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Superposition experiments

Superposition of two hexagonal patterns: 0o , 3o , 5o , 10o , 20o , 30o
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Quasipatterns experiments

Experiments of Faraday type. Kudrolli, Pier, Gollub 1998, Epstein,
Fineberg 2006
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Definition of the quasilattice

Γ = {k ∈ R2; k =
∑

j=1,...6

mjkj + m′
jk

′
j , mj ,m

′
j ∈ N}.
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Special angles Ep := {α ∈ R/2πZ; cos α ∈ Q, cos(α + π/3) ∈ Q}.
Lemma

The set Ep has a zero measure in R/2πZ.
(i) If the wave vectors k1, k2, k

′
1, k

′
2 are not independent on Q,

then α ∈ Ep.
(ii) If α ∈ Ep then the lattice Γ is periodic with an hexagonal
symmetry, and wave vectors k1, k2, k

′
1, k

′
2 are combinations of only

two smaller vectors, of equal length making an angle 2π/3.
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Fourier series

u(x , y) function under the form of a Fourier expansion

u =
∑

k∈Γ

u(k)e ik·x, u(k) = u(−k) ∈ C. (1)

k ∈ Γ may be written as

k = z1k1 + z2k2 + z3k
′
1 + z4k

′
2, (z1, z2, z3, z4) ∈ Z4,

For α ∈ Eqp = Ec
p , , Γ spans a 4-dimensional vector space on Q.

Nk = |z| =
∑

j=1,...,4

|zj | is a norm of k(z)

Hilbert spaces Hs , s ≥ 0 :

Hs =

{
u =

∑

k∈Γ

u(k)e ik·x; u(k) = u(−k) ∈ C,
∑

k∈Γ

|u(k)|2(1 + N2
k )s < ∞

}
,
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basic Lemmas

Lemma

If α ∈ Eqp, a function defined by a convergent Fourier series as
above represents a quasipattern, i.e. is quasiperiodic in all
directions.

Lemma

For nearly all α ∈ (0, π/6), in particular for α ∈ Qπ ∩ (0, π/6], the
only solutions of |k(z)| = 1 are ±zj ,±k′j j = 1, 2 and k = ±k3, or
±k′3, i.e. corresponding to z = (±1,∓1, 0, 0) or (0, 0,±1,∓1).

E0 is the set of α’s such that Lemma above applies.

Lemma

For nearly all α ∈ Eqp ∩ (0, π/6), and for ε > 0, there exists c > 0
such that, for all |z| > 0 such that |k(z)| 6= 1,
(|k(z)|2 − 1)2 ≥ c

|z|12+ε holds.
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Steady Swift-Hohenberg equation in R2

(1 + ∆)2u = µu − u3, x ∈ R2 → u(x) ∈ R

e ik.x ∈ Ker{(1 + ∆)2 − µ} in Hs

iff Dispersion equation holds: (1 − |k|2)2 = µ, k ∈ Γ
For µ = 0 all wave vectors k with |k| = 1 are critical

We choose to look for solutions in Hs , for α ∈ Eqp ∩ E0, i.e.
quasiperiodic in R2, moreover invariant under rotations of angle
π/3 and bifurcating for µ close to 0.
define L0 = (1 + ∆)2

For α ∈ E0 KerL0 is 2-dimensional spanned by

v =
∑

j=1,2,..,6

e ikj ·x, w =
∑

j=1,2,..,6

e ik′j ·x.
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Symmetries

S represents the imparity symmetry: Su = −u

SL0 = L0S, Su3 = (Su)3.

Rθ rotation of angle θ, centered at the origin

(Rθu)(x) = u(R−θx),

RθL0 = L0Rθ, Rθu
3 = (Rθu)3.

τ represents the symmetry with respect to the bisectrix of wave
vectors k1 and k′1.

τL0 = L0τ, τu3 = (τu)3. (2)

Then
Rπ/3v = v , Rπ/3w = w , τv = w , τw = v
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Formal series

We look for a formal solution of SHE as

u =
∑

n≥1

εnun, µ =
∑

n≥1

εnµn, ε defined by the choice of u1

order ε : L0u1 = 0, u1 lies in the kernel of L0

u1 = w + β1v

the coefficient in front of w fixes the choice of the scale ε,
provided that we choose to impose 〈un,w〉0 = 0, n = 2, 3, ...

order ε2: L0u2 = µ1u1,

and the compatibility condition gives

µ1 = 0, u2 = β2v .
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Formal series-continued

Order ε3: L0u3 = µ2u1 − u3
1 .

