Quasipatterns in the superposition of two hexagonal patterns for the Swift-Hohenberg PDE

Gérard looss

IUF, Université Côte d'Azur, Laboratoire J.A.Dieudonné,
Parc Valrose, F-06108 Nice Cedex02

Superposition experiments

Superposition of two hexagonal patterns: $0^{\circ}, 3^{\circ}, 5^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}$

Quasipatterns experiments

Iacs, 3 (a) 3:2, (b) $4: 3$, and (c) $5: 3$ grid wates. The spatial spectra (ienter) corresmonding to the photagraphs (letil are plamod toy grads irielt) whose basis vectors, E ene are stable motes. Fhute parameters ine as in Fip. 2. Flual depthe (a) and (c) 03 cman (b) 0.2 on 0 and denole comotated sets of $\stackrel{\pi}{k}_{e}$

Experiments of Faraday type. Kudrolli, Pier, Gollub 1998, Epstein;
Fineberg 2006

Definition of the quasilattice

$$
\Gamma=\left\{\mathbf{k} \in \mathbb{R}^{2} ; \mathbf{k}=\sum_{j=1, \ldots 6} m_{j} \mathbf{k}_{j}+m_{j}^{\prime} \mathbf{k}_{j}^{\prime}, m_{j}, m_{j}^{\prime} \in \mathbb{N}\right\}
$$

Special angles $\mathcal{E}_{p}:=\{\alpha \in \mathbb{R} / 2 \pi \mathbb{Z} ; \cos \alpha \in \mathbb{Q}, \cos (\alpha+\pi / 3) \in \mathbb{Q}\}$.

Lemma

The set \mathcal{E}_{p} has a zero measure in $\mathbb{R} / 2 \pi \mathbb{Z}$.
(i) If the wave vectors $\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}$ are not independent on \mathbb{Q}, then $\alpha \in \mathcal{E}_{p}$.
(ii) If $\alpha \in \mathcal{E}_{p}$ then the lattice Γ is periodic with an hexagonal symmetry, and wave vectors $\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}$ are combinations of only two smaller vectors, of equal length making an angle $2 \pi / 3$.
$u(x, y)$ function under the form of a Fourier expansion

$$
\begin{equation*}
u=\sum_{\mathbf{k} \in \Gamma} u^{(\mathbf{k})} e^{i \mathbf{k} \cdot \mathbf{x}}, u^{(\mathbf{k})}=\bar{u}^{(-\mathbf{k})} \in \mathbb{C} . \tag{1}
\end{equation*}
$$

$k \in \Gamma$ may be written as

$$
\mathbf{k}=z_{1} \mathbf{k}_{1}+z_{2} \mathbf{k}_{2}+z_{3} \mathbf{k}_{1}^{\prime}+z_{4} \mathbf{k}_{2}^{\prime}, \quad\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{Z}^{4},
$$

For $\alpha \in \mathcal{E}_{q p}=\mathcal{E}_{p}^{c}, \Gamma$ spans a 4-dimensional vector space on \mathbb{Q}.

$$
N_{\mathbf{k}}=|\mathbf{z}|=\sum_{j=1, \ldots, 4}\left|z_{j}\right| \text { is a norm of } \mathbf{k}(\mathbf{z})
$$

Hilbert spaces $\mathcal{H}_{s}, s \geq 0$:

basic Lemmas

Lemma

If $\alpha \in \mathcal{E}_{q p}$, a function defined by a convergent Fourier series as above represents a quasipattern, i.e. is quasiperiodic in all directions.

Lemma

For nearly all $\alpha \in(0, \pi / 6)$, in particular for $\alpha \in \mathbb{Q} \pi \cap(0, \pi / 6]$, the only solutions of $|\mathbf{k}(\mathbf{z})|=1$ are $\pm \mathbf{z}_{j}, \pm \mathbf{k}_{j}^{\prime} j=1,2$ and $\mathbf{k}= \pm \mathbf{k}_{3}$, or $\pm \mathbf{k}_{3}^{\prime}$, i.e. corresponding to $\mathbf{z}=(\pm 1, \mp 1,0,0)$ or $(0,0, \pm 1, \mp 1)$.
\mathcal{E}_{0} is the set of α 's such that Lemma above applies.

Lemma

For nearly all $\alpha \in \mathcal{E}_{q p} \cap(0, \pi / 6)$, and for $\varepsilon>0$, there exists $c>0$ such that, for all $|\mathbf{z}|>0$ such that $|\mathbf{k}(\mathbf{z})| \neq 1$, $\left(|\mathbf{k}(\mathbf{z})|^{2}-1\right)^{2} \geq \frac{c}{|\mathbf{z}|^{12+\varepsilon}}$ holds.

