2. Interval of existence of maximal solutions

Exercise 2.1. Proof of the theorem about compact subsets and maximal solutions. We fix a compact subset $A \subset U$, a solution $\varphi : (\alpha, \beta) \to \mathbb{R}^d$ of (S) and $t_0 \in (\alpha, \beta)$. We suppose that

$$\forall t \in (t_0, \beta), \ (t, \varphi(t)) \in A.$$

1. Prove that $\beta < +\infty$ and that there exists $l \in \mathbb{R}^d$ and a sequence $(t_n)_{n \in \mathbb{N}}$ in $(t_0, \beta)^{\mathbb{N}}$ such that $\lim_{n \to +\infty} t_n = \beta$ and

$$\lim_{n \to +\infty} \varphi(t_n) = l.$$

- 2. Let $\tilde{\varphi} : (\alpha, \beta] \to \mathbb{R}^d$ be the map whose restriction to (α, β) is φ and such that $\tilde{\varphi}(\beta) = l$. Prove that $\tilde{\varphi}$ is a solution of (S).
- 3. Complete the proof of the theorem.

Exercise 2.2 What can be said about the interval of existence of maximal solutions of the following differential equations?

$$\begin{array}{ll} (E_1) & y'(t) = \cos(e^t y(t)) \\ (E_2) & y'(t) = \cos(y(t))t^2 + \arctan(y(t)). \end{array}$$

Exercise 2.3 Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a C^1 map. Suppose there exists R > 0 such that, for any point $x \in \mathbb{R}^d$ with $||x|| \ge R$, f(x) vanishes. Prove that any solution of the differential equation y' = f(y) is bounded. What can be deduced about the interval of definition of maximal solutions?

Exercise 2.4

1. Prove that maximal solutions of the following differential equations are defined on \mathbb{R} .

$$\begin{cases} x' = xy^2 \\ y' = -yx^2 \end{cases}$$

2. Prove that maximal solutions of the following differential equations are defined on a neighbourhood of $+\infty$.

$$\begin{cases} x' = -xy^2 \\ y' = -yx^2 \end{cases}$$

Exercise 2.5 We denote by (S) the following differential system

$$\begin{cases} x' = x^3 + y^2 x \\ y' = y^3 + yx^2 \end{cases}$$

 Let

$$\begin{array}{rccc} I & \to & \mathbb{R} \\ t & \mapsto & (x(t), y(t)) \end{array}$$

be a maximal solution of (S) and let $f(t) = x(t)^2 + y(t)^2$.

- 1. Find a differential equation (E) satisfied by f.
- 2. What can we deduce about the interval I?

Exercise 2.6. Proof of the linear Gronwall lemma.

1. Let $f : I \to \mathbb{R}$ a differentiable function defined on an open interval I. Let $t_0 \in I$. Assume there exists A > 0 and $B \ge 0$ such that

$$\forall t \in [t_0, +\infty) \cap I, \ f'(t) \le Af(t) + B.$$

Prove that

$$\forall t \in [t_0, +\infty) \cap I, \ f(t) \le f(t_0)e^{(t-t_0)A} + \frac{B}{A}(e^{(t-t_0)A} - 1).$$

- 2. Prove the linear Gronwall lemma in the case where, for any $t \in [t_0, +\infty) \cap I$, $\|\varphi(t)\| > 0$. Hint : take $\psi(t) = \|\varphi(t)\|$ and use the first question.
- 3. Prove the linear Gronwall lemma in the general case.

Exercise 2.7 What can be said about the interval of existence of maximal solutions of the following differential systems?

$$(S_1) \begin{cases} x' = \arctan(y)x + 2y + \cos(t) \\ y' = \sin(y)x \end{cases}$$
$$(S_2) \begin{cases} x' = -3x + 2e^{-x^2}y + \frac{1}{1+y^2} \\ y' = -\cos(ty)x + \frac{y}{1+x+x^2} + \arctan(t) \end{cases}$$

Exercise 2.8. Linear differential systems.

- 1. Prove that linear differential systems satisfy the hypothesis of the existence and uniqueness theorem.
- 2. Prove the theorem about the interval of definition of maximal solutions of linear differential systems.

Exercise 2.9. Continuity with respect to the initial solution For $\epsilon > 0$, let

$$K_{\epsilon} = \left\{ (t, p) \in [t_{-}, t_{+}] \times \mathbb{R}^{d}, \| p - \varphi_{t_{0}}^{t}(x_{0}) \| \leq \epsilon \right\}.$$

- 1. Prove that there exists $\epsilon > 0$ such that $K_{\epsilon} \subset U$.
- 2. In what follows, we fix $\epsilon > 0$ such that the above property is satisfied. Prove that there exists k > 0 such that, for any points $(t, p) \in K_{\epsilon}$ and $(t, p') \in K_{\epsilon}$,

$$||f(t,p) - f(t,p')|| \le k ||p - p'||.$$

3. Fix $\delta > 0$ such that $\delta e^{k(t_+ - t_-)} < \epsilon$. Let

$$V = \{ y_0 \in \mathbb{R}^d, \| y_0 - x_0 \| < \delta \}.$$

Prove the theorem of continuity with respect to the initial condition with k > 0 and V defined as above.

Exercise 2.10 What can be said about the interval of existence of maximal solutions y_{max} of the differential equation $y' = (\cos(ty) + 2)y^2$ which are defined at 0 in terms of $y_0 = y_{max}(0)$.

Exercise 2.11 Let U be an open set of \mathbb{R}^2 and $f: U \to \mathbb{R}^2$ be a continuous function which is locally lipschitzian with respect to the phase variable. Denote by (E) the differential equation x' = f(t, x). Let $\varphi: (\alpha, \beta) \to \mathbb{R}$ be a subsolution of (E) and $\rho: (\alpha, \beta) \to \mathbb{R}$ be a solution of (E). Let $t_0 \in (\alpha, \beta)$.

1. Suppose that $\varphi(t_0) \leq \rho(t_0)$ and that, for any $t \in [t_0, \beta)$, $\varphi'(t) < f(t, \varphi(t))$. Suppose for a contradiction that there exists $t_1 > t_0$ such that $\varphi(t_1) > \rho(t_1)$. We let

$$\tau = \inf \left\{ t \in [t_0, \beta), \ \varphi(t) > \rho(t) \right\}.$$

- (a) Prove that $\varphi'(\tau) < \rho'(\tau)$.
- (b) Find a contradiction. What can we conclude?
- 2. Now, we just suppose that $\varphi(t_0) \leq \rho(t_0)$ and that φ is a subsolution of (E). Deduce from the first part of the exercise that, for any $t \in [t_0, \beta)$, $\varphi(t) \leq \rho(t)$ by using, for $\epsilon > 0$, $f_{\epsilon}(t, x) = f(t, x) + \epsilon$.

Exercise 2.12 Adapt Exercise 2.11 to provide a proof of the nonlinear higher-dimensional Gronwall lemma.