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Summary

We present both a mathematical model and a numerical method for simulating induction
heating processes. The aim is to determine the temperature field when the inductor total
current is known. We assume that all the conductor (the inductor and the work piece to be
heated by eddy currents) are cylindrical and infinite in one direction. Thus the induction
heating problem can be studied in a plane perpendicular to the invariance direction. By
considering the temperature θ in the work-piece and the complex potential ϕ in the whole
plane as unknowns, we derive a model which involves the coupling of a non linear diffusion
problem for θ with a non linear Helmholtz problem for ϕ. The numerical scheme we propose
consists in a semi-explicit Euler scheme for the time discretization and a coupling between a
finite element method with a regular boundary element method for the space discretization.

1 Introduction.

Induction heating in heat generation uses metal conductors with the Joule power. Among
various applications of such process in industry there are metal melting, preheating for
forging operations, hardening and brasing. The reader may refer for instance to the book
[5] for a more detailed description of the process and its technological implications.
The numerical modelling of induction heating has been for many years a research field at
the department of mathematics of the Swiss Federal Institut of Technology of Lausanne,
with a closed industrial collaboration. Corresponding to various physical configuration of
heating, different models have been studied : a one-dimensional model in [3], a 2D cartesian
model in [3], [2] and [10], an axisymmetric model in [13] and a three-dimensional model in
[12]. The configuration studied here cannot be simulated with the precedent models (except
the 3D model) and so a new 2D model has been established in [6] and [9].
In section 2, we present this mathematical model, which involves the coupling of Maxwell’s
equations with a thermal diffusion problem. We obtain a non linear partial differential
formulation which describes the phenomena with two variables : the temperature θ in the
work piece and the complex magnetic potential ϕ in the whole plane. The formulation is
non linear since :

(1) Maxwell’s equations lead to a PDE formulation for the variable ϕ, and
for a ferromagnetic conductor, this PDE is non linear.

(2) The physical properties of the work piece to be heated depends on the temperature.
This implies that the diffusion equation is non linear and there appears a non linear
coupling with temperature in the electromagnetics phenomena.
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(3) The heat source is the Joule power density which is related to ϕ through a non linear
relation.

We conclude Section 2 with some theoretical results concerning existence, uniqueness and
regularity of a solution (ϕ, θ). Because we are essentially interested in practical considera-
tions here, the proofs are omitted.
In Section 3, we describe with some details a numerical scheme to approximatively solve the
problem. In particular we use a coupling between a finite element method and a Regular
Boundary Element Method (RBEM). The RBEM we have used, has recently been analysed
in [7], [8] and presents some advantages with respect to classical BEM. The numerical ana-
lysis of the scheme is the scope of a next paper.
In Section 4, we present a serie of numerical experiments we have performed on the code
developed according to the material presented in this paper. We present also a comparison
with the three-dimensional code Thelma which has been validated with in situ measurements
(cf [12]).

2 The mathematical model.

In the sequel we shall assume that the work piece Λ0 is cylindrical and infinite in the x3-
direction. The inductor Λ is a loop also cylindrical which surrounds the work piece. In figure
1 we have represented a physical situation wich approximately satisfies this assumptions.
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Fig. 1 – 3D geometry of the induction process.

Let us assume that a sinusoidal current with a frequency ω
2π and an intensity J is applied

to the inductor. This current induces an eddy current in the work piece and a magnetic field
H in all the space R3. It follows that the eddy current creates via the Joule effect a heat
generation in the work piece. The inductor is water-cooled and we assume its temperature
is constant. Assume moreover that the total current is known in the inductor, the main goal
is to determine the temperature field in the work piece. Following [11], the main hypothesis
in our model is :

(H)





The current density j does not depend on x3 and remains parallel to e3

in all the conductor domains. Moreover we assume that the total current
in the work piece is equal to zero.
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We denote by Ω0,Ω1,Ω2 the intersection of the work piece and inductors respectively
with the plane Ox1x2 (see figure 2). We also define Ω = Ω0 ∪ Ω1 ∪ Ω2 and Ω′ = R2 \ Ω.
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Fig. 2 – 2D geometry.

