist ε > 0 and C < ∞ depending only on �, f and λ, such that

‖∇u‖(L2+ε(�))n ≤ C. (20)

A consequence of Theorem 1 (see [5] Theorem IX.12 p.166) is:

Corollary 2 When the dimension n equals two and f satisfies Eq. 17 then the weak
solution u given by Theorem 1 is Hölder continuous.

The result presented in the last part of Theorem 1, and in the Corollary 2 remains
valid for a general class of non-linear degenerate problems. In fact, we can consider
the following problems:

(P’)
{−div A(x, u,∇u) = f (x, u,∇u) in �,

u = 0 on ∂�,

where, A : � × R × R
n → R

n and f : � × R × R
n → R are Caratheodory func-

tions that satisfy the following growth and coercivity conditions:∣∣A(x, t, η)
∣∣ ≤ µ1

(
�(x)|η| + ϕ1(x)

)
, (21)

A(x, t, η)η ≥ µ2
(
λ(x)|η|2 − ϕ2(x)

)
, (22)∣∣ f (x, t, η)

∣∣ ≤ µ3(�(x)|η|α + ϕ3(x)
)
. (23)

Here, ϕi, i = 1, 2, 3, are positive functions satisfying

ϕ2
1

λ2 ,
ϕ2

2

λ2 ∈ Ls(�) and
ϕ3

λ
∈ Ls(�) for some s > 1,

α < 2 is a positive number and µ1, µ3 ≥ 0, µ2 > 0 are allowed to depend on t.
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We have:

Theorem 3 Assume that λ ∈ K, Eq. 5 holds true and A, f are Caratheodory functions
satisfying Eqs. 21–23. Assume moreover that u ∈ H0 ∩ L∞(�) is a weak solution of
problem (P’). Then there exists ε > 0 such that

∫
�

|∇u|2+ε < ∞. In particular, for n
equals two, the function u is Hölder continuous.

Remarks

(1) The results in Theorem 1, Corollary 2 and Theorem 3 remain valid if λ is in the
following class K′ which includes K:

K′ :=
{

λ > 0 a.e. in � and it is regular. Moreover λ = δρ, with
δ ∈ L∞(�), δ−1 ∈ L∞(�) and ρ satifies (14)–(16).

}

(2) The assumption λ regular can be removed inK orK′. In this situation we have to
consider W-solutions instead of weak solutions for problem (P) and we recover
the results in Theorem 1, Corollary 2 and Theorem 3.

1.3 Discussion on the Literature

Degenerate problems like (P) have been extensively studied for many years.
In general, the existence of a weak solution is obtained after proving a Poincaré

inequality (see [29, 31, 37] and [38]). In particular the first part of Theorem 1, i.e., the
existence and uniqueness of the weak solution u satisfying Eq. 18 is an application of
[29] Corollary 3.5.

For some studies about the question of the boundedness of u we can consult
[12, 29] and [31]. In Theorem 1, the property (19) is an application of [29] Theorem
7.1.

The Hölder continuity of the weak solution, or the higher integrability of its
gradient (in the sense of Eq. 20) have also studied been studied for many years. The
first situation considered was the case of uniform ellipticity, that is when we have

(UE) λ ∈ L∞(�), λ−1 ∈ L∞(�).

In this situation, the Hölder continuity of the weak solution u (there is only one
notion because λ is regular, see [40]) was established in the works of DeGiorgi, Nash
and Moser (see [9, 27, 28, 30]), without restriction on the dimension.

On the other hand, a result of higher integrability for ∇u was obtained by Boyarski
and Meyers (see [3, 24] and [13, 17, 25]).

These results were later generalized in numerous works. The principal generaliza-
tion of (UE) we want to point out is the following:

(M) λ ∈ A2.

Here A2 is the Muckhenhoupt class of order two, i.e. λ ∈ A2 means

sup
balls B⊂�

∫
B

− λ

∫
B

− λ−1 < ∞,
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where we have used the notation:

∫
B

− g(y)dy := |B|−1
∫
B

g(y)dy.

We can see that (UE) implies (M). In this case λ is regular, and Hölder continuity of
the weak solution u (again without restriction on the dimension) was established by
Fabes, Koenig and Serapioni (see [11] and [1, 39]). Moreover we also have a higher
integrability result for ∇u (see [35]).

