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IUF, Université Côte d’Azur, Laboratoire J.A.Dieudonné,
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Quasipatterns experiments

Experiment of Faraday type. Kudrolli, Pier, Gollub 1998
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Quasipatterns on Swift-Hohenberg PDE

Numerical computation. Rucklidge-Silber 2009
Swift-Hohenberg PDE
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Steady Swift-Hohenberg equation in R2

(1 + ∆)2u = µu − u3, x ∈ R2 → u(x) ∈ R

e ik.x ∈ Ker{(1 + ∆)2 − µ}
iff Dispersion equation holds:

(1 − |k|2)2 = µ, k ∈ R2

For µ = 0 all wave vectors k with |k| = 1 are critical

We choose to look for solutions, quasiperiodic in R2, invariant
under rotations of angle π/q and with µ close to 0.
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Quasilattices

u = Σk∈Γu
(k)e ik·x, kj = e i(j−1)π/q, u(k) = u(−k)

Γ = {k =
∑

j=1,...2q

mjkj , m ∈ N2q, (kj , kj+1) = π/q}

For q = 1, 2, 3 Γ is a lattice leading to a periodic pattern
For q ≥ 4 Γ is a quasilattice leading to a quasipattern
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Example q = 4, the 8 wavevectors which form the generators of the

quasilattice
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Example with q = 4, The truncated quasilattices Γ9and Γ27. The small

dots mark the combinations of up to 9 or 27 of the 8 basis vectors.
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Formal Lyapunov-Schmidt method

L0u = µu − u3, L0 = (1 + ∆)2,

u =
∑

n≥0

ǫ2n+1u2n+1 invariant under rotations Rπ/q,

µ =
∑

n≥1

ǫ2nµ2n

L0u1 = 0, u1 =

2q∑

j=1

e ikj .x unique eigenvector invariant under Rπ/q

L0u3 = µ2u1−u3
1, µ2 = 3(2q−1) (compatib. cond.: rhs ⊥ to u1).

u3 =
∑

k=kj+kl+kr

αke
ik.x, uniquely determ. ⊥ to u1
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Formal series

Assume u2k+1, µ2k known for k = 1, ..., n − 1, then u2n+1, µ2n are
determined by

L0u2n+1 = µ2nu1 −
∑

l+r+s=n−1

u2l+1u2r+1u2s+1, u2n+1 ∈ {u1}⊥

Compatibility condition gives µ2n, then we need to invert L0 in
using

L−1
0 e ik·x = (1 − |k|2)−2e ik·x, k 6= kj , j = 1, ..., 2q

Problem: Estimate u2n+1, µ2n

⇒ Small divisor problem
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Diophantine estimate

Q vector space span{kj ; j = 1, ..2q} has dimension d where
d/2 = l0 + 1 ≤ q/2 is the degree of the minimal Polynomial for
the algebraic nb ω = 2cos π/q (coef in Z).

for q = 4, 5, 6, ω =
√

2,
1 +

√
5

2
,
√

3, l0 + 1 = 2

k = Σ2q
j=1mjkj =

1

d
Σd

s=1m
∗
sk

∗
s , m∗ = (m∗

1, ..,m
∗
d ) ∈ Zd

Nk = Σd
s=1|m∗

s | notice that d = 1 for q = 4, 5, ....12

(|k|2 − 1)2 ≥ c(1 + N2
k )−2l0 , if k 6= kj , j = 1, ..2q
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Algebra

The quasi-lattice Γ possesses the property that the only solutions of

|k|2 − 1 = 0, k ∈ Γ

are kj , j = 1, ...2q.
This results from the Kronecker-Weber theorem, saying that every
abelian extension of Q is cyclotomic.

⇒ the kernel of L0 is 2q - dimensional
kernel of L0, invariant under Rπ/q is 1-dimensional
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Spaces of quasi-periodic functions

Sobolev like spaces

Hs =

{
u =

∑

k∈Γ

uke
ik·x; ||u||2s =

∑

k∈Γ

(1 + N2
k )s |uk|2 < ∞

}

〈w , v〉s =
∑

k∈Γ

(1 + N2
k )swkvk

Lemma

Assume q ≥ 4, then for s > d/2, for any u ∈ Hs and any v ∈ H0

||uv ||0 ≤ cs ||u||s ||v ||0.

