Quasipatterns solutions of the Swift-Hohenberg PDE

Gérard looss

IUF, Université Côte d'Azur, Laboratoire J.A.Dieudonné, Parc Valrose, F-06108 Nice Cedex02

Quasipatterns experiments

Experiment of Faraday type. Kudrolli, Pier, Gollub 1998

Quasipatterns on Swift-Hohenberg PDE

Steady Swift-Hohenberg equation in \mathbb{R}^{2}

$$
\begin{gathered}
(1+\Delta)^{2} u=\mu u-u^{3}, \mathbf{x} \in \mathbb{R}^{2} \rightarrow u(\mathbf{x}) \in \mathbb{R} \\
e^{i \mathbf{k} \cdot \mathbf{x}} \in \operatorname{Ker}\left\{(1+\Delta)^{2}-\mu\right\}
\end{gathered}
$$

iff Dispersion equation holds:

$$
\left(1-|\mathbf{k}|^{2}\right)^{2}=\mu, \mathbf{k} \in \mathbb{R}^{2}
$$

For $\mu=0$ all wave vectors \mathbf{k} with $|\mathbf{k}|=1$ are critical
We choose to look for solutions, quasiperiodic in \mathbb{R}^{2}, invariant under rotations of angle π / q and with μ close to 0 .

Quasilattices

$$
\begin{gathered}
u=\Sigma_{\mathbf{k} \in\left\ulcorner u^{(\mathbf{k})} e^{i \mathbf{k} \cdot \boldsymbol{x}}, \mathbf{k}_{j}=e^{i(j-1) \pi / q}, u^{(\mathbf{k})}=\bar{u}^{(-\mathbf{k})}\right.}^{\Gamma=\left\{\mathbf{k}=\sum_{j=1, \ldots 2 q} m_{j} \mathbf{k}_{j}, \quad m \in \mathbb{N}^{2 q},\left(\mathbf{k}_{j}, \mathbf{k}_{j+1}\right)=\pi / q\right\}}
\end{gathered}
$$

For $q=1,2,3 \quad \Gamma$ is a lattice leading to a periodic pattern
For $q \geq 4 \Gamma$ is a quasilattice leading to a quasipattern

Example $q=4$, the 8 wavevectors which form the generators of the quasilattice

Example with $q=4$, The truncated quasilattices Γ_{9} and Γ_{27}. The smadte esive dots mark the combinations of up to 9 or 27 of the 8 basis vectors.

$$
\begin{aligned}
& L_{0} u=\mu u-u^{3}, \quad L_{0}=(1+\Delta)^{2}, \\
& u=\sum_{n \geq 0} \epsilon^{2 n+1} u_{2 n+1} \text { invariant under rotations } \mathbf{R}_{\pi / q}, \\
& \mu=\sum_{n \geq 1} \epsilon^{2 n} \mu_{2 n} \\
& L_{0} u_{1}=0, u_{1}=\sum_{j=1}^{2 q} e^{i \mathbf{k}_{j} \cdot \mathbf{x}} \text { unique eigenvector invariant under } \mathbf{R}_{\pi / q} \\
&\left.L_{0} u_{3}=\mu_{2} u_{1}-u_{1}^{3}, \mu_{2}=3(2 q-1) \text { (compatib. cond.: rhs } \perp \text { to } u_{1}\right) . \\
& u_{3}=\sum_{\mathbf{k}=\mathbf{k}_{j}+\mathbf{k}_{1}+\mathbf{k}_{r}} \alpha_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}}, \text { uniquely determ. } \perp \text { to } u_{1} \quad \begin{array}{l}
\text { unvesin } \\
\text { coverizle }
\end{array}
\end{aligned}
$$

Assume $u_{2 k+1}, \mu_{2 k}$ known for $k=1, \ldots, n-1$, then $u_{2 n+1}, \mu_{2 n}$ are determined by

$$
L_{0} u_{2 n+1}=\mu_{2 n} u_{1}-\sum_{I+r+s=n-1} u_{2 I+1} u_{2 r+1} u_{2 s+1}, u_{2 n+1} \in\left\{u_{1}\right\}^{\perp}
$$

Compatibility condition gives $\mu_{2 n}$, then we need to invert L_{0} in using

$$
L_{0}^{-1} e^{i \mathbf{k} \cdot \mathbf{x}}=\left(1-|\mathbf{k}|^{2}\right)^{-2} e^{i \mathbf{k} \cdot \mathbf{x}}, \mathbf{k} \neq \mathbf{k}_{j}, j=1, \ldots, 2 q
$$

Problem: Estimate $u_{2 n+1}, \mu_{2 n}$
\Rightarrow Small divisor problem

Diophantine estimate

\mathbb{Q} vector space $\operatorname{span}\left\{\mathbf{k}_{j} ; j=1, . .2 q\right\}$ has dimension d where $d / 2=I_{0}+1 \leq q / 2$ is the degree of the minimal Polynomial for the algebraic $\mathrm{nb} \omega=2 \cos \pi / q($ coef in $\mathbb{Z})$.