We will see in Section 2 that λ ∈ K does not imply (M). It follows that Theorem 1,
Corollary 2 and Theorem 3 cannot be deduced from the results in [11] or [35] .

Notice also that, contrary to (M), our assumptions in K are of global nature. This
is an important advantage for some applications of the higher integrability result, as
will be explained in the next paragraph.

Under the assumption λ ∈ K, we will obtain the higher integrability result for
∇u by using a method inspired by the works of Giaquinta–Modica (see [17]) and
Stredulinsky (see [35]). In the situation they consider (case (UE) or (M)), the
following three important properties hold:

(1) The measure λdx is doubling, i.e.

sup
B(x,2r)⊂�

∫
B(x,2r)

λ(y)dy

∫
B(x,r)

λ(y)dy
< ∞.

(2) λ is regular.
(3) Uniform Poincaré–Sobolev inequality on the balls, i.e. for all B(x, r) ⊂ �:

( ∫
B(x,r)

|u(y) − ū|2λ(y)dy
)2

≤ C
( ∫

B(x,r)

|∇u(y)| 2n
2+n λ(y)dy

) 2+n
2n

, ∀u ∈ H,

where C is a constant, and ū :=

∫
B(x,r)

u(y)λ(y)dy

∫
B(x,r)

λ(y)dy
.

The properties (1) and (3) are necessary for their techniques to work. In fact, they
employ certain test functions in the weak formulation and, by using (1) and (3) they
obtain a weak-reverse Hölder inequality for ∇u. After this, the higher integrability
result for ∇u follows from a certain version of the Gehring lemma. The point is that,
when λ ∈ K, then the properties (1) and (3) need not hold (see the counterexamples
in Section 3). Nevertheless we obtain the higher integrability of the gradient of u
by using different test functions in the weak formulation. Notice that there exist
relations between the properties (1)–(3) (see [2, 20, 31]).

In some cases, a higher integrability for the gradient can be obtained from inter-
polation theory (see [6]). Similar results can be established for parabolic equations
(see [16, 22]).
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1.4 Applications of the Results

Differential problems like (P) arrise in many physical models such as oceanogra-
phy (see [4, 23]), turbulent fluid flows (see [15]), induction heating (see [8]) and
electrochemical problems (see [14]). The knowledge of some regularity results for
problem (P) is useful for the analysis of these physical models. In particular, a higher
integrability result for the gradient of the weak solution of problem (P) would be
useful for the analysis of the models studied in [8, 14, 15]. In fact, in these works, the
problem analyzed is to find two scalar functions u, h : � → R vanishing on ∂� and
such that:

− div (r(h)∇u) = f in D′(�), (24)

−div (b(h)∇h) = r(h)|∇u|2 in D′(�), (25)

where f ∈ L2(�) and r, b ∈ C1(R) are given. One way to solve Problem (24) and
(25) is to decuple the two equations. First we solve Eq. 24 with a given h = h̄, in
some Sobolev space. This subproblem is in fact a particular case of Problem (P)
where we have A(x) = r(h̄)Id. In a second step, we want to solve Eq. 25 with a
second member r(h̄)|∇u|2 which is known, but only a priori to be in L1(�). This
latter fact creates difficulties for the subsequent analysis. The situation would be
more favorable if the second member r(h̄)|∇u|2 would be an element of Ls(�), for
some s > 1. This property should be obtained in some cases, if we can apply a result
like higher integrability for ∇u. For instance, this is the case if we assume that r and
r−1 are in L∞(R). It is then possible to apply the Meyers result (see [7]). However,
the assumption r, r−1 ∈ L∞(R) doest not always have physical relevance (see [7, 15]).
Under more restrictive conditions on r we would apply the Stredulinsky result, but
here the difficulty is to find precisely what these conditions are. In fact, we have to
ensure that r(h̄) ∈ A2, which is not easy if we recall the definition of an A2-weight.
Here our regularity results presented in Theorem 1 and 3 are easier to use.

1.5 Organization of the Paper

In Section 2, we will present the proof of Theorem 1. The higher integrability re-
sult for the gradient of the weak solution is obtained from a weak-reverse Hölder
inequality. The method is inspirated by the works of Giaquinta–Modica (case (UE),
see [17]) and Stredulinsky (case (M), see [35]), but the originality resides in a special
choice of test functions. The reason is that, contrary to the case where λ is in the class
(M), if λ ∈ K then the measure λdx need not be doubling (see the counter examples
in Section 3) and we do not need to have a uniform Poincaré–Sobolev inequality on
the balls in H0. Theses two properties are necessary in the technique of Giaquinta–
Modica and Stredulinsky. With a particular choice of test functions we are able to
overcome this difficulty.