Steady Swift-Hohenberg equation in \mathbb{R}^{2}

$$
\begin{gathered}
(1+\Delta)^{2} u=\mu u-u^{3}, \mathbf{x} \in \mathbb{R}^{2} \rightarrow u(\mathbf{x}) \in \mathbb{R} \\
e^{i \mathbf{k} \cdot \mathbf{x}} \in \operatorname{Ker}\left\{(1+\Delta)^{2}-\mu\right\} \text { in } \mathcal{H}_{s}
\end{gathered}
$$

iff Dispersion equation holds: $\left(1-|\mathbf{k}|^{2}\right)^{2}=\mu, \mathbf{k} \in \Gamma$
For $\mu=0$ all wave vectors \mathbf{k} with $|\mathbf{k}|=1$ are critical
We choose to look for solutions in \mathcal{H}_{s}, for $\alpha \in \mathcal{E}_{\text {qp }} \cap \mathcal{E}_{0}$, i.e.
quasiperiodic in \mathbb{R}^{2}, moreover invariant under rotations of angle $\pi / 3$ and bifurcating for μ close to 0 .
define $\mathbf{L}_{0}=(1+\Delta)^{2}$
For $\alpha \in \mathcal{E}_{0} \operatorname{Ker} \mathbf{L}_{0}$ is 2-dimensional spanned by

$$
v=\sum_{j=1,2, \ldots, 6} e^{i \mathbf{k}_{j} \cdot \mathbf{x}}, \quad w=\sum_{j=1,2, . ., 6} e^{i \mathbf{k}_{j}^{\prime} \cdot \mathbf{x}}
$$

Symmetries

S represents the imparity symmetry: $\mathbf{S} u=-u$

$$
\mathbf{S} \mathbf{L}_{0}=\mathbf{L}_{0} \mathbf{S}, \quad \mathbf{S} u^{3}=(\mathbf{S} u)^{3}
$$

\mathbf{R}_{θ} rotation of angle θ, centered at the origin

$$
\begin{gathered}
\left(\mathbf{R}_{\theta} u\right)(\mathbf{x})=u\left(\mathbf{R}_{-\theta} \mathbf{x}\right), \\
\mathbf{R}_{\theta} \mathbf{L}_{0}=\mathbf{L}_{0} \mathbf{R}_{\theta}, \quad \mathbf{R}_{\theta} u^{3}=\left(\mathbf{R}_{\theta} u\right)^{3}
\end{gathered}
$$

τ represents the symmetry with respect to the bisectrix of wave vectors \mathbf{k}_{1} and \mathbf{k}_{1}^{\prime}.

$$
\begin{equation*}
\tau \mathbf{L}_{0}=\mathbf{L}_{0} \tau, \quad \tau u^{3}=(\tau u)^{3} \tag{2}
\end{equation*}
$$

Then

$$
\mathbf{R}_{\pi / 3} v=v, \mathbf{R}_{\pi / 3} w=w, \tau v=w, \tau w=v
$$

We look for a formal solution of SHE as

$$
\begin{gathered}
u=\sum_{n \geq 1} \varepsilon^{n} u_{n}, \mu=\sum_{n \geq 1} \varepsilon^{n} \mu_{n}, \varepsilon \text { defined by the choice of } u_{1} \\
\text { order } \varepsilon: \mathbf{L}_{0} u_{1}=0, u_{1} \text { lies in the kernel of } \mathbf{L}_{0} \\
u_{1}=w+\beta_{1} v
\end{gathered}
$$

the coefficient in front of w fixes the choice of the scale ε, provided that we choose to impose $\left\langle u_{n}, w\right\rangle_{0}=0, \quad n=2,3, \ldots$

$$
\operatorname{order} \varepsilon^{2}: \mathbf{L}_{0} u_{2}=\mu_{1} u_{1},
$$

and the compatibility condition gives

$$
\mu_{1}=0, u_{2}=\beta_{2} v
$$

$$
\text { Order } \varepsilon^{3}: \mathbf{L}_{0} u_{3}=\mu_{2} u_{1}-u_{1}^{3} .
$$