The frequency ω
2π is assumed to be sufficiently small with respect to the size of the

conductors making it possible to neglect the currents displacement in the conductors. Howe-
ver, this frequency is assumed to be sufficiently large in order to consider the electromagnetic
time scale insignificant with respect to the heating time scale. It follows that we will use
a quasi-stationary modelling for treating the electromagnetic problem. The commonly used
physical fields for such problems are the magnetic induction b, the current density j, the
electric field e, the temperature θ. Due to the geometry, we consider x3-invariant solutions,
i.e all the fields b, j, e, θ are spacially depending only on x = (x1, x2) ∈ R2.
In the quasi-stationary model, we seek all electromagnetic fields of the form :

b(x, t) = Re(eiωtb(x)), (2.1)

j(x, t) = Re(eiωtj(x)), (2.2)

e(x, t) = Re(eiωte(x)), (2.3)

where x = (x1, x2) ∈ R2, t denotes the time variable, and b(x), j(x), e(x) are complex-valued
functions.
The modelling of induction heating involves a coupling of Maxwell’s equations and a thermal
diffusion problem.

2.1 The electromagnetic problem.

In this section, following [11], we describe the phenomena with the use of a magnetic
potential ϕ : R2 → C.
Let e3 denote the unit vector in the x3 direction. Because of the hypothesis (H), we can
write j(x) = j(x)e3, b(x) = (b1(x), b2(x)), x = (x1, x2) ∈ R2.
From the Maxwell’s equation : divb = 0 in R3, we deduce the existence of a scalar field
ϕ : R2 → C such that

b(x) = curlϕ(x), x ∈ R2, (2.4)
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where the two dimensional vector curling operator is defined by curlϕ := ( ∂ϕ∂x2
,− ∂ϕ

∂x1
). We

also introduce the two dimensional scalar curling operator defined by curlA := ∂A2
∂x1
− ∂A1

∂x2
.

From the Maxwell’s equation

curl
b

µ
= j in R3, (2.5)

in which we have neglected current displacements we deduce that

−div(
1

µ
∇ϕ) = curl(

1

µ
curlϕ) = j, (2.6)

where the first equality is a trivial identity. The function µ which appears in (2.6) is the
magnetic permeability. We assume that µ is a constant equal to µ0 in Ω′. At the opposite, in
the conductor domain, µ is in general a more complicated function. In the most complicated
case, when the material is ferromagnetic, then µ can depend on the temperature θ and the
magnetic field |h|. We will treat this aspect later.
Carrying on with the study of equation (2.6), we observe that if x /∈ Ω, then j(x) = 0 and
the function ϕ is harmonic outside the domain Ω since µ = µ0. It remains to establish a
relationship between j and ϕ inside the domain Ω. This can be obtained with the Maxwell’s
equation :

curl e + iωb = 0 in Λ,

which can be written here with the two dimensional curl operator as :

curl(e+ iωϕ) = 0 in Ω.

This last relationship implies that there are complex constants Ck depending on k, k =
0, 1, 2, such that

e+ iωϕ = Ck in Ωk, k = 0, 1, 2. (2.7)

Moreover, by using the Ohm law j = σe, relation (2.7) implies

j = σ(Ck − iωϕ) in Ω. (2.8)

From (H) we have

∫

Ω0

j(x)dx = 0, J =

∫

Ω1

j(x)dx = −
∫

Ω2

j(x)dx,

and then we deduce from (2.8) that

C0 = C0(ϕ) =
iω
∫

Ω0
σ(x)ϕ(x)dx∫

Ω0
σ(x)dx

, (2.9)

C1 = C1(ϕ) =
J + iω

∫
Ω1
σ(x)ϕ(x)dx∫

Ω1
σ(x)dx

, (2.10)

C2 = C2(ϕ) =
−J + iω

∫
Ω2
σ(x)ϕ(x)dx∫

Ω2
σ(x)dx

. (2.11)

Assuming that the electric conductivity is a constant equal to σ in the inductor and a known
function of temperature θ in the work piece, the relation (2.8) can be written :

j(x) = Jk + iωσ(Ik(ϕ)− ϕ) in Ωk, k = 1, 2,

j(x) = iωσ(θ)(I0(θ, ϕ)− ϕ) in Ω0,

4



where Jk := (−1)k+1

|Ωk| J , I0(θ, ϕ) :=

R
Ω0

σ(θ)ϕ(x)dxR
Ω0

σ(θ)dx
, Ik(ϕ) :=

R
Ωk

ϕ

|Ωk| , and |Ωk| is the measure of

Ωk.
Hence at this point, by using (2.6) to (2.11), we obtain

−∆ϕ = 0 in Ω′, (2.12)

− div(
1

µ
∇ϕ) + iωσ(θ)(ϕ− I0(θ, ϕ)) = 0 in Ω0, (2.13)

− div(
1

µ
∇ϕ) + iωσ(ϕ− Ik(ϕ)) = Jk in Ωk, k = 1, 2. (2.14)