Theorem 3 is proved in the same manner. We also give some indications concern-
ing the remarks at the end of paragraph 1.2.

In Section 3, we construct in dimension two and three a weight λ ∈ K which is
not in (M). In dimension three the example presented is particulary instructive. It is
apparently close to satisfying the condition (UE) but we will prove that in fact it does
not satisfy (M). Moreover this weight does not have bounded mean oscillations.
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2 The Proofs

2.1 The First Part of the Proof of Theorem 1

Assume that λ and � satisfy the assumptions in Theorem 1. Let f ∈ H′
0. The weak

formulation for problem (P) consists in finding u ∈ H0(= W0) such that:

B(u, ϕ) = 〈 f, ϕ〉 ∀ϕ ∈ H0. (26)

Recall first that the bilinear form B is continuous, as seen in Eq. 12.
The first part of Theorem 1 is a consequence of Corrolary 3.5 p. 22 and Theorem

7.1 p. 49 in [29]. In fact the assumption (15) implies that λ ∈ L
n

n−1 (�), and by using
Eq. 14 we can see that the condition (3.2) in [29] p. 21 is fulfilled (for n = 2 take
p = 2, s = 2, t = 2 and for n = 3 take p = 2, s = 3/2, t = ∞).

Hence, from Corollary 3.5 in [29] we obtain:

‖∇ϕ‖L2(λ,�) ≥ C1‖ϕ‖λ ∀ϕ ∈ H0, (27)

where C1 > 0 is a constant depending only on � and λ.
It follows that the bilinear form B defined by Eq. 11 is coercive on H0. Then, by

the Lax–Milgram theorem, we obtain a unique solution for Eq. 26, with the estimate

‖u‖λ ≤ C2‖ f‖H′
0
, C2 = C2(C1). (28)

Let us now consider f satisfying Eq. 17. By using [5], Proposition IX.20 p.175, we
obtain the existence of a function g as follows:

g ∈ (Lp(�))n : 〈 f, ϕ〉W−1,p,W1,p′ =
∫

�

〈g(x),∇ϕ(x)〉dx,

∀ϕ ∈ W1,p′
0 (�). (29)

Recall that λ−1 ∈ L∞(�) and thus g ∈ (Lp(λ−1, �))n. We can now use Theorem 7.1 in
[29] p. 49 (take s = n/(n − 1), t = ∞ and use assumption (17)). We obtain u ∈ L∞(�)

and

C4 := ‖u‖L∞(�) ≤ C3‖ f‖−1,p. (30)

Here, C3 = C3(C2, �, λ).
This proves the first part of Theorem 1.
For the second part of the theorem, we will use a technique inspired by the works

of Giaquinta and Modica (see [17] and [32]). We will obtain the higher integrability
of the gradient of u from a weak reverse Hölder inequality. The major tool is the
Proposition 1.1 p. 122 in [17]. Notice that this proposition is a refinement of the
Gehring lemma (see [18]). Other versions of the Gehring lemma were established
in [21, 26, 35].

Let QR0 denote a n-cube, parallel to the coordinate axis and such that

�̄ ⊂ QR0 and dist(∂ QR0 , ∂�) = R1 > 0. (31)

Let x ∈ QR0 . For r > 0, we denote by Qr(x) the n-cube centered in x, parallel to the
coordinate axis and with side length equal 2r, that is:

Qr(x) = {
y ∈ R

n : |yi − xi| < r
}
.
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In the sequel we will consider the following bound for r:

r <
1
2

dist(x, ∂ QR0). (32)

This condition ensures that Q2r(x) ⊂ QR0 . We next consider the cube Q 3r
2
(x). We

have three possibilities:

1) Q 3r
2
(x) ∩ � = ∅

2) Q 3r
2
(x) ∩ (

QR0 \ �
) = ∅

3) Q 3r
2
(x) ∩ � 
= ∅ and Q 3r

2
(x) ∩ (

QR0 \ �
) 
= ∅.

For any function ζ defined on �, we denote by ζ̃ its extension on QR0 defined by:

ζ̃ =
{

ζ(x) for x ∈ �,

0 for x ∈ QR0 \ �.