Compatib: aµ2 − c − 3bβ2
1 = 0,

aβ1µ2 − 3bβ1 − cβ3
1 = 0,

where a = 6, b = 36, c = 90,
〈v2w , v〉 = 〈w2v ,w〉 = 〈v3,w〉 = 〈w3, v〉 = 0.

This gives (c − 3b)(β3
1 − β1) = 0,

µ2 =
c

a
+ 3

b

a
β2

1 , u3 = β3v + ũ3, 〈ũ3, v〉 = 〈ũ3,w〉 = 0.

ũ3 only contains Fourier modes e ik·x with k = m′
1k

′
1 + m′

2k
′
2

First case: β1 = 0, then µ2 = 15
Second case: β1 = ±1, then µ2 = 33, τu1 = β1u1, τ ũ3 = β1ũ3
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higher orders

For β1 = 0 we obtain the classical bifurcating hexagonal-symmetric
expansion (un is orthogonal to v for all n).
For β1 = ±1 the expansions are uniquely determined.
u1 = w + β1v , τu1 = β1u1

β1 = 1 leads to τu = u,

β1 = −1 leads to τu = −u.
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Formal series (end)

Theorem

Let us consider the Swift-Hohenberg model PDE . The
superposition of two hexagonal patterns, differing by a small
rotation of angle α ∈ E0, leads to formal expansions in powers of
an amplitude ε, of new bifurcating patterns invariant under
rotations of angle π/3. We obtain two new branches of patterns,
with formal expansions of the form

u = ε(w + β1v) + ε3ũ3 + ...ε2n+1ũ2n+1 + .., β1 = ±1,

〈ũ2n+1, v〉 = 〈ũ2n+1,w〉 = 0, τ ũ2n+1 = β1ũ2n+1, τu = β1u,

µ = ε2µ2 + ε4µ4 + ... + ε2nµ2n + .., µ2 > 0,

v =
∑

j=1,2,..,6

e ikj ·x, w =
∑

j=1,2,..,6

e ik′j ·x, (k1, k
′
1) = α.

For α ∈ Ep ∩ E0 the expansions converge, giving periodic patterns
with hexagonal symmetry.
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2 branches of quasipatterns

u

μ

τu = u

τu = Su =-u

Su =-u

0

The two branches bifurcate for µ > 0
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Solutions of SHE, β1 = 1

solutions of SHE for α = 4o , 7o , 10o , 30o . Order ε and β1 = 1 .
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Solutions of SHE, β1 = −1

solutions of SHE for α = 4o , 7o , 10o , 30o . Order ε and β1 = −1
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Existence of quasipatterns

Theorem

Assume α ∈ E2 ∩ E0 ∩ Eqp (full measure set). Then there exist
s0 > 2 and ε0 > 0 such that for an asymptotically full measure set
of values of ε ∈ (0, ε0), there exists a bifurcating quasipattern
solution of SHE, invariant under rotation of angle π/3, of the form

u = Uε + ε2p ũ(ε), ũ ∈ {v ,w}⊥,

Uε = ε(w + β1v) + ε3Ũε, β1 = ±1, τu = β1u,

Ũε = ũ3 + ....ε2p−4ũ2p−1,

µ = µε + µ̃(ε), µε = ε2µ2 + ...ε2pµ2p,

where ũ(ε) ∈ Q0Hs0 , w , v , ũ2n−1, µ2n are defined above, and
functions of ε are C 1 with ũ(0) = 0, µ̃(ε) = O(ε2p+2). Su = −u
corresponds to change ε into −ε.
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Bifurcation diagram

u

μ

τu=u

τu=Su=-u

Su=-u

0

Asymptotically full measure set of good values fof µ > 0 for the
two bifurcating branches
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Idea of Proof 1