It remains to achieve the electromagnetic model to give boundary conditions. The interface
conditions are deduced by the Maxwell’s equations considered here in the sense of distribu-
tions and by assuming the non existence of surface currents. Namely

[ϕ] = [
1

µ

∂ϕ

∂n
] = 0 on Γ, (2.15)

where [ψ] := ψext − ψint denotes the jump of the function ψ on Γ and ∂
∂n stands for the

outward normal derivative, the vector n being the outward unit normal to Γ.
Following [4] we have the behaviour at infinity :

ϕ(x) = α log |x|+ β +O(
1

|x|) when |x| → ∞, (2.16)

∇ϕ(x) = α
x

|x|2 +O(
1

|x|2 ) when |x| → ∞. (2.17)

Let r > 0, such that the ball B(0, r) contains Ω. By integrating equations (2.12)-(2.14) over
B(0, r), and using relation (2.15) together with Green formula, we obtain :

∫

B(0,r)
div(

1

µ
∇ϕ) = 0 =

∫

∂B(0,r)

1

µ0

∂ϕ

∂n
.

Then by taking the limit when r tends to infinity and using relation (2.17) we obtain α = 0.
Moreover, because ϕ is defined (cf (2.4)) only up to an additive constant, we can choose
β = 0. Thus (2.16) and (2.17) become :

ϕ(x) = O(
1

|x|) when |x| → ∞, (2.18)

∇ϕ(x) = O(
1

|x|2 ) when |x| → ∞. (2.19)

Reporting equations (2.12),(2.13),(2.14),(2.15) and (2.18), the electromagnetic problem
consists in seeking ϕ : R2 → C such that :

−∆ϕ = 0 in Ω
′
, (2.20)

−div(
1

µ
∇ϕ) + iωσ(θ)(ϕ− I0(θ, ϕ)) = 0 in Ω0, (2.21)

−div(
1

µ
∇ϕ) + iωσ(ϕ− Ik(ϕ)) = Jk in Ωk, k = 1, 2, (2.22)

[ϕ] = [
1

µ

∂ϕ

∂n
] = 0 on Γ, (2.23)

ϕ(x) = O(
1

|x|) when |x| → ∞. (2.24)
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2.2 The thermal problem

The thermal problem consists in seeking the temperature field resulting from the Joule
effect. Here we are only interested in the temperature distribution in the work piece Ω0 during
a time T , and we assume that the inductor does not thermally interact with the piece. This
assumption can be justified by the fact that, in practical applications the inductor is cooled
so that simulating the cooling process would be a complicated task which is out of the scope
of this paper. The heat equation is given by

Cp(θ)
∂θ

∂t
− div(λ(θ)∇θ) = P, (2.25)

where Cp is the specific heat, λ is the thermal conductivity and P is the Joule power.
By using the Ohm law, we obtain

P (x, t) = σ−1(θ(x, t))|j(x)eiωt|2.

Because the frequency ω
2π is relatively high, we can consider that the term σ−1(θ(x, t)) is

constant with respect to t during a period 2π
ω . So we approximate P (x, t) by

ω
2πσ

−1(θ(x, t))
∫ 2π

ω
0 |j(x)eiωt|2dt, and with a simple calculation we obtain

P (x, t) ' ω2

2
σ(θ(x, t))|I0(θ, ϕ)− ϕ|2.

Hence equation (2.25) becomes

Cp(θ)
∂θ

∂t
− div(λ(θ)∇θ) =

ω2

2
σ(θ)|I0(θ, ϕ)− ϕ|2 in Ω0×]0, T [. (2.26)

As far as the boundary conditions are concerned, we shall prescribe a radiation condition
on the boundary Ω0. Notice that this condition can be simply expressed if the domain is
convex, which is assumed in the present application. Assuming a large difference between
the temperature on Γ0 and the temperature in the neighbourhood of the conductor, we have
the boundary condition :

λ(θ)
∂θ

∂n
+ αθ4 = 0 on Γ0, (2.27)

where α is a radiation coefficient. More precisely, α is the product of the Stephan-Boltzmann
constant by the material emissivity coefficient.
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2.3 The complete model

The final model consists in seeking the magnetic potential ϕ : R2×]0, T [→ C and the
temperature field θ : Ω0×]0, T [→ R such that :

−∆ϕ = 0 in Ω
′×]0, T [, (2.28)

−div(
1

µ
∇ϕ) + iωσ(θ)(ϕ− I0(θ, ϕ)) = 0 in Ω0×]0, T [, (2.29)

