Enseignant : Mohamed Elkadi Série 4

Exercice 1 Résoudre les équations $3x^2 - 6x + 2 = 0$, $x^2 + (1+i)x + i = 0$, $x^2 + (3+4i)x - 1 + 5i = 0$.

Exercice 2 Sachant que la somme de ce que contiennent vos deux poches est 32 euros et le produit est 242,31 euros, combien avez-vous d'argent dans chaque poche?

Exercice 3 Soit $p(X) = a_d X^d + \cdots + a_0 \in \mathbb{Z}[X]$ un polynôme de degré d.

- 1. Montrer que si $\frac{\alpha}{\beta} \in \mathbb{Q}$ est racine de p(x) alors α divise a_0 et β divise a_d (pour la simplicité, supposer d=3)
- 2. En déduire que si $a_d = 1$ ou -1 alors les solutions rationnelles de p(X) sont entières et elles sont des diviseurs de a_0 .

Exercice 4 Soient
$$A_1 = \begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 4 & 2 & -4 \\ 1 & 4 & -3 \\ 1 & 1 & 0 \end{pmatrix}$. Pour chacune de ces matrices

- 1. Déterminer les valeurs propres.
- 2. Déterminer une base de chacun des sous-espaces propres.
- 3. La matrice est-elle diagonabilsable ?
- 4. Si oui, diagonaliser la matrice. Puis calculer $P^{-1}AP$, où P est la matrice de passage de la base canonique à la base des vecteurs propres.

Exercice 5 1. Donner une matrice 2×2 diagonalisable.

- 2. Donner une matrice 3×3 diagonalisable.
- 3. Donner une matrice 2×2 qui n'est pas diagonalisable.
- 4. Donner une matrice 3×3 qui n'est pas diagonalisable.
- 5. Les valeurs propres d'une matrice à coefficients réels sont-elles toujours réelles ?

Exercice 6 1. Une matrice et sa transposée ont-elles les mêmes valeurs propres ?

2. Une matrice et sa transposée ont-elles les mêmes vecteurs propres ?

Exercice 7 Soit A une matrice carrée dont la somme des coefficients de chaque ligne est constant et vaut s. Montrer que s est une valeur propre de A.

Exercice 8 (Processus de Markov) On note par u_n (resp. v_n) le nombre de personnes actives et ayant (resp. sans) un emploi durant la période n. Si p = 0,03 est la probabilité qu'une personne sans emploi trouve un travail à la période suivante et q = 0,95 la probabilité qu'une personne active reste employée à la période suivante.

- 1. Calculer u_n et v_n .
- 2. En déduire le taux de chomage sur le long terme.

Exercice 9 1. Montrer le théorème de Cayley-Hamilton pour une matrice de taille 2.

2. Montrer le théorème de Cayley-Hamilton pour une matrice diagonalisable.

Exercice 10 Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice réelle ayant deux valeurs propres complexes distinctes.

- 1. Montrer que ses valeurs propres sont de la forme $\rho e^{i\theta}$ et $\rho e^{-i\theta}$.
- 2. En diagonalisant A sur \mathbb{C} , montrer que l'on peut trouver une matrice réelle P inversible telle que $P^{-1}AP = \begin{pmatrix} \rho\cos\theta & \rho\sin\theta \\ -\rho\sin\theta & \rho\cos\theta \end{pmatrix}$.