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3. Qualitative study of di�erential systems

Exercise 3.1. Flow of a vector field. Prove Proposition 3.1 about properties of the flow
of a vector field.

Exercise 3.2. Orbits of a vector field We denote by ϕ the flow of a complete vector field
X : U → Rd, where U ⊂ Rd is an open set.

1. Prove that two different orbits of the vector field X are disjoint.
2. Fix a point p ∈ U . Let Gp = {t ∈ R, ϕt(x) = x}. Prove that the group Gp is a closed

subgroup of R.
3. Prove that any subgroup of R is either {0}, or of the form aZ with a > 0 or dense in

R.
4. Prove the proposition about the different shapes of an orbit.

Exercise 3.3. Qualitative study in dimension 1 and 2
1. Let c ∈ R. Without computation, describe the qualitative behaviour of the solutions

of the differential equation
y′ = y(1− y)− c.

2. Draw the phase portraits of the following differential systems.{
x′ = y − sin(x)
y′ = x

4 − y{
x′ = x− 1

4x
2 − xy

y′ = 2y − y2 − xy .{
x′ = x− y2
y′ = (y − 1− x)2

Exercise 3.4. Lotka-Volterra differential system. Let α, β, γ and δ be positive real
numbers. We want to study the following differential system (which represents the evolution
of populations of predators and preys) :

(LV )

{
x′ = αx− βxy
y′ = −γy + δxy

.

1. For any real number x and y, compute ϕt(x, 0) and ϕt(0, y), where ϕ is the flow
associated with (LV ).

2. Prove that any orbit which contains a point of

C = {(x, y), x > 0, y > 0}

is contained in C.
3. Draw the restriction to C of the phase portrait of the differential system (LV ).
4. Let

C1 =
{
x < γ

δ , y >
α
β

}
C2 =

{
x < γ

δ , y <
α
β

}
C3 =

{
x > γ

δ , y <
α
β

}
C4 =

{
x > γ

δ , y >
α
β

}
D1 =

{
x = γ

δ , y >
α
β

}
.

Prove that, for any solution ψ of (LV ) such that ψ(0) ∈ D1, ψ(t) visits successively
the domains C1, C2, C3, C4 and comes back to D1.

5. Find a non-constant first integral of (LV ) defined on C of the form I(x, y) = F (x) +
G(y). Deduce that any solution of (LV ) which is contained in C is defined on R.



6. Prove that the orbits of (LV ) which are contained in C are periodic. Hint : Prove that
the first integral I is one-to-one on D1.

Exercise 3.5. Change of coordinates. Let X : U → Rd be a locally lipschitzian vector
field defined on an open set U ⊂ Rd. Let h : U → h(U) = V ⊂ Rd be a C2-diffeomorphism.

1. Prove that the vector field h∗X is locally lipschitzian on V .
2. Denote by ψ the flow of the vector field h∗X. Prove that, at any point (t, x) where

this relation makes sense
ψt(x) = h ◦ ϕt ◦ h−1(x).

Exercise 3.6. Proof of the flow box theorem Let x0 be a zero of the C2 vector field
X : U → Rd. Suppose that X(x0) 6= 0 and let us denote by ϕ the flow of the vector field X.

1. Denote by Σ the hyperplane Σ = X(x0)⊥ =
{
u ∈ Rd, < u,X(x0) >= 0

}
, where

< ., . > is the standard scalar product on Rd. Prove that the map

g : R× Σ → Rd
(t, u) 7→ ϕt(x0 + u)

defines a diffeomorphism from an open neighbourhood W1 of (0, 0) in R × Σ to an
open neighbourhood W2 of x0 in Rd.

2. Let h = g−1 : W2 → W1. Prove that, for any point (t0, u) in W2 and for t sufficiently
close to 0, we have

h ◦ ϕt ◦ h−1(t0, u) = (t0 + t, u).

3. Deduce that h∗X is a constant vector field.
Exercise 3.7. Stability for linear systems. Let A be a d × d matrix. Let us denote by
(S) the differential system x′ = Ax.

1. Prove that the origin is not stable for (S) if A has an eigenvalue with positive real
part.

2. By decomposing a solution in reduction base for A, prove that the origin is stable for
(S) if and only if all the eigenvalues of A have a negative real part.

3. In which case is the origin stable ?
Exercise 3.8. Let g : [0,+∞[→ R be the function defined by{

g(r) = r3 sin( 1
r ) si r > 0

g(0) = 0
.

We consider the differential system given in polar coordinates by{
θ′ = 1
r′ = g(r)

.

1. Why can we apply the existence and uniqueness theorem to this system ?
2. Discuss the stability at the origin.

Exercise 3.9. Discuss the stability at the origin for each of those differential systems.

{
x′ = −2x− 3xy
y′ = 2x2 − y .

 x′ = 2y(z − 1)
y′ = −x(z − 1)
z′ = −z3

.