−div(
1

µ
∇ϕ) + iωσ(ϕ− Ik(ϕ)) = Jk in Ωk×]0, T [, k = 1, 2 (2.30)

[ϕ] = [
1

µ

∂ϕ

∂n
] = 0 on Γ×]0, T [, (2.31)

ϕ(x) = O(
1

|x|) when |x| → ∞, (2.32)

Cp(θ)
∂θ

∂t
− div(λ(θ)∇θ) =

ω2

2
σ(θ)|I0(θ, ϕ)− ϕ|2 in Ω0×]0, T [, (2.33)

λ(θ)
∂θ

∂n
+ αθ4 = 0 on Γ0×]0, T [, (2.34)

θ(., 0) = θ0 in Ω0. (2.35)

2.4 Some theoretical results.

We begin by recalling some basic notations. If D is an open subset of R2 and if v :
D → C is a complex-valued function, we denote by v∗ its complex conjugate and by |v|
its modulus. The Sobolev spaces Wm,p(D),Hm(D), Lp(D) and the corresponding norms
‖.‖m,p,D, ‖.‖m,D, ‖.‖0,p,D have their usual meanings for real or complex-valued functions.
If X is a Banach space, and T is a positif number, we also consider the Banach spaces
Wm,p(0, T ;X) defined by

Wm,p(0, T ;X) =
{
ψ : ]0, T [→ X, ‖∂αψ(t)

∂tα ‖X ∈ Lp]0, T [, ∀α = 0, ..,m.
}
,

and equipped with their usual norm ‖.‖Wm,p(0,T ;X).
Hereafter, we recall the existence, unicity and regularity results for problem (2.28)-(2.35)
(with some modified assumptions) proved in [9] chap. 3 and [6] chap. 2.
The modified assumptions that they have considered are : all the physical functions which
appear in (2.28)-(2.35) are constants, except the electrical conductivity σ which depends on
temperature and a Dirichlet boundary condition θ = θ1 is precribed on the boundary instead
of (2.34). In [9] the study is about the evolutive case, when [6] is about the stationary case.
We have the following results :

Theorem 2.1 Assume that the conductivity σ is a continuous, bounded and strictly positive
function of the temperature. Moreover assume that the initial temperature field θ0 is in
H1(Ω0) and the imposed value on the boundary θ1 is in L2(0, T ;L2(Ω0)). Then there exists
at least one solution (ϕ, θ) ∈ L∞(0, T ;H2

loc(R2)) ×H1(0, T ;L2(Ω0)) ∩ L2(0, T ;H2(Ω0)) for
the evolutive problem. Furthermore there exists at least one stationary solution (ϕ, θ) ∈
H2
loc(R2)×H2(Ω0).

Proof. The proofs use the Schauder fixed point theorem, cf. [9] page 59 and [6] page 83.
�

Theorem 2.2 In addition to the assumptions of theorem 2.1, if we suppose that σ is Lip-
schitz continuous, then the solution (ϕ, θ) of the evolutive problem is unique. Moreover, as-
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sume that σ is continuously differentiable and σ ′ is bounded and Lipchitz continuous. Then
there exists a positive value J0 such that if J ≤ J0, then the stationary solution is unique.

Proof. cf [9] page 65 and [6] page 87. �

Remark 2.1 Assume that we have the following symmetries with respect to the axis Ox2 :
i) Ω0 is self-symmetrical,
ii) Ω2 is the symmetric of Ω1,
iii) The initial temperature field θ0 is symmetric, i.e θ0(x1, x2) = θ0(−x1, x2) ∀x ∈ Ω0.

Moreover assume that the hypotheses of theorem 2.2 are fulfilled. Then we have :
(1) ϕ is antisymmetric, i.e ϕ(x1, x2, t) = −ϕ(−x1, x2, t) ∀x ∈ R2,∀t ∈]0, T [,
(2) I0(θ, ϕ) ≡ 0,
(3) I1(ϕ) ≡ −I2(ϕ).

This implies that problem (2.28)-(2.35) can be studied only in the half plane x1 >= 0. Note
that the hypotheses i)-iii) correspond to a particular case of physical importance.