Compatib: $a \mu_{2}-c-3 b \beta_{1}^{2}=0$,

$$
a \beta_{1} \mu_{2}-3 b \beta_{1}-c \beta_{1}^{3}=0
$$

where $a=6, b=36, c=90$,
$\left\langle v^{2} w, v\right\rangle=\left\langle w^{2} v, w\right\rangle=\left\langle v^{3}, w\right\rangle=\left\langle w^{3}, v\right\rangle=0$.
This gives $(c-3 b)\left(\beta_{1}^{3}-\beta_{1}\right)=0$,

$$
\mu_{2}=\frac{c}{a}+3 \frac{b}{a} \beta_{1}^{2}, u_{3}=\beta_{3} v+\widetilde{u_{3}},\left\langle\widetilde{u_{3}}, v\right\rangle=\left\langle\widetilde{u_{3}}, w\right\rangle=0 .
$$

\widetilde{u}_{3} only contains Fourier modes $e^{i \mathbf{k} \cdot \mathbf{x}}$ with $\mathbf{k}=m_{1}^{\prime} \mathbf{k}_{1}^{\prime}+m_{2}^{\prime} \mathbf{k}_{2}^{\prime}$
First case: $\beta_{1}=0$, then $\mu_{2}=15$
Second case: $\beta_{1}= \pm 1$, then $\mu_{2}=33, \tau u_{1}=\beta_{1} u_{1}, \tau \widetilde{u_{3}}=\beta_{1} \widetilde{u_{3}}$

higher orders

For $\beta_{1}=0$ we obtain the classical bifurcating hexagonal-symmetric expansion (u_{n} is orthogonal to v for all n).
For $\beta_{1}= \pm 1$ the expansions are uniquely determined.
$u_{1}=w+\beta_{1} v, \tau u_{1}=\beta_{1} u_{1}$

$$
\begin{aligned}
\beta_{1}=1 & \text { leads to } \tau u=u \\
\beta_{1}=-1 & \text { leads to } \tau u=-u .
\end{aligned}
$$

Formal series (end)

Theorem

Let us consider the Swift-Hohenberg model PDE. The superposition of two hexagonal patterns, differing by a small rotation of angle $\alpha \in \mathcal{E}_{0}$, leads to formal expansions in powers of an amplitude ε, of new bifurcating patterns invariant under rotations of angle $\pi / 3$. We obtain two new branches of patterns, with formal expansions of the form

$$
\begin{aligned}
u & =\varepsilon\left(w+\beta_{1} v\right)+\varepsilon^{3} \widetilde{u_{3}}+\ldots \varepsilon^{2 n+1} \widetilde{u_{2 n+1}}+. . \quad \beta_{1}= \pm 1, \\
\left\langle\widetilde{u_{2 n+1}}, v\right\rangle & =\left\langle\widetilde{u_{2 n+1}}, w\right\rangle=0, \tau \overline{u_{2 n+1}}=\beta_{1} \widetilde{u_{2 n+1}}, \tau u=\beta_{1} u, \\
\mu & =\varepsilon^{2} \mu_{2}+\varepsilon^{4} \mu_{4}+\ldots+\varepsilon^{2 n} \mu_{2 n}+. ., \mu_{2}>0, \\
v & =\sum_{j=1,2, . .6} e^{i \mathbf{k}_{j} \cdot \mathbf{x}}, \quad w=\sum_{j=1,2, . ., 6} e^{i \mathbf{k}_{j}^{\prime} \cdot \mathbf{x}},\left(\mathbf{k}_{1}, \mathbf{k}_{1}^{\prime}\right)=\alpha .
\end{aligned}
$$

For $\alpha \in \mathcal{E}_{p} \cap \mathcal{E}_{0}$ the expansions converge, giving periodic patterns with hexagonal symmetry.

2 branches of quasipatterns

The two branches bifurcate for $\mu>0$

Solutions of SHE, $\beta_{1}=1$

solutions of SHE for $\alpha=4^{\circ}, 7^{\circ}, 10^{\circ}, 30^{\circ}$. Order ε and $\beta_{1}=1$

Solutions of SHE, $\beta_{1}=-1$

solutions of SHE for $\alpha=4^{\circ}, 7^{\circ}, 10^{\circ}, 30^{\circ}$. Order ε and $\beta_{1}=-1$