$$
\begin{aligned}
& \text { for } q=4,5,6, \omega=\sqrt{2}, \frac{1+\sqrt{5}}{2}, \sqrt{3}, I_{0}+1=2 \\
& \mathbf{k}=\sum_{j=1}^{2 q} m_{j} \mathbf{k}_{j}=\frac{1}{\mathfrak{d}} \sum_{s=1}^{d} m_{s}^{*} \mathbf{k}_{s}^{*}, \mathbf{m}^{*}=\left(m_{1}^{*}, . ., m_{d}^{*}\right) \in \mathbb{Z}^{d} \\
& N_{\mathbf{k}}=\sum_{s=1}^{d}\left|m_{s}^{*}\right| \text { notice that } \mathfrak{d}=1 \text { for } q=4,5, \ldots .12 \\
& \quad\left(|\mathbf{k}|^{2}-1\right)^{2} \geq c\left(1+N_{\mathbf{k}}^{2}\right)^{-2 / 0}, \text { if } \mathbf{k} \neq \mathbf{k}_{j}, j=1, . .2 q
\end{aligned}
$$

Algebra

The quasi-lattice Γ possesses the property that the only solutions of

$$
|\mathbf{k}|^{2}-1=0, \mathbf{k} \in \Gamma
$$

are $\mathbf{k}_{j}, j=1, \ldots 2 q$.
This results from the Kronecker-Weber theorem, saying that every abelian extension of \mathbb{Q} is cyclotomic.
\Rightarrow the kernel of \mathbf{L}_{0} is $2 q$-dimensional
kernel of \mathbf{L}_{0}, invariant under $R_{\pi / q}$ is 1-dimensional

Spaces of quasi-periodic functions

Sobolev like spaces

$$
\begin{gathered}
\mathcal{H}_{s}=\left\{u=\sum_{\mathbf{k} \in \Gamma} u_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}} ;\|u\|_{s}^{2}=\sum_{\mathbf{k} \in \Gamma}\left(1+N_{\mathbf{k}}^{2}\right)^{s}\left|u_{\mathbf{k}}\right|^{2}<\infty\right\} \\
\langle w, v\rangle_{s}=\sum_{\mathbf{k} \in \Gamma}\left(1+N_{\mathbf{k}}^{2}\right)^{s} w_{\mathbf{k}} \overline{\bar{k}_{\mathbf{k}}}
\end{gathered}
$$

Lemma

Assume $q \geq 4$, then for $s>d / 2$, for any $u \in \mathcal{H}_{s}$ and any $v \in \mathcal{H}_{0}$

$$
\|u v\|_{0} \leq c_{s}\|u\|_{s}\|v\|_{0} .
$$

For $s \geq s^{\prime}>d / 2$ and $u, v \in \mathcal{H}_{s}$, then,

$$
\|u v\|_{s} \leq C\left(s, s^{\prime}\right)\left(\|u\|_{s}\|v\|_{s^{\prime}}+\|u\|_{s^{\prime}}\|v\|_{s}\right)
$$

for some positive constant $C\left(s, s^{\prime}\right)$ that depends only on s and s^{\prime}. For $\ell \geq 0$ and $s>\ell+d / 2, \mathcal{H}_{s}$ is continuously embedded into \mathcal{C}^{ℓ}.

Approximated solution

Gevrey estimate:

$$
\left\|u_{2 n+1}\right\|_{s}+\left|\mu_{2 n}\right| \leq \delta K^{2 n+1}((2 n+1)!)^{4 / 0}
$$

Theorem

(G.I., A.Rucklidge 2009) Let $q \geq 4$, $s>d / 2, s \geq 4$ then there exists K and $C>0$ such that for $\epsilon<\epsilon_{0}$, there exists $\bar{u}(\epsilon) \in \mathcal{H}_{s}$ with the formal asymptotic expansion computed above and satisfying

$$
\left.\|(1+\Delta)^{2} \bar{u}(\epsilon)-\bar{\mu}(\epsilon) \bar{u}(\epsilon)\right)+[\bar{u}(\epsilon)]^{3} \|_{s-4} \leq C e^{-\frac{K}{\epsilon^{1 /\left.8\right|_{0}}}}
$$