u = Uε + ε2pW , W = ũ + βv , ũ ∈ {v ,w}⊥,

Uε = ε(w + β1v) + ε3Ũε, β1 = ±1, Ũε = ũ3 + ....ε2p−4ũ2p−1,

µ = µε + µ̃(ε), µε = ε2µ2 + ...ε2pµ2p,

(L0 − µ̃)ũ + g(ε, β, µ̃) + Bε,βũ + Cε,β(ũ) = 0,

where Bε,β is linear and O(ε2) in Hs , s ≥ 0, and Cε,β is at least
quadratic and O(ε2p+1) in Hs , s > 2.
We expect to solve this range-equation for µ̃ ∈ [−ε2p−2, ε2p−2],
with respect to ũ which should be of order O(ε), and put it into
Bifurcation equations:

aµ̃ − 6ε2p+1bβ1β − 3ε2p+1〈u2
1 ũ,w〉 = O(ε2p+2),

−β1aµ̃ + 2cε2p+1β + 3ε2p+1〈u2
1 ũ, v〉 = O(ε2p+2).

Then solve with respect to (µ̃, β) = (O(ε2p+2),O(ε)). Finally
β(ε) ≡ 0 by a symmetry argument.
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Idea of Proof (continued)

We have a small divisor problem:

L̃0
−1

e ik·x =
1

(|k|2 − 1)2
e ik·x

with (|k|2 − 1)2 ≥ cN−13
k

Nash-Moser method needs to invert the differential at any V near
0: Lε,β,V − µ̃I where Lε,β,V acts in Q0Ht , t ≥ 0 and is defined by

Lε,β,V = L0−µεI+3Q0(U
2
ε ·)−6ε2pQ0[Uε(V +βv)(·)]−3ε4pQ0[(V +βv)2(·
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inverse of Lε,β,V − µ̃I

Definition

Truncation of the space. Let s ≥ 0 and N > 1 be an integer, we
define EN := ΠNQ0Hs , which consists in keeping in the Fourier
expansion of ũ ∈ Q0Hs only those k ∈ Γ such that Nk ≤ N. By
construction we obtain

||(ΠNL0ΠN)−1||s ≤ c0(1 + N)13.

Inverse of Lε,β,V − µ̃I for N < Mε

Lemma

Let S > s0 > 2 and ε0 > 0 small enough and α ∈ (E1 ∩ E0) ∪ EQ.

Then for 0 < ε ≤ ε0 and N ≤ Mε with Mε :=
[

c1

ε2/13

]
and

(ε, µ̃, β,V ) ∈ [−ε0, ε0] × [−ε2p−2, ε2p−2] × [−β0, β0] × EN , the
following holds for s ∈ [s0,S ] and V such that ||V ||s ≤ 1,
||(ΠN (Lε,β,V − µ̃I)ΠN )−1||s ≤ 2c0(1 + N)13
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Inverse of Lε,β,V − µ̃I for large N

define Λ := {ε, µ̃); ε ∈ [−ε0, ε0], µ̃ ∈ [−ε2p−2, ε2p−2]}, and for
M > 0, s0 > 2,

U (N)
M : =

{
V ∈ C 1(Λ × [−β0, β0],EN);V (0, µ̃, β) = 0,

||V ||s0 ≤ 1, ||∂ε,βV ||s0 ≤ M, ||∂eµV ||s0 ≤ (M/ε2p−2)
}

.

For V ∈ U (N)
M , we consider the operator

ΠN(Lε,β,V (ε,eµ,β) − µ̃I)ΠN = ΠNL0ΠN − µ̃IN + ε2B(N)
1 (ε) +

+ε2p+1B(N)
2 (ε, β,V (ε, µ̃, β)),

ΠNL0ΠN , B(N)
1 , B(N)

2 selfadjoint in ΠNQ0H0 and analytic in their
arguments.
Eigenvalues of ΠN(Lε,β,V (ε,eµ,β) − µ̃I)ΠN have the form

σj(ε, µ̃, β) = sj(ε) + fj(ε, µ̃, β) − µ̃,

where sj is analytic and fj is Lipschitz

|fj(ε2, µ̃2, β2)−fj(ε1, µ̃1, β1)| ≤ c[ε2p|ε2−ε1|+ε3|µ̃2−µ̃1|+ε2p+1|β2−β1|]
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Inverse of Lε,β,V − µ̃I for large N (continued 1)