Existence of quasipatterns

Theorem

Assume $\alpha \in \mathcal{E}_{2} \cap \mathcal{E}_{0} \cap \mathcal{E}_{q p}$ (full measure set). Then there exist $s_{0}>2$ and $\varepsilon_{0}>0$ such that for an asymptotically full measure set of values of $\varepsilon \in\left(0, \varepsilon_{0}\right)$, there exists a bifurcating quasipattern solution of SHE, invariant under rotation of angle $\pi / 3$, of the form

$$
\begin{aligned}
u & =U_{\varepsilon}+\varepsilon^{2 p} \widetilde{u}(\varepsilon), \widetilde{u} \in\{v, w\}^{\perp} \\
U_{\varepsilon} & =\varepsilon\left(w+\beta_{1} v\right)+\varepsilon^{3} \widetilde{U}_{\varepsilon}, \beta_{1}= \pm 1, \tau u=\beta_{1} u \\
\widetilde{U}_{\varepsilon} & =\widetilde{u}_{3}+\ldots \varepsilon^{2 p-4} \widetilde{u}_{2 p-1} \\
\mu & =\mu_{\varepsilon}+\widetilde{\mu}(\varepsilon), \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots \varepsilon^{2 p} \mu_{2 p}
\end{aligned}
$$

where $\widetilde{u}(\varepsilon) \in \mathbf{Q}_{0} \mathcal{H}_{s_{0}}, w, v, \widetilde{u_{2 n-1}}, \mu_{2 n}$ are defined above, and functions of ε are C^{1} with $\widetilde{u}(0)=0, \widetilde{\mu}(\varepsilon)=\mathcal{O}\left(\varepsilon^{2 p+2}\right)$. $\mathbf{S} u=-u$ corresponds to change ε into $-\varepsilon$.

Bifurcation diagram

Asymptotically full measure set of good values fof $\mu>0$ for the two bifurcating branches

Idea of Proof 1

$$
\begin{aligned}
u= & U_{\varepsilon}+\varepsilon^{2 p} W, W=\widetilde{u}+\beta v, \widetilde{u} \in\{v, w\}^{\perp} \\
U_{\varepsilon}= & \varepsilon\left(w+\beta_{1} v\right)+\varepsilon^{3} \widetilde{U}_{\varepsilon}, \beta_{1}= \pm 1, \widetilde{U}_{\varepsilon}=\widetilde{u}_{3}+\ldots \varepsilon^{2 p-4} \widetilde{u}_{2 p-1} \\
\mu= & \mu_{\varepsilon}+\widetilde{\mu}(\varepsilon), \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots \varepsilon^{2 p} \mu_{2 p} \\
& \left(\mathbf{L}_{0}-\widetilde{\mu}\right) \widetilde{u}+g(\varepsilon, \beta, \widetilde{\mu})+\mathcal{B}_{\varepsilon, \beta} \widetilde{u}+\mathcal{C}_{\varepsilon, \beta}(\widetilde{u})=0
\end{aligned}
$$

where $\mathcal{B}_{\varepsilon, \beta}$ is linear and $O\left(\varepsilon^{2}\right)$ in $\mathcal{H}_{s}, s \geq 0$, and $\mathcal{C}_{\varepsilon, \beta}$ is at least quadratic and $O\left(\varepsilon^{2 p+1}\right)$ in $\mathcal{H}_{s}, s>2$.
We expect to solve this range-equation for $\widetilde{\mu} \in\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right]$, with respect to \tilde{u} which should be of order $O(\varepsilon)$, and put it into Bifurcation equations:

$$
\begin{aligned}
& a \widetilde{\mu}-6 \varepsilon^{2 p+1} b \beta_{1} \beta-3 \varepsilon^{2 p+1}\left\langle u_{1}^{2} \widetilde{u}, w\right\rangle=\mathcal{O}\left(\varepsilon^{2 p+2}\right) \\
& -\beta_{1} a \widetilde{\mu}+2 c \varepsilon^{2 p+1} \beta+3 \varepsilon^{2 p+1}\left\langle u_{1}^{2} \widetilde{u}, v\right\rangle=\mathcal{O}\left(\varepsilon^{2 p+2}\right)
\end{aligned}
$$

Then solve with respect to $(\widetilde{\mu}, \beta)=\left(O\left(\varepsilon^{2 p+2}\right), O(\varepsilon)\right)$. Finally $\beta(\varepsilon) \equiv 0$ by a symmetry argument.