Let u be the weak solution for problem (P), and ũ its extension on QR0 . We set

k := |∇u||∇λ|
λ

+ |∇u||g|
λ

+ |∇λ||g|
λ2 + |g|2

λ2 , (33)

q := 2n
n + 2

. (34)

In order to apply the Proposition 1.1 in [17], we will prove the following:

Lemma 4 There exists a positive constant M, depending only on f, λ and � such that

∫
Qr(x)

− |∇ũ|2dy ≤ M
{( ∫

Q2r(x)

− |∇ũ|qdy
)2/q

+
∫

Q2r(x)

− k̃dy
}
, (35)

for each x ∈ QR0 and r ≥ 0 satisfying Eq. 32.

Let x ∈ QR0 and r ≥ 0 satisfy Eq. 32. We will prove that Eq. 35 holds true in each
of the cases 1), 2) and 3).

In case 1), we have Q 3r
2
(x) ∩ � = ∅ and then inequality (35) is trivial since we

have ũ ≡ 0 on Qr(x).
It remains to establish Eq. 35 in the cases 2) and 3). This is the aim of the next two

paragraphs.

2.2 The Weak Reverse Hölder Inequality in the Case 2)

Here we have Q 3R
2
(x) ∩ (

QR0 \ �
) = ∅. We will obtain the inequality (35) by using

an appropriate test function in the weak formulation (26). Namely, we set

ϕ = u − ū
λ

ψ2, (36)
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where ū is the mean integral of u over the ball B 3r
2
(x) (which is contained in Q 3r

2
(x))

and ψ is a cut-off function satisfying:

ψ ∈ C1
c (B 3r

2
(x)), (37)

0 ≤ ψ ≤ 1 and ψ ≡ 1 in Qr(x), (38)

|∇ψ | ≤ C5

r
. (39)

Here C5 denotes a constant independent of r.

Remark that we can write ϕ = ϕ1ϕ2, with ϕ1 := (u − ū)ϕ and ϕ2 := ψ

λ
. By using the

assumptions (14–16) together with the fact that u ∈ W0 ∩ L∞(�) we can see that each
of the two functions ϕ1 and ϕ2 is an element of the space H1

0(�) ∩ L∞(�). It follows
that ϕ ∈ H1

0(�) ∩ L∞(�) (see [5] Proposition IX.4 p. 155). In particular ϕ ∈ W1,1
0 (�)

and
∫
�

λ|ϕ|2 < ∞. In order to verify that ϕ is an admissible test function for Eq. 26,
it is sufficient to check that

∫
�

λ|∇ϕ|2 < ∞.
To prove this, we first calculate the expression for the gradient of ϕ. We obtain:

∇ϕ = 1
λ

∇uψ2 − (u − ū)
∇λ

λ2 ψ2 + 2
λ

ψ∇ψ(u − ū). (40)

By using the assumptions for λ together with the property u ∈ W0 ∩ L∞(�), we can
verify that each of the three terms in the right hand side of Eq. 40 are in the space
L2(λ,�). Consequently ϕ is an admissible test function.

We now test the Eq. 26 with ϕ. By using the expression of ∇ϕ given in Eq. 40, we
obtain:

I : =
∫
�

ψ2

λ
〈A(x)∇u,∇u〉 =

∫
�

u − ū
λ2 ψ2〈A(x)∇u,∇λ〉

︸ ︷︷ ︸
:=I I

−
∫
�

2ψ
u − ū

λ
〈A(x)∇u,∇ψ〉

︸ ︷︷ ︸
:=I I I

+
∫
�

ψ2

λ
〈g,∇u〉

︸ ︷︷ ︸
:=IV

−
∫
�

u − ū
λ2 ψ2〈g, ∇λ〉

︸ ︷︷ ︸
:=V

+
∫
�

2ψ
u − ū

λ
〈g, ∇ψ〉

︸ ︷︷ ︸
:=V I

. (41)

We estimate the term I by using Eq. 2:

I ≥
∫
�

|∇u|2ψ2.

By using Eq. 1 together with Eqs. 5 and 30, we obtain:

|I I| ≤
∫
�

|u − ū|
λ2 ψ2�|∇u∇λ| ≤ C6(‖�

λ
‖L∞ , C4)

∫
B 3r

2
(x)

|∇u∇λ|
λ

.
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In order to estimate the third term, we use again Eq. 1 together with the Young
inequality. We obtain:

|I I I| ≤ 1
2

∫
�

|∇u|2ψ2 + C7

r2

∫
B 3r

2 (x)

|u − ū|2.