Bad set of µ̃

B
(N)
ε,β,γ(V ) =

{
µ̃ ∈ [−ε0, ε0]; (ε, β,V ) ∈ [−ε0, ε0] × [−β0, β0] × U (N)

M ,

∃j ∈ {1, ...N}, |σj (ε, µ̃, β)| <
γ

Nτ

}

B
(N)
ε,β,γ(V ) = ∪N

j=1(µ̃
−
j (ε, β), µ̃+

j (ε, β)),

0 < µ̃+
j (ε, β) − µ̃−

j (ε, β) ≤ 4γ

Nτ
,

meas(B
(N)
ε,β,γ(V )) ≤ 4bγ

Nτ−4
,

Good set of µ̃: G
(N)
ε,β,γ(V ) := [−ε0, ε0]\B (N)

ε,β,γ(V ).
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Inverse of Lε,β,V − µ̃I for large N (continued 2)

Lemma

Assume γ ≤ γ̃ = (213/2+1c0)
−1 and τ > 33 + 26p. For V ∈ U (N)

M

and (ε, β) ∈ [−ε0, ε0] × [−β0, β0] fixed, then if

µ̃ ∈ G
(N)
ε,β,γ(V ) ∩ [−ε2p−2, ε2p−2], N > 1

||(ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN )−1||0 ≤ Nτ

γ
.

Moreover, for N > Mε, the measure of the ”bad set”B
(N)
ε,β,γ(V ) is

bounded by 4bγ/Nτ−4, while it is 0 for N ≤ Mε.

This estimate is in L(Q0H0). In fact, we need to obtain a tame
estimate for (ΠN(Lε,β,V (ε,eµ,β) − µ̃I)ΠN )−1 in L(Q0Hs) for s > 0,
with an exponent on N not depending on s.
We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a
suitable adaptation.
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Inverse of Lε,β,V − µ̃I in Q0Hs for large N (continued 3)

Singular set in Zd : S(N) := {z ∈ Γ(N); (1 − |k(z)|2)2 < ρ} with

Γ(N) := {z ∈ Z4; 0≤|z| ≤ N, k(z) ∈ Γ\{kj , k
′
j , j = 1, ..., 6}}.

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010)
There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then
S(N) =

⋃
α∈A Ωα is a union of disjoint clusters Ωα satisfying :

(H1), for all α ∈ A, Mα ≤ 2mα where Mα = maxz∈Ωα |z| and
mα = minz∈Ωα |z|;
(H2), there exists δ = δ(d) ∈]0, 1[ independent of N such
that if α, β ∈ A, α 6= β then

dist(Ωα,Ωβ) := minz∈Ωα,z′∈Ωβ
|z − z′| ≥ (Mα+Mβ)δ

2
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Basic ingredient for the Lemma above

Define the positive definite matrix A in Zd :

|k(z)|2 = 〈z,Az〉 = q1 + q2 cos α + q3

√
3 sinα

where q1, q2, q3 are quadradic forms of z with integer coefficients.
Then, for any Q-linearly independent family {ej , j = 1, ..., d ≤ 4}
in Z4, let consider the matrix M such that Ml ,m = 〈el ,Aem〉.
We have
detM = 1

24 [a0 +
∑

1≤n≤d an0 cosn α + an−1,1 cosn−1 α(
√

3 sinα)],

with integers anm bounded by 6dmaxm{|em|2d}.
Then, we can prove: for α ∈ E2 (full measure set), there exists
C > 0 such that for all a ∈ Z(2d+1)\{0},

|detM| ≥ C

|a|l , l = 2d(2d + 1),

with |a| = |a0| +
∑

1≤n≤d |an0| + |an−1,1|
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Inverse of Lε,β,V − µ̃I for large N in Hs for large N (end)

Lemma

Assume α ∈ E2. Let γ and τ be as in Lemma for H0, and choose
s0 ≥ 3 + τ+4

δ where δ is the number introduced in previous
Lemma, and define

m = 2τ + 6.

Assume (ε, µ̃, β,V ) ∈ [−ε1, ε1] × [−ε2, ε2] × [−β0, β0] × U (N)
M ,

with ε1 small enough and µ̃ ∈ G(N)
ε,β,γ(V ), where

G(N)
ε,β,γ(V ) = ∩Mε<K≤NG

(K)
ε,β,γ(V ) ∪ [−ε2p−2, ε2p−2].