For s ≥ s ′ > d/2 and u, v ∈ Hs , then,

‖uv‖s ≤ C (s, s ′)(‖u‖s‖v‖s′ + ‖u‖s′‖v‖s).

for some positive constant C (s, s ′) that depends only on s and s ′.
For ℓ ≥ 0 and s > ℓ + d/2, Hs is continuously embedded into Cℓ.
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Approximated solution

Gevrey estimate:

||u2n+1||s + |µ2n| ≤ δK 2n+1((2n + 1)!)4l0

Theorem

(G.I., A.Rucklidge 2009) Let q ≥ 4, s > d/2, s ≥ 4 then there
exists K and C > 0 such that for ǫ < ǫ0, there exists ū(ǫ) ∈ Hs

with the formal asymptotic expansion computed above and
satisfying

||(1 + ∆)2ū(ǫ) − µ̄(ǫ)ū(ǫ)) + [ū(ǫ)]3||s−4 ≤ Ce
− K

ǫ1/8l0
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Existence of quasipatterns

Theorem

(Braaksma, Iooss, Stolovitch 2015) Let q ≥ 4 be an integer and let
d = 2(l0 + 1) be the dimension of the Q-vector space spanned by
the wave vectors kj , j = 1, ..., 2q. Then, there exists s0 > d/2,
ε0 > 0, and 0 < ǫ2 < ε0 such that, for any s ≥ s0, |ε| < ǫ2, there
exists a set E contained in [−ǫ2, ǫ2], of asymptotic full measure as
ǫ tends to 0, such that for ε ∈ E , there exists a quasipattern
solution (U, µ) of the steady Swift-Hohenberg equation, invariant
under the rotation Rπ/q, of the form

U = Uε + ε2pV (ε) ∈ Hs0 ,Uε = εu1 + ε3u3 + ....ε2p−1u2p−1

µ = µε + ε2p+2h(ε), µε = ε2µ2 + ... + ε2pµ2p

where V and εh are C 1, µ2 = 3(2q − 1) > 0 and coefficients
µ2n, u1, u2n+1 are the ones of the formal asymptotic expansion.
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Idea of Proof 1

u = Uε + ε2p ũ, ũ ∈ {u1}⊥,

Uε = εu1 + ε3Ũε, Ũε = u3 + ...ε2p−4u2p−1 ⊥ u1

µ = µε + µ̃, µε = ε2µ2 + ....ε2pµ2p.

Range equation:

(L0 − µ̃)ũ + g(ε, µ̃) + Bεũ + Cε(ũ) = 0,

where g(ε, µ̃) = µ̃ε3−2pŨε − εQ0fε, Bε is linear and O(ε2) in any
Hs , and Cε is at least quadratic and O(ε2p+1) in Hs , s > d/2.
We expect, for suitable µ̃ ∈ (−ε2p−2, ε2p−2), to solve this range
equation with respect to ũ which should be of order O(ε), and put
it into the
Bifurcation equation:

〈u1, u1〉µ̃ − 3ε2p+1〈u2
1 ũ, u1〉 = O(ε2p+2),

Then we solve with respect to µ̃, and find µ̃ = O(ε2p+2).
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Idea of Proof (continued 1)

Solving the Range equation, we have a small divisor problem:

L̃0
−1

e ik·x =
1

(|k|2 − 1)2
e ik·x

with (|k|2 − 1)2 ≥ cN−4l0
k

Nash-Moser method needs to invert the differential Lε,V − µ̃I at
any V near 0, where Lε,V acts in Q0Ht , t ≥ 0 , Q0 is the
orthogonal projection on {u1}⊥in Ht , t ≥ 0, and Lε,V is defined
by

Lε,V = L0 − µεI + 3Q0(U
2
ε ·) − 6ε2pQ0(UεV ·) − 3ε4pQ0[(V )2·].

L0 is selfadjoint in all Q0Hs , s ≥ 0, and its spectrum is R+

(constant coefficients)
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Inverse of the differential Lε,V − µ̃I

Definition

Truncation of the space. Let s ≥ 0 and N > 1 be an integer, we
define EN := ΠNQ0Hs , which consists in keeping in the Fourier
expansion of ũ ∈ Q0Hs only those k ∈ Γ such that Nk ≤ N. By
construction we obtain

||(ΠNL0ΠN)−1||s ≤ c0(1 + N)4l0 .