Here C7 = C7(‖�
λ
‖L∞ , C4, C5).

The terms IV and V can be estimated by employing the property (30). We obtain:

|IV| + |V| ≤ C8

∫
B 3r

2
(x)

|∇u||g|
λ

+ |∇λ||g|
λ2 , C8 = C8(C4).

For the last term in Eq. 41 we use the Young inequality and property (39) to obtain:

|V I| ≤ C9

(
1
r2

∫
B 3r

2
(x)

|u − ū|2 +
∫

B 3r
2

(x)

|g|2
λ2

)
, C9 = C9(C5).

At this point, from Eq. 41, we can deduce

1
2

∫
�

|∇u|2ψ2 ≤ C10

(
1
r2

∫
B 3r

2
(x)

|u − ū|2 +
∫

B 3r
2

(x)

k
)

, (42)

with C10 = Max(C6, C7 + C9, C8).
We next use the property (38), and we divide Eq. 42 by |B 3r

2
(x)|. We have:

∫
Qr(x)

− |∇u|2 ≤ C11

(
1
r2

∫
B 3r

2
(x)

− |u − ū|2 +
∫

B 3r
2

(x)

− k
)

, C11 = C11(C10, n).

Recall now that u ∈ H1
0(�) and thus (see [10], Theorem 2 p.141) there exists C12 =

C12(�) such that

1
r2

∫
B 3r

2
(x)

− |u − ū|2 ≤ C12

( ∫
B 3r

2
(x)

− |∇u|q
)2/q

.

Note also that B 3r
2
(x) is included in Q 3r

2
(x), and the Lebesgue measure of these sets

is comparable. We then get:

∫
Qr(x)

− |∇u|2 ≤ M
(( ∫

Q 3r
2

(x)

− |∇u|q
)2/q

+
∫

Q 3r
2

(x)

− k
)

, M = M(C11, C12).

and inequality (35) follows.
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2.3 The Weak Reverse Hölder Inequality in the Case 3)

Here the cube Q 3r
2
(x) intersects ∂� and we have to slightly modify the technique in

order to obtain Eq. 35.

Let

ϕ = u
λ

ψ2, (43)

where ψ is a cut-off function verifying Eqs. 37–39. The expression of ∇ϕ is now given
by:

∇ϕ = ∇u
λ

ψ2 + 2
λ

ψ∇ψu − uψ2 ∇λ

λ2 . (44)

By using the same arguments as in paragraph 2.2, we can verify that ϕ ∈ W0.
We then test the Eq. 26 with ϕ, and, instead of Eq. 42, we now obtain:

∫
Qr(x)∩�

|∇u|2 ≤ C′
10

⎛
⎜⎜⎝ 1

r2

∫
B 3r

2
(x)∩�

|u|2 +
∫

B 3r
2

(x)∩�

k

⎞
⎟⎟⎠ . (45)

Let us consider the extension ũ of u, and the cube Q2r(x) (included in QR0 ). We
have ũ ≡ 0 in Q2r(x) \ �. Recall that we have assumed ∂� to be Lipschitz, which
implies that |Q2r(x) \ �| ≥ γ |Q2r(x)| for some γ > 0 independently of r. Moreover,
we clearly have ũ ∈ H1(Q2r(x)).

It then follows, by using [17] Proposition p. 153 and Eq. 45, that:

∫
Q2r(x)

|∇ũ|2 ≤ C′
11

⎛
⎜⎝ 1

r2

( ∫
Q2r(x)

|∇ũ|q
)2/q

+
∫

Q2r(x)

k̃

⎞
⎟⎠ .

By dividing this inequality by |Qr(x)|, we obtain Eq. 35. In fact, |Qr(x)| is comparable
to Q2r(x) and also comparable to (1/r2)|Qr(x)|2/q.

This ends the proof of Lemma 4.