3 Numerical solution.

3.1 New formulation of the problem.

In order to give an approximation of problem (2.28)-(2.35), we introduce a new formu-
lation of it. We start with the electromagnetic problem (2.28)-(2.32).
Let q = ∂ϕ

∂n |eΓ denote the exterior trace of the normal derivative of ϕ on Γ. Following [7],[8],

we consider an auxiliary curve Γ̃ such that :

{
Γ̃ = Γ̃0 ∪ Γ̃1 ∪ Γ̃2,

for i=0,1,2, Γ̃i ⊂ Ωi is a simple, regular and closed curve.
(3.1)

So equation (2.28) with (2.32) can be replaced by the integral system :

∫

Γ
q(y)K(x, y)dsy −

∫

Γ
ϕ(y)Kn(x, y)dsy = 0, ∀x ∈ Γ̃ (3.2)

∫

Γ
q(y)dsy = 0, (3.3)

where K(x, y) = − 1
2π log |x − y| and Kny(x, y) = ∂

∂ny
K(x, y) = − 1

2π
(ny ,x−y)
|x−y|2 . Note that

the integral equation (3.2) is posed on a finite domain and remark that the integrands
which appear are well defined and non singular because Γ and Γ̃ are disconnected. This
ultimate property is not true with the classical integral formulation in simple and double
layer potential which is :

ϕ(x)

2
+

∫

Γ
q(y)K(x, y)dsy −

∫

Γ
ϕ(y)Kn(x, y)dsy = 0, ∀x ∈ Γ. (3.4)

In the meantime, in the regular formulation (3.2), the auxiliary curve Γ̃ may be choosen
carrefully in order to obtain the stability of the numerical scheme. This point was be first
schown by S. Christiansen (cf [1]) and more later some ingeneers have presented empirical
rules given satisfactory results (cf [14], [15] for instance). Recently the autors P. Dreyfuss
and J. Rappaz have confirmed this empirical rules by a mathematical proof (cf [7] and [8]).
It appears that considering formulation (3.2) instead of (3.4) in order to construct a nume-
rical scheme, can be a satisfactory choice ( perhaps more particulary when the curve Γ as
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corners, see for instance [15]). We will precise how we have to choose the auxiliary curve, in
relation with the discretization, in the next section.
Remark next that by integrating equations (2.29),(2.30), and using relation (2.31), we ob-
tain :

0 =

∫

Ω
div(

1

µ
∇ϕ)dx =

∫

Γ

1

µ

∂ϕi

∂n
ds =

∫

Γ

1

µ0

∂ϕe

∂n
ds =

1

µ0

∫

Γ
qds,

where ϕi and ϕe denote the internal and external value of ϕ. Thus, the relation (3.3) is a
consequence of equations (2.29)-(2.31) and so it can be removed.
We further consider classical variational formulations of the remaining equations. Consider
the test functions ψ : Ω → C and u : Ω0 → R. We multiply equations (2.29),(2.30) by ψ∗

and we integrate them over the definition domain. Then, with a simple calculation using
Green formula together with relation (2.31) we obtain :

µ0

∫

Ω

1

µ
∇ϕ∇ψ∗ −

∫

Γ
qψ∗ + iωµ0

(∫

Ω0

σ(θ)ϕψ∗ − I0

∫

Ω0

σ(θ)ψ∗

+
2∑

k=1

σ
( ∫

Ωk

ϕψ∗ − Ik
∫

Ωk

ψ∗
))

=

∫

Ω
fψ∗, (3.5)

where I0 =

∫
Ω0
σ(θ)ϕ∫

Ω0
σ(θ)

, (3.6)

Ik =

∫
Ωk
ϕ

|Ωk|
, k = 1, 2, (3.7)

and f(x) =

{
0 if x ∈ Ω0,
Jk if x ∈ Ωk, k = 1, 2.

Similarly, equations (2.33),(2.34) are replaced by :

∫

Ω0

Cp(θ)
∂θ

∂t
u+

∫

Ω0

λ(θ)∇θ∇u+

∫

Γ
αθ4u =

ω2

2

∫

Ω0

σ(θ)|I0 − ϕ|2u (3.8)

At this point we are in position to give a new formulation (P) of problem (2.28)-(2.35) :

(P)





Let Γ̃ be an auxiliary curve such as (3.1). We are seeking for a function q :
Γ×]0, T [→ C, a function ϕ : Ω×]0, T [→ C, a function θ : Ω0×]0, T [→ R, and three
functions I0, I1, I2 : ]0, T [→ C such that (3.2) and (3.5)− (3.8) are fulfilled.

Remark 3.1 The new unknowns I0, I1, I2 are being introduced in order to simplify the nu-
merical approximation of the problem.

3.2 Numerical scheme.

In this section, we present a numerical method in order to obtain a good approximation of
the solution to be found. The numerical method is obtained after considering three aspects :
• The decupling of equations (3.5)-(3.7) and equation (3.8).
• The time discretization for the unknown θ.
• The space discretization for the unknown ϕ, q and θ.