Inverse of Lε,V − µ̃I for N < Mε, (elementary perturbation theory)

Lemma

Let S > s0 > d/2 and ε0 > 0 small enough and
α ∈ (E1 ∩ E0) ∪ EQ. Then for 0 < ε ≤ ε0 and N ≤ Mε with

Mε :=
[

c1

ε1/2l0

]
and (ε, µ̃,V ) ∈ [−ε0, ε0] × [−ε2p−2, ε2p−2] × EN ,

the following holds for s ∈ [s0,S ] and V such that ||V ||s ≤ 1,
||(ΠN (Lε,V − µ̃I)ΠN)−1||s ≤ 2c0(1 + N)4l0
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Inverse of Lε,V − µ̃I for large N

define Λ := {(ε, µ̃); ε ∈ [−ε0, ε0], µ̃ ∈ [−ε2p−2, ε2p−2]}, and for
M > 0, s0 > d/2,

U (N)
M : =

{
V ∈ C 1(Λ,EN);V (0, µ̃) = 0,

||V ||s0 ≤ 1, ||∂εV ||s0 ≤ M, ||∂eµV ||s0 ≤ (M/ε2p−2)
}

.

For V ∈ U (N)
M , we consider the operator

ΠN(Lε,V (ε,eµ) − µ̃I)ΠN = ΠNL0ΠN − µ̃IN + ε2B(N)
1 (ε) +

+ε2p+1B(N)
2 (ε,V (ε, µ̃)),

ΠNL0ΠN , B(N)
1 , B(N)

2 selfadjoint in ΠNQ0H0 and analytic in their
arguments.
Eigenv. of ΠN(Lε,V (ε,eµ) − µ̃I)ΠN are (see Kato, thm 6.1 and 6.10)

σj(ε, µ̃) = sj(ε) + fj(ε, µ̃) − µ̃,

where sj is analytic and fj is Lipschitz in (ε, µ̃) (Lidskii theorem)
and |fj(ε2, µ̃2) − fj(ε1, µ̃1)| ≤ c[ε2p|ε2 − ε1| + ε3|µ̃2 − µ̃1|]
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Inverse of Lε,V − µ̃I for large N (continued 1)

Bad set of µ̃

B (N)
ε,γ (V ) =

{
µ̃ ∈ [−ε0, ε0]; (ε,V ) ∈ [−ε0, ε0] × U (N)

M
,

∃j ∈ {1, ...N}, |σj (ε, µ̃)| <
γ

Nτ

}

B (N)
ε,γ (V ) = ∪N

j=1(µ̃
−
j (ε), µ̃+

j (ε)),

0 < µ̃+
j (ε) − µ̃−

j (ε) ≤ 4γ

Nτ
, N ≤ bNd

meas(B (N)
ε,γ (V )) ≤ 4bγ

Nτ−d
,

µ̃±
j (ε) are Lipschitz continuous with a small Lip constant.

Good set of µ̃: G
(N)
ε,γ (V ) := [−ε0, ε0]\B (N)

ε,γ (V ).
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Inverse of Lε,V − µ̃I for large N (continued 2)

Lemma

Assume γ ≤ γ̃ = 22l0+1c0) and τ > d + 3 + (4p + 4)l0. For

V ∈ U (N)
M

and |ε| ≤ ε0 fixed, then if

µ̃ ∈ G
(N)
ε,γ (V ) ∩ [−ε2p−2, ε2p−2], N > 1

||(ΠN(Lε,V (ε,eµ) − µ̃I)ΠN)−1||0 ≤ Nτ

γ
.

Moreover, for N > Mε, the measure of the ”bad set”B
(N)
ε,γ (V ) is

bounded by 4bγ/Nτ−d , while it is 0 for N ≤ Mε.

This estimate is in L(Q0H0). In fact, we need to obtain a tame
estimate for (ΠN(Lε,V (ε,eµ) − µ̃I)ΠN )−1 in L(Q0Hs) for s > 0, with
an exponent on N not depending on s.
We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a
suitable adaptation.
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Inverse of the differential in Hs for large N (continued 3)

Singular set in Zd : S(N) := {z ∈ Γ(N); (1 − |k(z)|2)2 < ρ} with

k(z) = d
−1

d∑

s=1

zsk
∗
s , z = (z1, ..., zs ) ∈ Zd

Γ(N) := {z ∈ Zd ; 0≤|z| ≤ N, k(z) ∈ Γ\{kj , j = 1, ..., 2q}}.