2.4 The Conclusion of the Proof of Theorem 1

We set

h := |∇ũ|q, (46)

l := k̃q/2, (47)

where k is the function defined in Eq. 33 and q is the number given in Eq. 34.
With these notations, the inequality (35) can be written as:

∫
Qr(x)

− h2/q ≤ M
(( ∫

Q2r(x)

− h
)2/q

+
∫

Q2r(x)

− l2/q
)

. (48)

Note also that 2/q = (n + 2)/n > 1.
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At this point, we can use Proposition 1.1 p. 122 in [17]. We obtain the existence
of a constant C13 = C13(M, q, n) and of ε = ε(M, q, n) > 0 such that, for all x ∈ QR0

and all r < (1/2)dist(x, ∂ QR0) the following holds:

( ∫
Qr(x)

− hχ

)1/χ

≤ C13

(( ∫
Q2r(x)

− h2/q)q/2 +
( ∫

Q2r(x)

− lχ
)1/χ)

, (49)

where χ := 2/q + ε.
Let now R∗ > 0 be given by

R∗ := R1

3
= 1

3
dist(∂�, ∂ QR0). (50)

Notice that, for every x ∈ �̄, the number R∗ satisfies the condition (32). Since �̄ is
compact, we have:

�̄ = ∪m
i=1 QR∗(xi) ∩ �̄,

where x1, x2, .., xm are some points in �̄.
By applying Eq. 49 we obtain:

(∫
�

hχ

)1/χ

≤ C14

((∫
�

h2/q
)q/2

+
(∫

�

lχ
)1/χ)

,

where C14 = C14(C13, m, R∗).
Recalling the definitions (46) and (47) we have:

hχ = |∇u|2+qε, h2/q = |∇u|2, lχ = k1+qε/2 on �.

In order to conclude the proof we have then to show that k ∈ Lβ(�) for some β > 1.
We have:

k = |∇u||∇λ|
λ︸ ︷︷ ︸

:=k1

+ |∇u||g|
λ︸ ︷︷ ︸

:=k2

+ |∇λ||g|
λ2︸ ︷︷ ︸

:=k3

+ |g|2
λ2︸︷︷︸

:=k4

.

By using the assumption λ−1/2 ∈ W1,σ (�) we can see that k1 ∈ Lβ1(�), with β1 =
(2σ)/(2 + σ) > 1. In fact:

‖k1‖Lβ1 (�) =
(∫

�

λβ1/2|∇u|β1
|∇λ|β1

λ
3β1

2

)1/β1

≤
(∫

�

λ|∇u|2
)1/2(∫

�

|∇λ|σ
λ

3σ
2

)1/σ

≤ ‖u‖λ‖λ−1/2‖1,σ < ∞.

We now use Eq. 29 to see that k2, k3 ∈ Lβ2(�) with β2 = (2p)/(2 + p) > 1:

‖k2‖Lβ2 (�) ≤ ‖λ−1‖3/2
L∞(�)‖u‖λ‖g‖(Lp(�))n < ∞,

‖k3‖Lβ2 (�) ≤ ‖λ−1‖1/2
L∞(�)‖λ−1/2‖1,2‖g‖(Lp(�))n < ∞.

Finally we can show that k4 ∈ Lβ3(�), with β3 = p/2 > 1:

‖k4‖Lβ3 (�) ≤ ‖λ−1‖2
L∞(�)‖g‖2

(Lp(�))n < ∞.
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Hence k ∈ Lβ(�), with β = min(β1, β2, β3) > 1. Let ε1 = 2(β − 1)/q > 0. We have
proved that there exists ε ∈ (0, ε1] such that

(∫
�

|∇u|2+ε′
) 1

2+ε′
≤ C15(C14, ‖u‖λ, ‖k‖Lβ ) < ∞,

where ε′ := (2nε)/(n + 2) > 0.
We have thus proved Theorem 1.

2.5 The Proof of Theorem 3 and Indications for Implementing the Remarks
in Paragraph 1.2

Theorem 3 can be proved by using the same technique as for the last part of Theorem
1. We can carry over the arguments presented in paragraphs 2.2, 2.3 and 2.5 with only
slight modifications. In the sequel, we will indicate the modifications needed.

Let u ∈ H0 ∩ L∞(�) be a weak solution of problem (P’), that is:∫
�

〈A(x, u,∇u),∇ϕ(x)〉dx =
∫
�

f (x, u,∇u)ϕ(x)dx, ∀ϕ ∈ H0.

Here A : � × R × R
n → R

n and f : � × R × R
n → R are Caratheodory functions

that satisfy Eqs. 21–22. We recall that the parameters µi in Eqs. 21–22 are allowed
to depend on t. We then have:

µi = µi
(‖u‖L∞(�)

)
, µi < ∞, i = 1, 2, 3, µ2 > 0.