Before this, we turn back to the modelisation of the magnetic permeability which we have
evocated previously.

9



For the numerical simulation, we consider magnetic permeability of the form :

µ(x) =





µ0 if x ∈ Ω′,
µ(θ, |h|) if x ∈ Ω0,
µ1 if x ∈ Ωk, k = 1, 2.

So, in order to compute numerically µ in the conductor domain Ω, we must know an ap-
proximation of the field |h|. Using equation (2.4), we deduce that µ, ϕ and |h| are linked
through the following relation :

|h| = 1

µ
|∇ϕ|. (3.9)

We are now interested in replacing the formulation (P) which is non linear in ϕ, θ, by an
iterative linear formulation (Pi)i∈N. The idea is to use an semi-explicit Euler scheme for the
time discretization and to decouple equations (3.5)-(3.7) and equation (3.8) for each time
step. More precisely, we consider the following iterative process :

1. At i=0, we start with the data of :
- an initial field of temperature θ(0) : Ω0 → R.
- an initial value µ(0) of the magnetic permeability in Ω0.
- a time step τ .

2. For i = 1, 2, .. we construct and resolve the linear problem (Pi) defined by the following
two points a),b) and then we follow the point c) :

a) seek q(i) : Γ→ C, ϕ(i) : Ω→ C, I
(i)
0 , I

(i)
1 , I

(i)
2 ∈ C, such that :

∫

Γ̃
dsxµ

∗(x)

∫

Γ
q(i)(y)K(x, y)dsy −

∫

Γ̃
dsxµ

∗(x)

∫

Γ
ϕ(i)(y)Kn(x, y)dsy = 0, (3.10)

µ0

∫

Ω

1

µ(i−1)
∇ϕ(i)∇ψ∗ −

∫

Γ
q(i)ψ∗ + iωµ0

(∫

Ω0

σ(θ(i−1))ϕ(i)ψ∗ − I(i)
0

∫

Ω0

σ(θ(i−1))ψ∗

+
2∑

k=1

σ
( ∫

Ωk

ϕ(i)ψ∗ − I(i)
k

∫

Ωk

ψ∗
))

=

∫

Ω
fψ∗, (3.11)

I
(i)
0 =

∫
Ω0
σ(θ(i−1))ϕ(i)

∫
Ω0
σ(θ)

, (3.12)

I
(i)
k =

∫
Ωk
ϕ(i)

|Ωk|
, k = 1, 2, (3.13)

where ψ : Ω→ C and µ : Γ̃→ C are any test functions .

b) seek θ(i) : Ω0 → R such that :

∫

Ω0

Cp(θ
(i−1))

θ(i) − θ(i−1)

τ
u+

∫

Ω0

λ(θ(i−1))∇θ(i)∇u

+

∫

Γ
αθ(i−1)4

u =
ω2

2

∫

Ω0

σ(θ(i−1))|I(i)
0 − ϕ(i)|2u, (3.14)

where u : Ω0 → R is a any test function.

c) compute µ(i) : Ω0 → R with the formula :

µ(i) = µ

(
θ(i),

1

µ(i−1)
|∇ϕ(i)|

)
. (3.15)
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Hereafter, in order to discretize in space the iterate problems (Pi)i=1,.., we considere
a polygonal approximation Ωh of Ω and a triangular mesh τh of Ωh. We next describe a
method combining the finite element method and the boundary element method.
Let K1, ..,Knt ; e1, .., ene ;x1, .., xnv be respectively the triangles, the boundary edges and the
vertex of the mesh. For k = 0, 1, 2, we denote by Ωk,h = Ωk ∩ Ωh, the three connected
components of the domain Ωh.
Let Vh and Wh be the P1-finite element spaces defined by :

Vh =
{
ψ : Ωh → C, ψ continuous on Ωh and ψ|K ∈ P1 for all triangle K ⊂ Ωh

}
,

Wh =
{
u : Ω0,h → R, u continuous on Ω0,h and u|K ∈ P1 for all triangle K ⊂ Ω0,h

}
.