Existence of quasipatterns

Theorem

(Braaksma, looss, Stolovitch 2015) Let $q \geq 4$ be an integer and let $d=2\left(I_{0}+1\right)$ be the dimension of the \mathbb{Q}-vector space spanned by the wave vectors $\mathbf{k}_{j}, j=1, \ldots, 2 q$. Then, there exists $s_{0}>d / 2$, $\varepsilon_{0}>0$, and $0<\epsilon_{2}<\varepsilon_{0}$ such that, for any $s \geq s_{0},|\varepsilon|<\epsilon_{2}$, there exists a set \mathcal{E} contained in $\left[-\epsilon_{2}, \epsilon_{2}\right]$, of asymptotic full measure as ϵ tends to 0 , such that for $\varepsilon \in \mathcal{E}$, there exists a quasipattern solution (U, μ) of the steady Swift-Hohenberg equation, invariant under the rotation $\mathbf{R}_{\pi / q}$, of the form

$$
\begin{aligned}
U & =U_{\varepsilon}+\varepsilon^{2 p} V(\varepsilon) \in \mathcal{H}_{s_{0}}, U_{\varepsilon}=\varepsilon u_{1}+\varepsilon^{3} u_{3}+\ldots . \varepsilon^{2 p-1} u_{2 p-1} \\
\mu & =\mu_{\varepsilon}+\varepsilon^{2 p+2} h(\varepsilon), \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots+\varepsilon^{2 p} \mu_{2 p}
\end{aligned}
$$

where V and εh are $C^{1}, \mu_{2}=3(2 q-1)>0$ and coefficients $\mu_{2 n}, u_{1}, u_{2 n+1}$ are the ones of the formal asymptotic expansion.

Idea of Proof 1

$$
\begin{aligned}
u & =U_{\varepsilon}+\varepsilon^{2 p} \widetilde{u}, \widetilde{u} \in\left\{u_{1}\right\}^{\perp} \\
U_{\varepsilon} & =\varepsilon u_{1}+\varepsilon^{3} \widetilde{U}_{\varepsilon}, \widetilde{U}_{\varepsilon}=u_{3}+\ldots \varepsilon^{2 p-4} u_{2 p-1} \perp u_{1} \\
\mu & =\mu_{\varepsilon}+\widetilde{\mu}, \quad \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots \varepsilon^{2 p} \mu_{2 p}
\end{aligned}
$$

Range equation:

$$
\left(\mathbf{L}_{0}-\widetilde{\mu}\right) \widetilde{u}+g(\varepsilon, \widetilde{\mu})+\mathcal{B}_{\varepsilon} \widetilde{u}+\mathcal{C}_{\varepsilon}(\widetilde{u})=0
$$

where $g(\varepsilon, \widetilde{\mu})=\widetilde{\mu} \varepsilon^{3-2 p} \widetilde{U}_{\varepsilon}-\varepsilon \mathbf{Q}_{0} f_{\varepsilon}, \mathcal{B}_{\varepsilon}$ is linear and $O\left(\varepsilon^{2}\right)$ in any \mathcal{H}_{s}, and $\mathcal{C}_{\varepsilon}$ is at least quadratic and $O\left(\varepsilon^{2 p+1}\right)$ in $\mathcal{H}_{s}, s>d / 2$.
We expect, for suitable $\widetilde{\mu} \in\left(-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right)$, to solve this range equation with respect to \widetilde{u} which should be of order $O(\varepsilon)$, and put it into the
Bifurcation equation:

$$
\left\langle u_{1}, u_{1}\right\rangle \widetilde{\mu}-3 \varepsilon^{2 p+1}\left\langle u_{1}^{2} \widetilde{u}, u_{1}\right\rangle=\mathcal{O}\left(\varepsilon^{2 p+2}\right)
$$

Then we solve with respect to $\tilde{\mu}$, and find $\tilde{\mu}=O\left(\varepsilon^{2 p+2}\right)$.

Idea of Proof (continued 1)

Solving the Range equation, we have a small divisor problem:

$$
{\widetilde{\mathbf{L}_{0}}}^{-1} e^{i \mathbf{k} \cdot \mathbf{x}}=\frac{1}{\left(|\mathbf{k}|^{2}-1\right)^{2}} e^{i \mathbf{k} \cdot x}
$$

with $\left(|\mathbf{k}|^{2}-1\right)^{2} \geq c N_{\mathbf{k}}^{-4 / 0}$
Nash-Moser method needs to invert the differential $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$ at any V near 0 , where $\mathcal{L}_{\varepsilon, V}$ acts in $\mathbf{Q}_{0} \mathcal{H}_{t}, t \geq 0, \mathbf{Q}_{0}$ is the orthogonal projection on $\left\{u_{1}\right\}^{\perp}$ in $\mathcal{H}_{t}, t \geq 0$, and $\mathcal{L}_{\varepsilon, V}$ is defined by

$$
\mathcal{L}_{\varepsilon, V}=\mathbf{L}_{0}-\mu_{\varepsilon} \mathbb{I}+3 \mathbf{Q}_{0}\left(U_{\varepsilon}^{2} \cdot\right)-6 \varepsilon^{2 p} \mathbf{Q}_{0}\left(U_{\varepsilon} V \cdot\right)-3 \varepsilon^{4 p} \mathbf{Q}_{0}\left[(V)^{2} \cdot\right]
$$