Idea of Proof (continued)

We have a small divisor problem:

$$
{\widetilde{\mathbf{L}_{0}}}^{-1} e^{i \mathbf{k} \cdot \mathbf{x}}=\frac{1}{\left(|\mathbf{k}|^{2}-1\right)^{2}} e^{i \mathbf{k} \cdot \mathbf{x}}
$$

with $\left(|\mathbf{k}|^{2}-1\right)^{2} \geq c N_{\mathbf{k}}^{-13}$
Nash-Moser method needs to invert the differential at any V near $0: \mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ where $\mathcal{L}_{\varepsilon, \beta, V}$ acts in $\mathbf{Q}_{0} \mathcal{H}_{t}, t \geq 0$ and is defined by
$\mathcal{L}_{\varepsilon, \beta, V}=\mathbf{L}_{0}-\mu_{\varepsilon} \mathbb{I}+3 \mathbf{Q}_{0}\left(U_{\varepsilon}^{2} \cdot\right)-6 \varepsilon^{2 p} \mathbf{Q}_{0}\left[U_{\varepsilon}(V+\beta v)(\cdot)\right]-3 \varepsilon^{4 p} \mathbf{Q}_{0}\left[(V+\beta v)^{2}(\right.$

inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$

Definition

Truncation of the space. Let $s \geq 0$ and $N>1$ be an integer, we define $E_{N}:=\Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{s}$, which consists in keeping in the Fourier expansion of $\widetilde{u} \in \mathbf{Q}_{0} \mathcal{H}_{s}$ only those $\mathbf{k} \in \Gamma$ such that $N_{\mathbf{k}} \leq N$. By construction we obtain

$$
\left\|\left(\Pi_{N} \mathbf{L}_{0} \Pi_{N}\right)^{-1}\right\|_{s} \leq c_{0}(1+N)^{13}
$$

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ for $N<M_{\varepsilon}$

Lemma

Let $S>s_{0}>2$ and $\varepsilon_{0}>0$ small enough and $\alpha \in\left(\mathcal{E}_{1} \cap \mathcal{E}_{0}\right) \cup \mathcal{E}_{\mathbb{Q}}$.
Then for $0<\varepsilon \leq \varepsilon_{0}$ and $N \leq M_{\varepsilon}$ with $M_{\varepsilon}:=\left[\frac{c_{1}}{\varepsilon^{2 / 13}}\right]$ and
$(\varepsilon, \tilde{\mu}, \beta, V) \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right] \times\left[-\beta_{0}, \beta_{0}\right] \times E_{N}$, the following holds for $s \in\left[s_{0}, S\right]$ and V such that $\|V\|_{s} \leq 1$, $\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}\right\|_{s} \leq 2 c_{0}(1+N)^{13}$

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ for large N

define $\left.\Lambda:=\{\varepsilon, \tilde{\mu}) ; \varepsilon \in\left[-\varepsilon_{0}, \varepsilon_{0}\right], \tilde{\mu} \in\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right]\right\}$, and for $M>0, s_{0}>2$,

$$
\begin{aligned}
\mathcal{U}_{M}^{(N)}: \quad= & \left\{V \in C^{1}\left(\Lambda \times\left[-\beta_{0}, \beta_{0}\right], E_{N}\right) ; V(0, \widetilde{\mu}, \beta)=0\right. \\
& \left.\|V\|_{s_{0}} \leq 1,\left\|\partial_{\varepsilon, \beta} V\right\|_{s_{0}} \leq M,\left\|\partial_{\widetilde{\mu}} V\right\|_{s_{0}} \leq\left(M / \varepsilon^{2 p-2}\right)\right\} .
\end{aligned}
$$

For $V \in \mathcal{U}_{M}^{(N)}$, we consider the operator

$$
\begin{aligned}
\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta)}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}= & \Pi_{N} \mathbf{L}_{0} \Pi_{N}-\widetilde{\mu} \mathbb{I}_{N}+\varepsilon^{2} \mathcal{B}_{1}^{(N)}(\varepsilon)+ \\
& +\varepsilon^{2 p+1} \mathcal{B}_{2}^{(N)}(\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta))
\end{aligned}
$$

$\Pi_{N} \mathbf{L}_{0} \Pi_{N}, \mathcal{B}_{1}^{(N)}, \mathcal{B}_{2}^{(N)}$ selfadjoint in $\Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{0}$ and analytic in their arguments.
Eigenvalues of $\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta)}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}$ have the form

$$
\sigma_{j}(\varepsilon, \widetilde{\mu}, \beta)=s_{j}(\varepsilon)+f_{j}(\varepsilon, \widetilde{\mu}, \beta)-\widetilde{\mu}
$$

where s_{j} is analytic and f_{j} is Lipschitz $\left|f_{j}\left(\varepsilon_{2}, \widetilde{\mu}_{2}, \beta_{2}\right)-f_{j}\left(\varepsilon_{1}, \widetilde{\mu}_{1}, \beta_{1}\right)\right| \leq c\left[\varepsilon^{2 p}\left|\varepsilon_{2}-\varepsilon_{1}\right|+\varepsilon^{3}\left|\widetilde{\mu}_{2}-\widetilde{\mu}_{1}\right|+\varepsilon^{2 p+1}\left|\beta_{2}-\beta_{1}\right|\right]$