For each i, 1 < i < nv, we denote by ψi the function defined on Ωh such that ψi|K ∈ P1,
for all triangle K and ψi(xj) = δij for all vertex xj . The sets {ψi, i = 1, .., nv} and
{ψi, i such that xi ∈ Ω0,h} will respectively define a basis of Vh and a basis of Wh.
Then, for the numerical computation of the iterate problems (Pi) we use test functions
ψ ∈ Vh, u ∈Wh and we seek ϕ(i) ∈ Vh, θ(i) ∈Wh, i = 1, 2... This implies that the functions
µ(i) are constant in each triangle K ⊂ Ωh.
It remains to discretize the integral equation (3.10). To do this we adopt the regular boun-
dary integral method described and analysed in [6],[7],[8]. We consider the space Xh defined
by

Xh = {q : Γh → C, q|e ∈ P0 for all edge e of Γh.} ,
where Γh is the boundary of Ωh, and we have to contruct an auxiliary curve Γ̃h and a discrete
space X̃h of functions defined on Γ̃h. We next describe an admissible construction which
preserves the stability of the scheme. Let nk,e, k = 0, 1, 2, be the number of boundary edges
in Γk,h = ∂Ωk,h. For convenience we assume that the edges of Γh are oriented and numerated
such that Γ0,h is defined by covering the n0,e first edges e1, .., en0,e , when Γ1,h is obtained by
covering the next n1,e edges and Γ2,h is obtained by covering the last n2,e edges. Let γ be a
positive number such that 0 < γ < 1 (for instance choose γ = 0.5). Remark that each edge
ei = [xi1, x

i
2] of Γh, is also an edge for an unique triangle K = (xi1, x

i
2, x

i
3) of the mesh τh and

consequently we can define the points x̃i ∈ Ωh by setting x̃i = (1− γ)xi1 + γxi3, i = 1, .., ne.
Next we create n0,e auxiliary segments ẽ1, ẽ2, .., ẽn0,e defined by :

ẽi =

{
[x̃n0,e , x̃1] if i = n0,e,
[x̃i, x̃i+1] in the other cases,

and we define the first connected component Γ̃0,h of the auxiliary curve Γ̃h by setting
Γ̃h = ∪n0,e

i=1 ẽi (see figure 3). In the same manner we define the two other connected component
Γ̃1,h and Γ̃2,h.

Let X̃h be the vectoriel space defined by

X̃h =
{
q̃ : Γ̃h → C, q̃|ẽ ∈ P0 for all edge ẽ of Γ̃h

}
.

Then, in the iterate problems (Pi), we will seek q(i) ∈ Xh, ∀i = 1, 2, .., and we will approxi-
mate equation (3.10) by :
∫

Γ̃h

q̃(x)dsx

∫

Γh

q(i)(y)K(x, y)dsy −
∫

Γ̃h

q̃(x)dsx

∫

Γh

ϕ(i)(y)Kn(x, y)dsydsx = 0, ∀q̃ ∈ X̃h.

(3.16)

At this point, we have replaced each problem (Pi) by a linear system which is easy to
construct and resolve. Moreover this scheme is stable an convergent (i.e in particular it can
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Fig. 3 – Construction of the first connected component Γ̃0,h of the auxiliary curve Γ̃h.

be proved that the approximate temperature θ(i) ∈Wh calculated, converge to θ(T ) when τ
and h tend to zero). Note however that we need to take some precaution for the numerical
evaluation of the integrals appearing in equation (3.16). In fact, the integrands are always
regular but they can be almost singular. In the following, we explain how a Gauss-Legendre
quadrature formula with a changeable number of integration points can be used.

3.3 Numerical integration for the equation 3.16.

Let k, l = 1, .., ne, the integrals terms appearing in equation (3.16) are on the form :

Ik,l =

∫

ẽk

∫

el

f(x, y)dsydsx, (3.17)

with two possibilities for f : a) f(x, y) = K(x, y) or b) f(x, y) = Kn(x, y)ψj(y), j = 1, .., nv.
It’s easy to show that in the two cases f ∈ C∞(ẽk×el) but its maximum ( and the maximum
of its derivaties ) can tends to infinity when n tends to infinity. However, if we denote by
δk,l the distance beetwen the edges ẽk and el, and if m is an integer, then we have

max
(x,y)∈ẽk×el

|f (m)(x, y)| ≤ Cmδ−α(m)
k,l , (3.18)

where α(m) = m in the case a), α(m) = m + 1 in the case b), and Cm is a constante
depending only on m.
In practice, we have to replace Ik,l by a numerical approximation Ĩk,l. Moreover, in order to
not deterior the stability and the consistency of the scheme by the numerical integration,
we need have (cf. [7]) :

∣∣∣Ik,l − Ĩk,l
∣∣∣ ≤ Cn−4

e . (3.19)
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A possible way to construct a formula Ĩk,l satisfying (3.19) is to considere a composite
Gauss-Legendre quadrature formula with an adaptative subdivision of the edges. We can
see in [7] how a formula of this kind can be built using the property (3.18). However, it is
more advantageous to use a formula with a changeable number of integration points without
any subdivision of the edges.
For instance, the numerical evaluation Ĩk,l of Ik,l can be performed by the use of a Gauss-
Legendre quadrature formula with m×m points of integration, if we take

m ≥ 3

2

log ne

log(1 + δ̃k,l)
,

where δ̃k,l is the scaled distance between the edges ẽk and el defined by δ̃k,l =
2δk,l|Γ|
ne

. The
justification is based on the properties of analicity of the kernel f (see [8]).