\mathbf{L}_{0} is selfadjoint in all $\mathbf{Q}_{0} \mathcal{H}_{s}, s \geq 0$, and its spectrum is \mathbb{R}^{+} (constant coefficients)

Inverse of the differential $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$

Definition

Truncation of the space. Let $s \geq 0$ and $N>1$ be an integer, we define $E_{N}:=\Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{s}$, which consists in keeping in the Fourier expansion of $\widetilde{u} \in \mathbf{Q}_{0} \mathcal{H}_{s}$ only those $\mathbf{k} \in \Gamma$ such that $N_{\mathbf{k}} \leq N$. By construction we obtain

$$
\left\|\left(\Pi_{N} \mathbf{L}_{0} \Pi_{N}\right)^{-1}\right\|_{s} \leq c_{0}(1+N)^{4 / 0}
$$

Inverse of $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$ for $N<M_{\varepsilon}$, (elementary perturbation theory)

Lemma

Let $S>s_{0}>d / 2$ and $\varepsilon_{0}>0$ small enough and
$\alpha \in\left(\mathcal{E}_{1} \cap \mathcal{E}_{0}\right) \cup \mathcal{E}_{\mathbb{Q}}$. Then for $0<\varepsilon \leq \varepsilon_{0}$ and $N \leq M_{\varepsilon}$ with $M_{\varepsilon}:=\left[\frac{c_{1}}{\varepsilon^{1 / 20_{0}}}\right]$ and $(\varepsilon, \widetilde{\mu}, V) \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right] \times E_{N}$, the following holds for $s \in\left[s_{0}, S\right]$ and V such that $\|V\|_{s} \leq 1$, $\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}\right\|_{s} \leq 2 c_{0}(1+N)^{4 / 0}$

Inverse of $\mathcal{L}_{\varepsilon}, V-\widetilde{\mu} \mathbb{I}$ for large N

define $\Lambda:=\left\{(\varepsilon, \tilde{\mu}) ; \varepsilon \in\left[-\varepsilon_{0}, \varepsilon_{0}\right], \tilde{\mu} \in\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right]\right\}$, and for $M>0, s_{0}>d / 2$,

$$
\begin{aligned}
\mathcal{U}_{M}^{(N)}: & =\left\{V \in C^{1}\left(\Lambda, E_{N}\right) ; V(0, \widetilde{\mu})=0\right. \\
& \left.\|V\|_{s_{0}} \leq 1,\left\|\partial_{\varepsilon} V\right\|_{s_{0}} \leq M,\left\|\partial_{\widetilde{\mu}} V\right\|_{s_{0}} \leq\left(M / \varepsilon^{2 p-2}\right)\right\}
\end{aligned}
$$

For $V \in \mathcal{U}_{M}^{(N)}$, we consider the operator

$$
\begin{aligned}
\Pi_{N}\left(\mathcal{L}_{\varepsilon, V(\varepsilon, \widetilde{\mu})}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}= & \Pi_{N} \mathbf{L}_{0} \Pi_{N}-\widetilde{\mu} \mathbb{I}_{N}+\varepsilon^{2} \mathcal{B}_{1}^{(N)}(\varepsilon)+ \\
& +\varepsilon^{2 p+1} \mathcal{B}_{2}^{(N)}(\varepsilon, V(\varepsilon, \widetilde{\mu}))
\end{aligned}
$$

$\Pi_{N} \mathrm{~L}_{0} \Pi_{N}, \mathcal{B}_{1}^{(N)}, \mathcal{B}_{2}^{(N)}$ selfadjoint in $\Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{0}$ and analytic in their arguments.
Eigenv. of $\Pi_{N}\left(\mathcal{L}_{\varepsilon, V(\varepsilon, \widetilde{\mu})}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}$ are (see Kato, thm 6.1 and 6.10)

$$
\sigma_{j}(\varepsilon, \widetilde{\mu})=s_{j}(\varepsilon)+f_{j}(\varepsilon, \widetilde{\mu})-\widetilde{\mu},
$$

where s_{j} is analytic and f_{j} is Lipschitz in $(\varepsilon, \widetilde{\mu})$ (Lidskii theorem) and $\left|f_{j}\left(\varepsilon_{2}, \widetilde{\mu_{2}}\right)-f_{j}\left(\varepsilon_{1}, \widetilde{\mu_{1}}\right)\right| \leq c\left[\varepsilon^{2 p}\left|\varepsilon_{2}-\varepsilon_{1}\right|+\varepsilon^{3}\left|\widetilde{\mu_{2}}-\widetilde{\mu_{1}}\right|\right]$

Inverse of $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$ for large N (continued 1)