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\tilde{\mu} \mathbb{I}$ for large N (continued 1)

Bad set of $\tilde{\mu}$

$$
\begin{aligned}
B_{\varepsilon, \beta, \gamma}^{(N)}(V)= & \left\{\widetilde{\mu} \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] ;(\varepsilon, \beta, V) \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times\left[-\beta_{0}, \beta_{0}\right] \times \mathcal{U}_{M}^{(N)}\right. \\
& \left.\exists j \in\{1, \ldots \mathcal{N}\},\left|\sigma_{j}(\varepsilon, \widetilde{\mu}, \beta)\right|<\frac{\gamma}{N^{\tau}}\right\} \\
& B_{\varepsilon, \beta, \gamma}^{(N)}(V)=\cup_{j=1}^{\mathcal{N}}\left(\widetilde{\mu}_{j}^{-}(\varepsilon, \beta), \widetilde{\mu}_{j}^{+}(\varepsilon, \beta)\right) \\
& 0<\widetilde{\mu}_{j}^{+}(\varepsilon, \beta)-\widetilde{\mu}_{j}^{-}(\varepsilon, \beta) \leq \frac{4 \gamma}{N^{\tau}} \\
& \operatorname{meas}\left(B_{\varepsilon, \beta, \gamma}^{(N)}(V)\right) \leq \frac{4 b \gamma}{N^{\tau-4}}
\end{aligned}
$$

Good set of $\tilde{\mu}: G_{\varepsilon, \beta, \gamma}^{(N)}(V):=\left[-\varepsilon_{0}, \varepsilon_{0}\right] \backslash B_{\varepsilon, \beta, \gamma}^{(N)}(V)$.

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ for large N (continued 2)

Lemma

Assume $\gamma \leq \widetilde{\gamma}=\left(2^{13 / 2+1} c_{0}\right)^{-1}$ and $\tau>33+26 p$. For $V \in \mathcal{U}_{M}^{(N)}$ and $(\varepsilon, \beta) \in\left[-\varepsilon_{0}, \varepsilon_{0}\right] \times\left[-\beta_{0}, \beta_{0}\right]$ fixed, then if
$\tilde{\mu} \in G_{\varepsilon, \beta, \gamma}^{(N)}(V) \cap\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right], N>1$

$$
\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta)}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}\right\|_{0} \leq \frac{N^{\tau}}{\gamma}
$$

Moreover, for $N>M_{\varepsilon}$, the measure of the "bad set" $B_{\varepsilon, \beta, \gamma}^{(N)}(V)$ is bounded by $4 b \gamma / N^{\tau-4}$, while it is 0 for $N \leq M_{\varepsilon}$.

This estimate is in $\mathcal{L}\left(\mathbf{Q}_{0} \mathcal{H}_{0}\right)$. In fact, we need to obtain a tame estimate for $\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta)}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1}$ in $\mathcal{L}\left(\mathbf{Q}_{0} \mathcal{H}_{s}\right)$ for $s>0$, with an exponent on N not depending on s.
We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a suitable adaptation.

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ in $\mathbf{Q}_{0} \mathcal{H}_{s}$ for large N (continued 3)

Singular set in $\mathbb{Z}^{d}: S(N):=\left\{\mathbf{z} \in \Gamma(N) ;\left(1-|\mathbf{k}(\mathbf{z})|^{2}\right)^{2}<\rho\right\}$ with

$$
\Gamma(N):=\left\{\mathbf{z} \in \mathbb{Z}^{4} ; 0 \leq|\mathbf{z}| \leq N, \mathbf{k}(\mathbf{z}) \in \Gamma \backslash\left\{\mathbf{k}_{j}, \mathbf{k}_{j}^{\prime}, j=1, \ldots, 6\right\}\right\} .
$$

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010) There exists $\rho_{0}>0$ independent of N such that if $\left.\rho \in\right] 0, \rho_{0}$] then $S(N)=\bigcup_{\alpha \in \mathcal{A}} \Omega_{\alpha}$ is a union of disjoint clusters Ω_{α} satisfying :