4 Numerical experiment.

In this section we present a series of numerical experiments we have performed on the
code developed according to the material presented in this paper. We present also a com-
parison with the three dimensional induction code Thelma which has been validated by
industrial experiments (cf. [12]).

4.1 Geometrical and physical data.

We have treated the induction heating of a cylindical work piece with radius 20 mm,
surrounded by a cylindrical inductor with radius 2 mm (cf fig. 4). For the three dimensional
comparison, we have constructed an elevated mesh, with a height of 40 mm.
We have considered different types of materials for the inductor and the work piece. More
precisely, the physical characteristics (in MKSA unit system) of the inductor were the fol-
lowing : σ = 3.107, µ = µ0 = 4π.10−7, ω = 2π.104,J = 3.103, when for the work piece we
have considered the same stainless steel (non magnetic case) and magnetic steel (magnetic
case) as in [2]. In this cases, the electrical conductivity σ, the thermal conductivity λ and
the specific heat Cp are depending on the temperature θ. We have :

σ(θ) =
(
a0 + a1θ + a2θ

2 + a3θ
3
)−1

, with a0 = 4.9659.10−7, a1 = 8.4121.10−10,

a2 = −3.7246.10−13, a3 = −6.1960.10−17,

λ(θ) = b0 + b1θ, with b0 = 11.215, b1 = 0.014087,

Cp(θ) = c0 + c1θ, with c0 = 2.81398.106, c1 = 7.8052.102.

The radiation coefficient α appearing in (2.27) and (3.14) is set equal to 0.8× 5.67× 10−8.
The steels differ in magnetic property. For the stainless steel the magnetic permeability µ
is assumed to be µ0, when for the magnetic steel we have the following dependency on the
temperature θ and on the intensity of magnetic field |h| :

µ =

{
µ0

(
1 +

√
(1033− θ)/740. 2000

1+|h|/200

)
if θ < 1033,

µ0 if θ ≥ 1033.

4.2 Numerical data.

It is well known that in electromagnetic computation the mesh has to take into account

the skin effect. This effect can be estimated with the skin depth δ =
√

1
µσω , which is the
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depth at which the value of the magnetic field decays by a factor e−1.
In the application we have treated, the skin depth is of order 1mm for the inductor and 5
mm for the work piece in the case of stainless steel. The situation is even more intricated
in the case of magnetic steel, since the skin depth strongly varies with the temperature and
with the intensity of magnetic field, ranging from about 0.015 mm up to almost 1 mm.
We can state that in the work piece the whole eddy current (and consequently the whole
heating source) is concentrated in a thin layer along the boundary near the inductor, and
heat is then carried by diffusion inside the piece.
Consequently, for the domain Ω0, we have constructed a mesh more refined along the boun-
dary near the inductor but not too coarse in the other parts (cf fig 4). In the ferromagnetic
case, as the skin depth varies considerably during the heating, it is difficult to choose a priori
a good mesh. In this case it would be adequate to use an adaptative mesh. This remains a
possible direction for future research.
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Fig. 4 – Mesh of the section. The points P1, .., P5 are used as control points for the compa-
rison with the 3D code.

4.3 Numerical Comparisons.

We consider here the case of stainless steel. The comparison between the temperature
simulated with 2D and 3D code is showed in figure 5.
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Fig. 5 – Evolution of the temperature in the control points (P1 is at the top and left, and
P4 at the bottom and right). The temperature (in degree K) is ploted in function of time (in
second).

5 Conclusions.

We have described, in detail a mathematical model to simulate induction heating pro-
cesses in industry. The described numerical methods were tested with realistic data given
by the industrial environment. The comparisons between the produced code and a three-
dimensionnal code, proves the efficiency of our two-dimensionnal approach, even when the
work piece is not very long in the x3 direction. Moreover the computations are quite fast. In
consequence we think that our numerical model is of practical importance. However, some
improvements remain to be done in order to apply the method efficiently to large scale
problems involving ferromagnetic behaviour. Thus, a possible direction for research would
be the study of an adaptative refinement mesh procedure.
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