Bad set of $\tilde{\mu}$

$$
\begin{aligned}
& B_{\varepsilon, \gamma}^{(N)}(V)=\left\{\widetilde{\mu} \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] ;(\varepsilon, V) \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times \mathcal{U}_{M}^{(N)},\right. \\
&\left.\exists j \in\{1, \ldots \mathcal{N}\},\left|\sigma_{j}(\varepsilon, \widetilde{\mu})\right|<\frac{\gamma}{N^{\tau}}\right\} \\
& B_{\varepsilon, \gamma}^{(N)}(V)=\cup_{j=1}^{\mathcal{N}}\left(\widetilde{\mu}_{j}^{-}(\varepsilon), \widetilde{\mu}_{j}^{+}(\varepsilon)\right) \\
& 0<\widetilde{\mu}_{j}^{+}(\varepsilon)-\widetilde{\mu}_{j}^{-}(\varepsilon) \leq \frac{4 \gamma}{N^{\tau}}, \mathcal{N} \leq b N^{d} \\
& \operatorname{meas}\left(B_{\varepsilon, \gamma}^{(N)}(V)\right) \leq \frac{4 b \gamma}{N^{\tau-d}}
\end{aligned}
$$

$\widetilde{\mu}_{j}^{ \pm}(\varepsilon)$ are Lipschitz continuous with a small Lip constant. Good set of $\tilde{\mu}: G_{\varepsilon, \gamma}^{(N)}(V):=\left[-\varepsilon_{0}, \varepsilon_{0}\right] \backslash B_{\varepsilon, \gamma}^{(N)}(V)$.

Inverse of $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$ for large N (continued 2)

Lemma

Assume $\left.\gamma \leq \widetilde{\gamma}=2^{2 l_{0}+1} c_{0}\right)$ and $\tau>d+3+(4 p+4) /_{0}$. For
$V \in \mathcal{U}_{M}^{(N)}$ and $|\varepsilon| \leq \varepsilon_{0}$ fixed, then if
$\widetilde{\mu} \in G_{\varepsilon, \gamma}^{(N)}(V) \cap\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right], N>1$

$$
\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, V(\varepsilon, \widetilde{\mu})}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}\right\|_{0} \leq \frac{N^{\tau}}{\gamma}
$$

Moreover, for $N>M_{\varepsilon}$, the measure of the "bad set" $B_{\varepsilon, \gamma}^{(N)}(V)$ is bounded by $4 b \gamma / N^{\tau-d}$, while it is 0 for $N \leq M_{\varepsilon}$.

This estimate is in $\mathcal{L}\left(\mathbf{Q}_{0} \mathcal{H}_{0}\right)$. In fact, we need to obtain a tame estimate for $\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, V(\varepsilon, \widetilde{\mu})}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}$ in $\mathcal{L}\left(\mathbf{Q}_{0} \mathcal{H}_{s}\right)$ for $s>0$, with. an exponent on N not depending on s.

We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a suitable adaptation.

Inverse of the differential in \mathcal{H}_{s} for large N (continued 3)

Singular set in $\mathbb{Z}^{d}: S(N):=\left\{\mathbf{z} \in \Gamma(N) ;\left(1-|\mathbf{k}(\mathbf{z})|^{2}\right)^{2}<\rho\right\}$ with

$$
\begin{aligned}
\mathbf{k}(\mathbf{z}) & =\mathfrak{d}^{-1} \sum_{s=1}^{d} z_{s} \mathbf{k}_{s}^{*}, \mathbf{z}=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{Z}^{d} \\
\Gamma(N) & :=\left\{\mathbf{z} \in \mathbb{Z}^{d} ; 0 \leq|\mathbf{z}| \leq N, \mathbf{k}(\mathbf{z}) \in \Gamma \backslash\left\{\mathbf{k}_{j}, j=1, \ldots, 2 q\right\}\right\} .
\end{aligned}
$$

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010) There exists $\rho_{0}>0$ independent of N such that if $\left.\rho \in\right] 0, \rho_{0}$] then $S(N)=\bigcup_{\alpha \in \mathcal{A}} \Omega_{\alpha}$ is a union of disjoint clusters Ω_{α} satisfying :

- (H1), for all $\alpha \in \mathcal{A}, M_{\alpha} \leq 2 m_{\alpha}$ where $M_{\alpha}=\max _{\mathbf{z} \in \Omega_{\alpha}}|\mathbf{z}|$ and $m_{\alpha}=\min _{\mathbf{z} \in \Omega_{\alpha}}|\mathbf{z}| ;$
- (H2), there exists $\delta=\delta(d) \in] 0,1[$ independent of N such that if $\alpha, \beta \in \mathcal{A}, \alpha \neq \beta$ then
$\operatorname{dist}\left(\Omega_{\alpha}, \Omega_{\beta}\right):=\min _{\mathbf{z} \in \Omega_{\alpha}, \mathbf{z}^{\prime} \in \Omega_{\beta}}\left|\mathbf{z}-\mathbf{z}^{\prime}\right| \geq \frac{\left(M_{\alpha}+M_{\beta}\right)^{\delta}}{2}$