- (H1), for all $\alpha \in \mathcal{A}, M_{\alpha} \leq 2 m_{\alpha}$ where $M_{\alpha}=\max _{z \in \Omega_{\alpha}}|\mathbf{z}|$ and $m_{\alpha}=\min _{\mathbf{z} \in \Omega_{\alpha}}|\mathbf{z}|$;
- (H2), there exists $\delta=\delta(d) \in] 0,1[$ independent of N such that if $\alpha, \beta \in \mathcal{A}, \alpha \neq \beta$ then
$\operatorname{dist}\left(\Omega_{\alpha}, \Omega_{\beta}\right):=\min _{\mathbf{z} \in \Omega_{\alpha}, \mathbf{z}^{\prime} \in \Omega_{\beta}}\left|\mathbf{z}-\mathbf{z}^{\prime}\right| \geq \frac{\left(M_{\alpha}+M_{\beta}\right)^{\delta}}{2}$

Define the positive definite matrix \mathbf{A} in \mathbb{Z}^{d} :

$$
|\mathbf{k}(\mathbf{z})|^{2}=\langle\mathbf{z}, \mathbf{A} \mathbf{z}\rangle=q_{1}+q_{2} \cos \alpha+q_{3} \sqrt{3} \sin \alpha
$$

where q_{1}, q_{2}, q_{3} are quadradic forms of \mathbf{z} with integer coefficients. Then, for any \mathbb{Q}-linearly independent family $\left\{\mathbf{e}_{j}, j=1, \ldots, d \leq 4\right\}$ in \mathbb{Z}^{4}, let consider the matrix \mathbf{M} such that $M_{l, m}=\left\langle\mathbf{e}_{l}, \mathbf{A} \mathbf{e}_{m}\right\rangle$.
We have
$\operatorname{det} \mathbf{M}=\frac{1}{2^{4}}\left[a_{0}+\sum_{1 \leq n \leq d} a_{n 0} \cos ^{n} \alpha+a_{n-1,1} \cos ^{n-1} \alpha(\sqrt{3} \sin \alpha)\right]$, with integers $a_{n m}$ bounded by $6^{d} \max _{m}\left\{\left|\mathbf{e}_{m}\right|^{2 d}\right\}$.
Then, we can prove: for $\alpha \in \mathcal{E}_{2}$ (full measure set), there exists
$C>0$ such that for all $\mathbf{a} \in \mathbb{Z}^{(2 d+1)} \backslash\{0\}$,

$$
|\operatorname{det} \mathbf{M}| \geq \frac{C}{|\mathbf{a}|^{\prime}}, I=2 d(2 d+1)
$$

with $|\mathbf{a}|=\left|a_{0}\right|+\sum_{1 \leq n \leq d}\left|a_{n 0}\right|+\left|a_{n-1,1}\right|$

Inverse of $\mathcal{L}_{\varepsilon, \beta, V}-\widetilde{\mu} \mathbb{I}$ for large N in \mathcal{H}_{s} for large N (end)

Lemma

Assume $\alpha \in \mathcal{E}_{2}$. Let γ and τ be as in Lemma for \mathcal{H}_{0}, and choose $s_{0} \geq 3+\frac{\tau+4}{\delta}$ where δ is the number introduced in previous Lemma, and define

$$
m=2 \tau+6
$$

Assume $(\varepsilon, \tilde{\mu}, \beta, V) \in\left[-\varepsilon_{1}, \varepsilon_{1}\right] \times\left[-\varepsilon^{2}, \varepsilon^{2}\right] \times\left[-\beta_{0}, \beta_{0}\right] \times \mathcal{U}_{M}^{(N)}$, with ε_{1} small enough and $\widetilde{\mu} \in \mathcal{G}_{\varepsilon, \beta, \gamma}^{(N)}(V)$, where

$$
\mathcal{G}_{\varepsilon, \beta, \gamma}^{(N)}(V)=\cap_{M_{\varepsilon}<K \leq N} G_{\varepsilon, \beta, \gamma}^{(K)}(V) \cup\left[-\varepsilon^{2 p-2}, \varepsilon^{2 p-2}\right] .
$$

Let $S>s_{0}$. Then for all $s \in\left[s_{0}, S\right]$ there exists $K(s)>0$ such that for any $\widetilde{u} \in \Pi_{N} \mathbf{Q}_{0} \mathcal{H}_{s}$, we have for any $N>1$
$\left\|\left(\Pi_{N}\left(\mathcal{L}_{\varepsilon, \beta, V(\varepsilon, \widetilde{\mu}, \beta)}-\widetilde{\mu} \mathbb{I}\right) \Pi_{N}\right)^{-1} \widetilde{u}\right\|_{s} \leq K(s) \frac{N^{m}}{\gamma}\left(\|\widetilde{u}\|_{s}+\|V\|_{s}\|\widetilde{u}\|_{s_{0}}\right)$.
The proof follows Berti-Bolle 2010