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010)
There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then
S(N) =

⋃
α∈A Ωα is a union of disjoint clusters Ωα satisfying :

(H1), for all α ∈ A, Mα ≤ 2mα where Mα = maxz∈Ωα |z| and
mα = minz∈Ωα |z|;
(H2), there exists δ = δ(d) ∈]0, 1[ independent of N such
that if α, β ∈ A, α 6= β then

dist(Ωα,Ωβ) := minz∈Ωα,z′∈Ωβ
|z − z′| ≥ (Mα+Mβ)δ

2

G.Iooss quasipatterns



Basic ingredient for the Lemma above

Define the positive definite matrix A in Zd :

d
2|k(z)|2 = 〈z,Az〉, A =

l0∑

r=1

Arω
r

where ω = 2cos π/q, and matrices Ar have integer coefficients.
Then, for any Q-linearly independent family {ej , j = 1, ..., d0 ≤ d}
in Zd , let consider the matrix M such that Ml ,m = 〈el ,Aem〉.
We have detM =

∑l0
r=0 qrω

r .
Then, (see G.I.-A.R. 2010 Lemma 2.1) there exists C > 0 such that

|detM| ≥ C

|q|l0
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Inverse of Lε,V − µ̃I in Hs for large N (the end)

Define the set of ”good’ µ̃ for all K ≤ N:

G(N)
ε,γ (V ) := ∩Mε<K≤NG (K)

ε,γ (V ) ∩ [−ε2p−2, ε2p−2]

Lemma

Let τ > d + 3 + (4p + 4)l0 and s0 ≥ d
2 + d+τ

δ + 1, where δ is the
number introduced in separation property (H2), and define
m := 2τ + 3d/2. Assume moreover that 0 < γ ≤ γ̃ = 1/(22l0+1c0),

and (ε, µ̃,V ) ∈ Λ × U (N)
M

, with |ε| ≤ ǫ1, µ̃ ∈ G(N)
ε,γ (V ), ǫ1 small

enough. Let s > s0. Then for all s ∈ [s0, s ] there exists K (s) > 0
such that for any h ∈ ΠNQ0Hs , we have

||(ΠN (Lε,V − µ̃I)ΠN)−1h||s ≤ K (s)
Nm

γ
(||h||s + ||V ||s ||h||s0)

The proof follows Berti-Bolle 2010
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Resolution of the Range equation

Define µ̃ = ε2p−2µ̂, then the range equation takes the form

F(ε, µ̂, ũ) := (L0 − ε2p−2µ̂)ũ + ĝ(ε, µ̂) + Bεũ + Cε(ũ) = 0

(ε, µ̂, ũ) → F(ε, µ̂, ũ) is analytic from [−ε0, ε0]× [−1, 1]×Q0Hs+4

to Q0Hs , and F(−ε, µ̂,−ũ) = −F(ε, µ̂, ũ).

ĝ(0, µ̂) = 0, and for ||V ||s0 ≤ 1, s ≥ s0 > d/2

||DeuF(ε, µ̂,V )v ||s ≤ C (s)(||v ||s+4 + ε2p+1||v ||s0 ||V ||s)
||D2

euF(ε, µ̂,V )(v , h)||s ≤ C (s)ε2p+1(||h||s ||v ||s0 + ||h||s0 ||v ||s +

+||V ||s ||h||s0 ||v ||s0

||ΠNu||s+r ≤ (1 + N)r ||u||s , ||(I − ΠN)u||s ≤ (1 + N)−r ||u||r+s

ΠN is a ”smoothing operator”, and for V ∈ U (N)
M , µ̃ ∈ G(N)

ε,γ (V ),
||{ΠNDeuF(ε, µ̂,V )ΠN}−1v ||s ≤ K (s)Nm

γ (||h||s + ||V ||s ||h||s0)
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Resolution of the Range equation (continued)

For Ṽ (ε, µ̃) ∈ U (N)
M , then V (ε, µ̂) := Ṽ (ε, ε2p−2µ̂) is C 1 with first

derivatives bounded by M in Hs0 .