Basic ingredient for the Lemma above

Define the positive definite matrix \mathbf{A} in \mathbb{Z}^{d} :

$$
\mathfrak{d}^{2}|\mathbf{k}(\mathbf{z})|^{2}=\langle\mathbf{z}, \mathbf{A} \mathbf{z}\rangle, \mathbf{A}=\sum_{r=1}^{I_{0}} \mathbf{A}_{r} \omega^{r}
$$

where $\omega=2 \cos \pi / q$, and matrices \mathbf{A}_{r} have integer coefficients.
Then, for any \mathbb{Q}-linearly independent family $\left\{\mathbf{e}_{j}, j=1, \ldots, d_{0} \leq d\right\}$ in \mathbb{Z}^{d}, let consider the matrix \mathbf{M} such that $M_{l, m}=\left\langle\mathbf{e}_{l}, \mathbf{A} \mathbf{e}_{m}\right\rangle$.
We have $\operatorname{det} \mathbf{M}=\sum_{r=0}^{1_{0}} q_{r} \omega^{r}$.
Then, (see G.I.-A.R. 2010 Lemma 2.1) there exists $C>0$ such that

$$
|\operatorname{det} \mathbf{M}| \geq \frac{C}{|\mathbf{q}|^{10}}
$$

Inverse of $\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}$ in \mathcal{H}_{s} for large N (the end)

Define the set of "good' $\widetilde{\mu}$ for all $K \leq N$:

$$
\mathcal{G}_{\varepsilon, \gamma}^{(N)}(V):=\cap_{M_{\varepsilon}<K \leq N} G_{\varepsilon, \gamma}^{(K)}(V) \cap\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right]
$$

Lemma

Let $\tau>d+3+(4 p+4) /_{0}$ and $s_{0} \geq \frac{d}{2}+\frac{d+\tau}{\delta}+1$, where δ is the number introduced in separation property (H 2), and define $m:=2 \tau+3 d / 2$. Assume moreover that $0<\gamma \leq \widetilde{\gamma}=1 /\left(2^{2 l_{0}+1} c_{0}\right)$, and $(\varepsilon, \widetilde{\mu}, V) \in \Lambda \times \mathcal{U}_{M}^{(N)}$, with $|\varepsilon| \leq \epsilon_{1}, \widetilde{\mu} \in \mathcal{G}_{\varepsilon, \gamma}^{(N)}(V), \epsilon_{1}$ small enough. Let $\bar{s}>s_{0}$. Then for all $s \in\left[s_{0}, \bar{s}\right]$ there exists $K(s)>0$ such that for any $h \in \Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{s}$, we have

$$
\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, V}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1} h\right\|_{s} \leq K(s) \frac{N^{m}}{\gamma}\left(\|h\|_{s}+\|V\|_{s}\|h\|_{s_{0}}\right)
$$

The proof follows Berti-Bolle 2010

Resolution of the Range equation

Define $\widetilde{\mu}=\varepsilon^{2 p-2} \hat{\mu}$, then the range equation takes the form

$$
\mathcal{F}(\varepsilon, \hat{\mu}, \widetilde{u}):=\left(\mathbf{L}_{0}-\varepsilon^{2 p-2} \hat{\mu}\right) \widetilde{u}+\hat{g}(\varepsilon, \hat{\mu})+\mathcal{B}_{\varepsilon} \widetilde{u}+\mathcal{C}_{\varepsilon}(\widetilde{u})=0
$$

$(\varepsilon, \hat{\mu}, \widetilde{u}) \rightarrow \mathcal{F}(\varepsilon, \hat{\mu}, \widetilde{u})$ is analytic from $\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times[-1,1] \times \mathbf{Q}_{0} \mathcal{H}_{s+4}$ to $\mathbf{Q}_{0} \mathcal{H}_{s}$, and $\mathcal{F}(-\varepsilon, \hat{\mu},-\widetilde{u})=-\mathcal{F}(\varepsilon, \hat{\mu}, \widetilde{u})$.

$$
\begin{aligned}
\hat{g}(0, \hat{\mu})= & 0, \text { and for }\|V\|_{s_{0}} \leq 1, s \geq s_{0}>d / 2 \\
\left\|D_{\widetilde{u}} \mathcal{F}(\varepsilon, \hat{\mu}, V) v\right\|_{s} \leq & C(s)\left(\|v\|_{s+4}+\varepsilon^{2 p+1}\|v\|_{s_{0}}\|V\|_{s}\right) \\
\left\|D_{\widetilde{U}}^{2} \mathcal{F}(\varepsilon, \hat{\mu}, V)(v, h)\right\|_{s} \leq & C(s) \varepsilon^{2 p+1}\left(\|h\|_{s}\|v\|_{s_{0}}+\|h\|_{s_{0}}\|v\|_{s}+\right. \\
& +\|V\|_{s}\|h\|_{s_{0}}\|v\|_{s_{0}}
\end{aligned}
$$