Hint : Look for a Lyapunov function of the form ax2 + by2 or ax2 + by2 + cz2.

Exercise 3.10. Let V : R3 → R be a C∞-function which has a strict minimum at a point
x0 ∈ R3 and which has no critical point on a neighbourhood of the point x0 (the gradient of V
does not vanish on a neighbourhood of the point x0). Discuss the stability of the equilibrium
point x0 for each of the following differential systems (where f > 0).

x′ = −∇V (x).



x′′ + fx′ +∇V (x) = 0.

x′′ +∇V (x) = 0.

Exercise 3.11. Lyapunov functions and stability. Let X : U → Rd be a vector field on
an open set U of Rd. Let p0 be an equilibrium point for the differential system x′ = X(x)
and suppose there exists a weak Lyapunov function L : V → R for this equilibrium point.
Let m = L(p0). Take ε0 > 0 such that the closed ball B(p0, ε0) is a subset of V .

1. In this first part of the exercise, we want to prove that the equilibrium point p0 is
stable.
(a) Let ε ∈ (0, ε0). Prove that there exists c > 0 such that

Nc =
{
x ∈ B(p0, ε0), L(x) < m+ c

}
⊂ B(p0, ε).

(b) Prove that there exists η > 0 such that B(p0, η) ⊂ Nc ∩B(p0, ε).

(c) Let ψ : I → Rd be a maximal solution of the system x′ = X(x) such that 0 ∈ I
and ψ(0) ∈ B(p0, η). Prove that, for any t ∈ I ∩ [0,+∞),

ψ(t) ∈ B(p0, ε0) ∩Nc.

What can we say about the interval I ?
(d) Prove that the equilibrium point p0 is stable.

2. In this question, suppose that L is a Lyapunov function. We want to prove that the
equilibrium point p0 is asymptotically stable. By the first part of the exercise, we can
choose η > 0 and c > 0 such that

B(p0, η) ⊂ Nc ∩B(p0, ε0) ⊂ B(p0,
ε0
2

).

Let ψ : I → Rd be a maximal solution of x′ = X(x) with 0 ∈ I and ψ(0) ∈ B(p0, η) \
{p0}. By the first part of the exercise [0,+∞) ⊂ I.
(a) Let (tn)n be a sequence of real numbers such that limn→+∞ tn = +∞. Prove that

there exists a subsequence (tϕ(n))n∈N of this sequence a point x∞ ∈ Rd such that
limn→+∞ ψ(tϕ(n)) = x∞.

(b) Prove that x∞ = p0 and that limt→+∞ L(ψ(t)) = L(p0).
(c) Conclude.

Exercise 3.12. In those two cases, compute the singular points of the vector field (i.e. the
points where those vector fields vanish). What can we say about their stability by computing
the differential of those vector fields ?

1.
X1

((
x
y

))
=

(
−x2 − y
−x+ y2

)
.

2.
X2

((
x
y

))
=

(
−1 + x2 + y2

−x

)
.

Exercise 3.13. Stability by linearization.
1. Let A be a d× d matrix with real entries. Suppose the eigenvalues of A have negative

real parts. For any x ∈ Rd we let

L(x) =

∫ +∞

0

∥∥esAx∥∥2 ds.
Prove that L is well-defined and is a Lyapunov function for the differential system
x′ = Ax.



2. Let X : U → Rd be a vector field and p0 be an equilibrium point of the differential
system x′ = X(x). Suppose A is the jacobian matrix of X at p0 and let L′ be the map
defined on Rd by

L(x) =

∫ +∞

0

∥∥esA(x− x0)
∥∥2 ds.

Prove that the restriction of L to a small neighbourhood of the point p0 is a Lyapunov
function for the equilibrium point p0 (which is hence asymptotically stable).

Exercise 3.14. Consider the following differential system.{
x′ = −y − x(x2 + y2)
y′ = x− y(x2 + y2)

.

Find the equilibrium points and study their stablity. Without solving the system : what can
we say about the interval of existence of the solutions ?

Exercise 3.15. We want to study the differential equation (of the pendulum) θ′′ = − sin(θ).
1. Find a (non-constant) first integral of this equation.
2. Study the interval of existence of maximal solutions.
3. Draw the phase portrait associated to this equation.
4. Study the stability of the equilibrium points.
5. Same questions for the equation θ′′ = −fθ′− sin(θ), avec f > 0. Look for a Lyapunov

function instead of a first integral.
Exercise 3.16.We want to study the following differential system (which describes the evo-
lution of two populations in interaction).{

x′ = −xy − 2x2 + 2x
y′ = −y2 − 1

2xy + y
.

1. Find the equilibrium points and study their stability.
2. Prove that the set C = {x ≥ 0, y ≥ 0} is invariant under the flow.
3. Draw the restriction to C of this phase portrait.
4. Discuss the time of existence of the solutions contained in C.