By using the same test functions as in paragraphs 2.2 and 2.3, (this is allowed because
we have assumed here that u ∈ L∞(�)) we again obtain the inequality (35), but with
M depending also on µi now, and with k given by:

k := |∇u||ϕ2|
λ

+ |∇u||∇λ|
λ

+ |∇λ||ϕ1|
λ2 + |ϕ1|2

λ2 + |∇u|α + |ϕ3|
λ

.

Under the assumptions made on λ, ϕi and α we recover the fact that k ∈ Lβ(�) for
some β > 1. The proof can then be completed by following the reasoning presented
in paragraph 2.4.

We now give some indications concerning the remarks at the end of paragraph
1.2.

Firstly, if we consider λ ∈ K′ instead of λ ∈ K then the proofs presented previously
work. It suffices to consider the test functions ϕ given by

ϕ = u − ū
ρ

ψ2,

instead of Eq. 36 and

ϕ = u
ρ

ψ2,

instead of Eq. 43.
If we remove the assumption (13), then, as explained in Section 1, we need not

have H0 = W0. Nevertheless, the first part of Theorem 1 can be established for W-
solutions by using Proposition 2.6 and Theorem 2.9 in [31]. For the last part, we can
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carry over the arguments presented in the paragraphs 2.2, 2.3 and 2.5. In fact, the
test functions ϕ we have used were always in W0 and they are thus admissible for the
W-formulation.

3 Additional Remarks and Examples

In the first paragraph, we will present some examples in dimensions two and three of
some weights satisfying our assumptions in K but which are not in A2. In dimension
three, we present a critical example of a weight in our class K. It is apparently close to
satisfying the condition (UE) but we will prove that it does not satisfy (M). Moreover,
this weight does not have bounded mean oscillations.

In a second paragraph, we will give some remarks concerning the one dimensional
case and the case where A(x) = λ(x)Id.

3.1 Example of Weights in the Class K but not in the Class A2

We present a first example in dimension two. Let � be the unit disc in R
2. We denote

by �− the inferior half disc. We also consider the sectors �2, �0 and �1 having a polar
angle θ between the values 0 and π/4, π/4 and (3π)/4, (3π)/4 and π , respectively.
We set

λ = r−1/2 in �0,

λ = 1 in �−,

and otherwise we define λ by an affine interpolation with respect to θ , that is:

λ = 4
π

1 − √
r√

r
θ + 1 in �2,

λ = 4
π

√
r − 1√

r
θ + 4 − 3

√
r√

r
in �1.

We can then verify the following:

λ ≥ 1 everywhere on �, (51)

λ ∈ W1,s(�) for each s < 4/3, (52)

λ−1/2 ∈ W1,7/3(�). (53)

Consequently, the assumptions (16–19) are fulfilled. Moreover, by using the Corol-
lary 4.4 in [40] we can see that λ is regular.

It follows that λ is in the class K for which Theorem 1 and Corollary 2 can be
applied. Nevertheless λ /∈ A2.

To see this, we consider the sequence of points xk = (0,−1/k). For k sufficiently
large, the disc B(xk, 2/k) is included in � and we have:∫

B(xk, 2
k )

λdx ≥
∫

B(0, 1
k )∩�0

λdx = 1
4

∫
B(0, 1

k )

r−1/2dx = π

3k3/2 .
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On the other hand: ∫
B(xk, 1

k )

λdx =
∣∣∣∣B

(
xk,

1
k

)∣∣∣∣ = π

k2 .

Hence ∫
B(xk, 2

k )

λdx

∫
B(xk, 1

k )

λdx
≥

√
k

3
→ ∞ when k → ∞.

This implies that the measure λdx is not doubling, and thus λ /∈ A2 (see [19]).
In this situation, Theorem 1 is not a consequence of Theorem 3.3.6 p. 135 in [35],

and Corollary 2 cannot follow by the results in [11].
We consider now a critical example in dimension three.
Let � = B(0, e−4) ⊂ R

3. We consider the partition � = �− ∪ �0 ∪ �3, where:

�− = {(x, y, z) ∈ � : z < 0} ,

�0 = {(x, y, z) ∈ � : ϕ ∈ (0, π/4)} ,

�3 = {(x, y, z) ∈ � : ϕ ∈ (π/4, π/2)} .