$\left\|\Pi_{N} u\right\|_{s+r} \leq(1+N)^{r}\|u\|_{s},\left\|\left(\mathbb{I}-\Pi_{N}\right) u\right\|_{s} \leq(1+N)^{-r}\|u\|_{r+s}$
Π_{N} is a "smoothing operator", and for $V \in \mathcal{U}_{M}^{(N)}, \widetilde{\mu} \in \mathcal{G}_{\varepsilon, \gamma}^{(N)}(V)$, ,ocvecalid
$\left\|\left\{\Pi_{N} D_{\widetilde{u}} \mathcal{F}(\varepsilon, \hat{\mu}, V) \Pi_{N}\right\}^{-1} v\right\|_{s} \leq K(s) \frac{N^{m}}{\gamma}\left(\|h\|_{s}+\|V\|_{s}\|h\|_{s_{0}}\right)$

Resolution of the Range equation (continued)

For $\tilde{V}(\varepsilon, \widetilde{\mu}) \in \mathcal{U}_{M}^{(N)}$, then $V(\varepsilon, \hat{\mu}):=\tilde{V}\left(\varepsilon, \varepsilon^{2 p-2} \hat{\mu}\right)$ is C^{1} with first derivatives bounded by M in $\mathcal{H}_{s_{0}}$.

Theorem

Let s_{0} and $\tilde{\gamma}$ be as above. Then for all $0<\gamma<\tilde{\gamma}$ there exist $\epsilon_{2}(\gamma) \in\left[0, \varepsilon_{0}\right]$ and a $C^{1}-\operatorname{map} V:\left(-\epsilon_{2}, \epsilon_{2}\right) \times[-1,1] \rightarrow \mathcal{H}_{s_{0}+4}$ such that $V(0, \hat{\mu})=0$ and if $|\varepsilon| \leq \epsilon_{2}, \hat{\mu} \in\left([-1,1] \backslash C_{\varepsilon, \gamma}\right)$, the function $V(\varepsilon, \hat{\mu})$ is solution of $\mathcal{F}(\varepsilon, \hat{\mu}, V)=0$. Here $C_{\varepsilon, \gamma}$ is a subset of $[-1,1]$ which is a Lipschitz function of ε and has Lebesgue-measure less than $C \gamma|\varepsilon|^{3}$ for some constant $C>0$ independent of ε and γ. Moreover, $V(-\varepsilon, \hat{\mu})=-V(\varepsilon, \hat{\mu})$.

The proof uses Nash-Moser method, following Berti-Bolle-Procesi 2010.

Resolution of the Bifurcation equation

$$
\widetilde{\mu}=\varepsilon^{2 p-2} \hat{\mu}
$$

Bifurcation equation:

$$
\begin{aligned}
\widetilde{\mu} u_{1}= & 3 \varepsilon^{2 p-1} \mathbf{P}_{0}\left(U_{\varepsilon}^{2} V(\varepsilon, \hat{\mu})\right)+\varepsilon^{2 p+2} \mathbf{P}_{0} f_{\varepsilon}^{(1)} \\
& +3 \varepsilon^{4 p-1} \mathbf{P}_{0}\left(U_{\varepsilon} V^{2}\right)+\varepsilon^{6 p-1} \mathbf{P}_{0} V^{3}
\end{aligned}
$$

and using the implicit function theorem for $\varepsilon \in\left(-\epsilon_{2}, \epsilon_{2}\right)$,

$$
\text { (H) } \widetilde{\mu}=\varepsilon^{2 p+2} h(\varepsilon), \varepsilon h(\varepsilon) \text { odd function } \in C^{1}
$$

The only valid values for ε are the one giving "good" $\widetilde{\mu}$'s.

Structure of the "bad set" in the space $(\varepsilon, \widetilde{\mu})$

Define bad strips;

$$
\begin{aligned}
B S_{N}(V)= & \left\{(\varepsilon, \widetilde{\mu}) \in \Lambda ; \text { there exists } j \text { with } \tilde{\mu} \in\left[\widetilde{\mu}_{j}^{-}(\varepsilon), \widetilde{\mu}_{j}^{+}(\varepsilon)\right]\right\} \\
& \sum_{j}\left|\widetilde{\mu}_{j}^{+}(\varepsilon)-\widetilde{\mu}_{j}^{-}(\varepsilon)\right| \leq \frac{c \gamma}{N^{\tau-d}} \leq \frac{c \gamma \varepsilon^{2 p+1}}{N^{3}} \\
\widetilde{\mu}_{j}^{ \pm}(\varepsilon)= & s_{j}^{(N)}(\varepsilon)+g_{j}^{ \pm}(\varepsilon), s_{j}^{(N)}(\varepsilon)=s_{j}^{(N)}(0)+3 \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{4}\right) \\
& \left|g_{j}^{ \pm}\left(\varepsilon_{2}\right)-g_{j}^{ \pm}\left(\varepsilon_{1}\right)\right| \leq c \varepsilon^{4}\left|\varepsilon_{2}-\varepsilon_{1}\right|
\end{aligned}
$$