Theorem

Let s0 and γ̃ be as above. Then for all 0 < γ < γ̃ there exist
ǫ2(γ) ∈ [0, ε0] and a C 1−map V : (−ǫ2, ǫ2) × [−1, 1] → Hs0+4

such that V (0, µ̂) = 0 and if |ε| ≤ ǫ2, µ̂ ∈ ([−1, 1] \ Cε,γ), the
function V (ε, µ̂) is solution of F(ε, µ̂,V ) = 0. Here Cε,γ is a
subset of [−1, 1] which is a Lipschitz function of ε and has
Lebesgue-measure less than Cγ|ε|3 for some constant C > 0
independent of ε and γ. Moreover, V (−ε, µ̂) = −V (ε, µ̂).

The proof uses Nash-Moser method, following Berti-Bolle-Procesi
2010.
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Resolution of the Bifurcation equation

µ̃ = ε2p−2µ̂

Bifurcation equation:

µ̃u1 = 3ε2p−1P0(U
2
ε V (ε, µ̂)) + ε2p+2P0f

(1)
ε

+3ε4p−1P0(UεV
2) + ε6p−1P0V

3

and using the implicit function theorem for ε ∈ (−ǫ2, ǫ2),

(H) µ̃ = ε2p+2h(ε), εh(ε) odd function ∈ C 1

The only valid values for ε are the one giving ”good” µ̃’s.
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Structure of the ”bad set” in the space (ε, µ̃)

Define bad strips;

BSN(V ) = {(ε, µ̃) ∈ Λ; there exists j with µ̃ ∈ [µ̃−
j (ε), µ̃+

j (ε)]}

∑

j

|µ̃+
j (ε) − µ̃−

j (ε)| ≤ cγ

Nτ−d
≤ cγε2p+1

N3

µ̃±
j (ε) = s

(N)
j (ε) + g±

j (ε), s
(N)
j (ε) = s

(N)
j (0) + 3ε2 + O(ε4)

|g±
j (ε2) − g±

j (ε1)| ≤ cε4|ε2 − ε1|
BSN(V ) is a union of thin Lipschitz strips in the plane (ε, µ̃)
For the proof of the range theorem, we choose µ̃ outside of
∪n∈NBSNn

(Vn−1) where Nn = [N0(γ)]2
n

, and Vn are the successive
points in the Newton iteration process.
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Transversality

Let µ̃ be any one of the limiting curves of the bad strips given by
∪n∈NBSNn

(Vn−1), then the form of µ̃±
j (ε) leads to

|µ̃(ε + h) − µ̃(ε)| ≥ c |ε||h|,

which is OK for intersecting transversally the bifurcation curve (H)
(slope of order ε2p+1). From the resolution of the Range equation
the Measure of ”bad” µ̃’s < Cγ|ε|2p+1 hence measure of ”bad” ε’s

<
Cγ|ε|2p+1

min|slope| <
Cγ|ε|2p+1

c |ε| ≤ C ′γε2p

ε

(H)

0

μ
~

The complementary subset in (0, ε2), is the good set of |ε|, which
is of asymptotic full measure since [|ε| −C ′γε2p]/|ε| → 1 as ε → 0.
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Theorem

Theorem

(B.I.S. 2015) Let q ≥ 4 be an integer and let d = 2(l0 + 1) be the
dimension of the Q-vector space spanned by the wave vectors kj ,
j = 1, ..., 2q. Then, there exists s0 > d/2, ε0 > 0, and 0 < ǫ2 < ε0

such that, for any s ≥ s0, |ε| < ǫ2, there exists a set E contained in
[−ǫ2, ǫ2], of asymptotic full measure as ǫ tends to 0, such that for
ε ∈ E , there exists a quasipattern solution (U, µ) of the steady
Swift-Hohenberg equation, invariant under the rotation Rπ/q, of
the form

U = Uε + ε2pV (ε) ∈ Hs0 ,Uε = εu1 + ε3u3 + ....ε2p−1u2p−1

µ = µε + ε2p+2h(ε), µε = ε2µ2 + ... + ε2pµ2p

where V and εh are C 1, µ2 = 3(2q − 1) > 0 and coefficients
µ2n, u1, u2n+1 are the ones of the formal asymptotic expansion.
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