Here ϕ denotes the colatitude in spherical coordinates.
We set:

λ =

⎧⎪⎨
⎪⎩

ln(− ln(r)) in �0,

1 in �−,
4
π

(1 − ln(− ln(r))ϕ + 2 ln(− ln r) − 1 in �3.

Notice that, on the sector �3 we have defined λ by interpolating (with respect to ϕ)
between the values on �0 and on �−.

We have:

λ ≥ 1 in �, (54)

λ ∈ W1,3(�). (55)

Remark that Eq. 54 together with Eq. 55 implies that λ−1/2 ∈ W1,3(�). We can also
verify that

√
λ ∈ H1(�), and by using Theorem 3.1 in [15], we can show that λ is

regular. Hence λ is in the class K for which Theorem 1 and Theorem 3 work.
By applying the same method, as in the previous example, we can verify that

λ /∈ A2. Notice that here we have λ−1 ∈ L∞(�) and λ ∈ W1,3(�) ⊂ ∩p≥1 Lp(�). This
is a limit case: apparently λ is nearly satisfying (UE), nevertheless λ /∈ A2. Remark
also that here Theorem 1 allows us to obtain a weighted higher integrability for the
gradient of u. Namely, the weak solution of problem (P) satisfies:∫

�

λ|∇u|2+ε < ∞,

for some ε > 0.
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Finally we can even verify that λ /∈ BMO. In fact (see [34] p. 218), each BMO
function ψ can be written in the form ψ = c ln ω, with ω ∈ Ap and p > 1. Here Ap

denotes the Muckenhoupt class of order p (see [19]). In particular the measure ωdx
is doubling (see [19]). But, eλdx is not doubling (use again the same arguments as for
λdx). Consequently λ /∈ BMO, and Theorem 1 cannot be deduced from [36].

3.2 Some Special Cases for Problem (P)

In some particular situations we can obtain the results contained in Theorem 1 and
Corollary 2 more easily.

This is true for instance in the one dimensional situation. Let I = (a, b) be a finite
interval on the real line. The problem (P) takes the form:

(λu′)′ = f in I,

u(a) = u(b) = 0.

If we consider f ∈ L1(I), then this problem can be solved without using the weighted
Sobolev setting, and it suffices to make the assumptions (5–6) on λ. In fact, by a direct
integration we explicitly obtain a distributional solution u. Namely:

u(x) =
x∫

a

1
λ(t)

(
c1 +

t∫
a

f (s)ds
)

dt,

c1 =
−

b∫
a

t∫
a

f (s)dsdt

b∫
a

1
λ(t)

dt

. (56)

We can see that the weak derivative of u is given by

u′(x) = 1
λ(x)

(∫ x

a
f (t)dt + c1

)
.

It follows that if λ ∈ Ls(I) then u ∈ W1,s(I). Consequently u ∈ C0,(s−1)/s( Ī) (see [5]
Theorem VIII.2 p. 122).

Let now n ≥ 2, and consider the particular case where A(x) = λ(x)Id. Assume
that the hypothesis of Theorem 1 is satisfied. By using the first part of Theorem 1 we
know that there exists a unique weak solution u ∈ H0 for problem (P). Moreover, in
this case we have:

−�u = − f
λ︸︷︷︸

:= f1∈W−1,p(�)

+ ∇u∇λ

λ︸ ︷︷ ︸
:= f2

.
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By using the assumption (16) we can see that

f2 = λ1/2∇u
∇λ

λ3/2 ∈ Lβ(�),

with β = (2σ)/(2 + σ).
Let us denote by G the inverse of the Laplacian operator on � with homogeneous

Dirichlet conditions on ∂�, and consider the functions u1 = G( f1), u2 = G( f2). If we
assume that � is of class C2 then by using classical regularity results (see for instance
[33], Theorem 7.2 p. 123 and [5] Theorem IX.25 p. 181) we obtain:

u1 ∈ W1,p
0 (�), u2 ∈ W2,β(�).

By employing the Sobolev imbedding theorem we see that u2 ∈ W1,β∗
(�), with β∗ =

(nβ)/(n − β). It follows that for n = 2 we obtain β∗ > 2 and we recover the last part
of Theorem 1. When n > 2 we have to assume that σ > n in order to recover in this
manner the last result of Theorem 1.
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