Let S > s0. Then for all s ∈ [s0,S ] there exists K (s) > 0 such that
for any ũ ∈ ΠNQ0Hs , we have for any N > 1

||(ΠN (Lε,β,V (ε,eµ,β)−µ̃I)ΠN)−1ũ||s ≤ K (s)
Nm

γ
(||ũ||s +||V ||s ||ũ||s0).

The proof follows Berti-Bolle 2010
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Resolution of the Range equation

We set µ̃ = ε2p−2µ̂
Nash-Moser method, following Berti-Bolle-Procesi 2010 leads to:

Theorem

Assume α ∈ E2 ∩ E0 ∩ Eqp and let s0 be as in Lemma above. Then
for all 0 < γ ≤ γ̃ there exist ε2(γ) ∈ (0, ε0) and a C 1− map V :
(0, ε2(γ)) × [−1, 1] → Hs0+4 such that V (0, µ̂, β) = 0 and if
ε ∈ (0, ε2(γ)), µ̂ ∈ [−1, 1]\Cε,β,γ , the function ũ = V (ε, µ̂, β) is
solution of the range equation. Here Cε,β,γ is a subset of [−1, 1],
which is a Lipschitz function of (ε, β) and has a Lebesgue measure
less than Cγ|ε|3 for some constant C > 0, independent of (ε, β, γ).
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Resolution of the Bifurcation equations

aµ̂ − 6ε3bβ1β − 3ε3〈u2
1V (ε, µ̂, β),w〉 = O(ε4),

−β1aµ̂ + 2cε3β + 3ε3〈u2
1V (ε, µ̂, β), v〉 = O(ε4).

Implicit function theorem gives

µ̃ = ε2p−2µ̂ = ε2p+2h(ε), β = εg(ε), (H)

εh(ε) and εg(ε) are C 1 functions of ε ∈ [0, ε1].

Define ”bad layers” of degree N: BSN(V ) := {(ε, µ̃, β) ∈
Λ × [−β0, β0];∃j ; µ̃ ∈ (µ̃−

j (ε, β), µ̃+
j (ε, β))}.

In the 3-dimensional space (ε, µ̃, β) we need to check that the
curve (H) crosses transversally the bad set formed by the infinitely
many thin layers ∪n∈NBnSNn

(Vn−1), where Nn = [N0(γ)]2
n
, and

Vn are the successive points obtained in the Newton iteration of
the Nash-Moser method.
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Structure of the ”bad set” in the space (ε, µ̃, β)

The intersection of the surface β = εg(ε) with ∪n∈NBnSNn
(Vn−1)

is a set of bad strips, bounded by curves of the form

µ̃
±(Nn)
j (ε) = s

(Nn)
j (ε) + g

±(Nn)
j (ε),

s
(Nn)
j (ε) = s

(Nn)
j (0) + 3ε2 + O(ε4)

|g±(Nn)
j (ε2) − g

±(Nn)
j (ε1)| ≤ cε4|ε2 − ε1|

Then for any of the limiting curves,

|µ̃(ε + h) − µ̃(ε)| ≥ c |ε||h|

Which is sufficient for having a transverse intersection with (H).
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final result 1

measure of ”bad” µ̃’s < Cγ|ε|2p+1 hence

measure of ”bad” ε’s < Cγ|ε|2p+1

min|slope| < Cγ|ε|2p+1

c|ε| ≤ C ′γε2p.

The complementary subset in (0, ε), is the good set of |ε|, which is
of asymptotic full measure since [|ε| − C ′γε2p]/|ε| → 1 as ε → 0.
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final result 2: β(ε) ≡ 0

Use a symmetry argument
τUε = β1Uε,
For β1 = 1,

τ(ũ(ε) + β(ε)v) = τ ũ(ε) + β(ε)w = ũ(ε) + β(ε)v

by the uniqueness of the solution u. Hence, β(ε) ≡ 0.