$B S_{N}(V)$ is a union of thin Lipschitz strips in the plane $(\varepsilon, \widetilde{\mu})$
For the proof of the range theorem, we choose $\widetilde{\mu}$ outside of $\cup_{n \in \mathbb{N}} B S_{N_{n}}\left(V_{n-1}\right)$ where $N_{n}=\left[N_{0}(\gamma)\right]^{2}$, and V_{n} are the successive isive points in the Newton iteration process.

Transversality

Let $\tilde{\mu}$ be any one of the limiting curves of the bad strips given by $\cup_{n \in \mathbb{N}} B S_{N_{n}}\left(V_{n-1}\right)$, then the form of $\widetilde{\mu}_{j}^{ \pm}(\varepsilon)$ leads to

$$
|\tilde{\mu}(\varepsilon+h)-\tilde{\mu}(\varepsilon)| \geq c|\varepsilon||h|,
$$

which is OK for intersecting transversally the bifurcation curve (H) (slope of order $\varepsilon^{2 p+1}$). From the resolution of the Range equation the Measure of "bad" $\widetilde{\mu}$'s $<C \gamma|\varepsilon|^{2 p+1}$ hence measure of "bad" ε 's

$$
<\frac{C_{\gamma}|\varepsilon|^{2 p+1}}{\min \mid \text { slope } \mid}<\frac{C_{\gamma}|\varepsilon|^{2 p+1}}{c|\varepsilon|} \leq C^{\prime} \gamma \varepsilon^{2 p}
$$

The complementary subset in $\left(0, \varepsilon_{2}\right)$, is the good set of $|\varepsilon|$, which is of asymptotic full measure since $\left[|\varepsilon|-C^{\prime} \gamma \varepsilon^{2 p}\right] /|\varepsilon| \rightarrow 1$ as $\varepsilon \rightarrow 0$.

Theorem

Theorem

(B.I.S. 2015) Let $q \geq 4$ be an integer and let $d=2\left(I_{0}+1\right)$ be the dimension of the \mathbb{Q}-vector space spanned by the wave vectors \mathbf{k}_{j}, $j=1, \ldots, 2 q$. Then, there exists $s_{0}>d / 2, \varepsilon_{0}>0$, and $0<\epsilon_{2}<\varepsilon_{0}$ such that, for any $s \geq s_{0},|\varepsilon|<\epsilon_{2}$, there exists a set \mathcal{E} contained in $\left[-\epsilon_{2}, \epsilon_{2}\right]$, of asymptotic full measure as ϵ tends to 0 , such that for $\varepsilon \in \mathcal{E}$, there exists a quasipattern solution (U, μ) of the steady Swift-Hohenberg equation, invariant under the rotation $\mathbf{R}_{\pi / q}$, of the form

$$
\begin{aligned}
U & =U_{\varepsilon}+\varepsilon^{2 p} V(\varepsilon) \in \mathcal{H}_{s_{0}}, U_{\varepsilon}=\varepsilon u_{1}+\varepsilon^{3} u_{3}+\ldots \varepsilon^{2 p-1} u_{2 p-1} \\
\mu & =\mu_{\varepsilon}+\varepsilon^{2 p+2} h(\varepsilon), \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots+\varepsilon^{2 p} \mu_{2 p}
\end{aligned}
$$

where V and εh are $C^{1}, \mu_{2}=3(2 q-1)>0$ and coefficients $\mu_{2 n}, u_{1}, u_{2 n+1}$ are the ones of the formal asymptotic expansion.

References on Quasipatterns

G.I., A.M. Rucklidge. On the existence of quasipattern solutions of the Swift-Hohenberg equation. J. Nonlinear Science 20, 3, 361-394, 2010.
B.Braaksma, G.I., L.Stolovitch. Existence of quasipatterns solutions of the Swift-Hohenberg equation. A.R.M.A. 209, 1 (2013), 255-285. Erratum ARMA 211, 3 (2014), 1065.
B.Braaksma, G.I., L.Stolovitch. Existence proof of of quasipatterns solutions of the Swift-Hohenberg equation.Com. Math. Phys. 353(1), 37-67, 2017 DOI 10.1007/s00220-017-2878-x
B.Braaksma, G.I. Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231(3), 1917-1981 (2019) DOI: 10.1007/s00205-018-1313-6
 patterns. Nonlinearity (to appear in 2019)