For β1 = −1,

τ ũ(ε) + β(ε)w = −ũ(ε)−β(ε)v

by the uniqueness of the solution −u. This implies that in all cases

τ ũ(ε) = β1ũ(ε), β(ε) ≡ 0
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Existence of quasipatterns

Theorem

Assume α ∈ E2 ∩ E0 ∩ Eqp which is a full measure set. Then there
exist s0 > 2 and ε0 > 0 such that for an asymptotically full
measure set of values of ε ∈ (0, ε0), there exist two branches of
bifurcating quasipattern solutions of SHE, invariant under rotation
of angle π/3, of the form

u = Uε + ε2p ũ(ε), ũ ∈ {v ,w}⊥,

Uε = ε(w + β1v) + ε3Ũε, β1 = ±1, τu = β1u,

µ = µε + µ̃(ε), µε = ε2µ2 + .....ε2pµ2p

where ũ(ε) ∈ Q0Hs0 , w , v , Ũε, µ2n are defined above, and
functions of ε are C 1 with ũ(0) = 0, µ̃(ε) = O(ε2p+2). Su = −u
corresponds to change ε into −ε.
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Proof of the first diophantine Lemma

Let us define

P = (q1 − 1)2, Q = q2
2 + 3q2

3 ,

θ(z) ∈ [0, 2π]; cos θ(z) = q2/
√

Q, sin θ(z) =
√

3q3/
√

Q.

|k(z)|2 − 1 = q1 − 1 +
√

Q cos(α − θ(z)). (3)

Choose ε > 0, for nearly all Ω /∈ Q, there exists C > 0 such that
(classical diophantine estimate)

|P/Q − Ω| ≥ C

Q2+ε
, for all Q ∈ Z\{0}.

a zero measure set in Ω corresponds to a zero measure set in β,
the set of angles β such that there exists C (β) > 0 such that

|P/Q − cos2 β| ≥ C (β)

Q2+ε
, for all Q ∈ Z\{0}

is of full measure.
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Proof of the first diophantine Lemma - continued

For each Q there corresponds a finite set {zj}, hence a finite set
{θ(zj )}, so that the set of α ∈ (0, π/6) such that there exists
C ′(α) and

|P/Q − cos2(α − θ(z))| ≥ C ′(α)

Q2+ε
, for all Q ∈ Z\{0}

is, for each Q, the intersection of the sets above for a finite
number of θ(zj). This set is then also of full measure.

A simple study of hyperbolas y2 − ω2 = ±C ′

Q l and an estimate of
the distance to the asymptote for ω = 1, implies that

∣∣∣∣∣

√
P

Q
− | cos(α − θ)|

∣∣∣∣∣ ≥
C ′

4Q2+ε
, for Q large enough.

Then

|q1 − 1 +
√

Q cos(α − θ(z))| ≥ C ′

4Q3/2+ε
,

and, since Q ≤ 3|z|4, the Lemma follows.
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Proof of the 2nd diophantine Lemma

τ =
√

3 tanα/2,

P(a, α) = a0+

∑

1≤n≤d

an0

(
3 − τ2

3 + τ2

)n

+ an−1,1

(
3 − τ2

3 + τ2

)n−1(
6τ

3 + τ2

)

=
Q(a, τ)

(3 + τ2)d
,

It is sufficient to consider the ”bad τ ’s” such that |Q(a, τ)| ≤ c

|a|l
,

Q(a, ·) polynomial of degree 2d not identical to 0, with integer
coefficients

Q(a, τ) = (a0 +
∑

1≤n≤d

(−1)nan0)Πj=1,...2d(τ − τj),

there exists j(τ) such that

|τ − τj(τ)|2d ≤ |Q(a, τ)|
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in all cases, the bad τ ’s satisfy |τ − τj(τ)| ≤
(

c

|a|l

)1/2d
. Summing

for j = 1, ...2d , their measure |δτ | is bounded by

|δτ | ≤ 4d

(
c

|a|l

)1/2d

.

Hence the measure of bad α , for a fixed:

|δα| ≤ 2√
3
|δτ | ≤ 8dc1/2d

√
3|a|l/(2d)

.

We now count the number of coefficients a of polynomials
corresponding to |a|. This number is bounded by (2|a|)(2d+1).
Hence the measure of the set of bad α’s for all a ∈ Z(2d+1)\{0}
with a fixed norm |a| is bounded by

dc1/2d22−2d

√
3|a|l/(2d)−(2d+1)

.
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