Resolution of the Range equation

We set $\tilde{\mu}=\varepsilon^{2 p-2 \widehat{\mu}}$
Nash-Moser method, following Berti-Bolle-Procesi 2010 leads to:

Theorem

Assume $\alpha \in \mathcal{E}_{2} \cap \mathcal{E}_{0} \cap \mathcal{E}_{q p}$ and let s_{0} be as in Lemma above. Then for all $0<\gamma \leq \widetilde{\gamma}$ there exist $\varepsilon_{2}(\gamma) \in\left(0, \varepsilon_{0}\right)$ and a $C^{1}-\operatorname{map} V$:
$\left(0, \varepsilon_{2}(\gamma)\right) \times[-1,1] \rightarrow \mathcal{H}_{s_{0}+4}$ such that $V(0, \widehat{\mu}, \beta)=0$ and if $\varepsilon \in\left(0, \varepsilon_{2}(\gamma)\right), \widehat{\mu} \in[-1,1] \backslash C_{\varepsilon, \beta, \gamma}$, the function $\widetilde{u}=V(\varepsilon, \widehat{\mu}, \beta)$ is solution of the range equation. Here $C_{\varepsilon, \beta, \gamma}$ is a subset of $[-1,1]$, which is a Lipschitz function of (ε, β) and has a Lebesgue measure less than $C \gamma|\varepsilon|^{3}$ for some constant $C>0$, independent of $(\varepsilon, \beta, \gamma)$.

Resolution of the Bifurcation equations

$$
\begin{aligned}
a \widehat{\mu}-6 \varepsilon^{3} b \beta_{1} \beta-3 \varepsilon^{3}\left\langle u_{1}^{2} V(\varepsilon, \widehat{\mu}, \beta), w\right\rangle & =\mathcal{O}\left(\varepsilon^{4}\right) \\
-\beta_{1} a \widehat{\mu}+2 c \varepsilon^{3} \beta+3 \varepsilon^{3}\left\langle u_{1}^{2} V(\varepsilon, \widehat{\mu}, \beta), v\right\rangle & =\mathcal{O}\left(\varepsilon^{4}\right)
\end{aligned}
$$

Implicit function theorem gives

$$
\widetilde{\mu}=\varepsilon^{2 p-2} \widehat{\mu}=\varepsilon^{2 p+2} h(\varepsilon), \beta=\varepsilon g(\varepsilon),(\mathrm{H})
$$

$\varepsilon h(\varepsilon)$ and $\varepsilon g(\varepsilon)$ are C^{1} functions of $\varepsilon \in\left[0, \varepsilon_{1}\right]$.
Define "bad layers" of degree $N: B S_{N}(V):=\{(\varepsilon, \widetilde{\mu}, \beta) \in$ $\left.\Lambda \times\left[-\beta_{0}, \beta_{0}\right] ; \exists j ; \widetilde{\mu} \in\left(\widetilde{\mu}_{j}^{-}(\varepsilon, \beta), \widetilde{\mu}_{j}^{+}(\varepsilon, \beta)\right)\right\}$.
In the 3 -dimensional space $(\varepsilon, \widetilde{\mu}, \beta)$ we need to check that the curve (H) crosses transversally the bad set formed by the infinitely. many thin layers $\cup_{n \in \mathbb{N}} B_{n} S_{N_{n}}\left(V_{n-1}\right)$, where $N_{n}=\left[N_{0}(\gamma)\right]^{2^{n}}$, and V_{n} are the successive points obtained in the Newton iteration of the Nash-Moser method.

The intersection of the surface $\beta=\varepsilon g(\varepsilon)$ with $\cup_{n \in \mathbb{N}} B_{n} S_{N_{n}}\left(V_{n-1}\right)$ is a set of bad strips, bounded by curves of the form

$$
\begin{aligned}
\widetilde{\mu}_{j}^{ \pm\left(N_{n}\right)}(\varepsilon) & =s_{j}^{\left(N_{n}\right)}(\varepsilon)+g_{j}^{ \pm\left(N_{n}\right)}(\varepsilon), \\
s_{j}^{\left(N_{n}\right)}(\varepsilon) & =s_{j}^{\left(N_{n}\right)}(0)+3 \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{4}\right) \\
\left|g_{j}^{ \pm\left(N_{n}\right)}\left(\varepsilon_{2}\right)-g_{j}^{ \pm\left(N_{n}\right)}\left(\varepsilon_{1}\right)\right| & \leq c \varepsilon^{4}\left|\varepsilon_{2}-\varepsilon_{1}\right|
\end{aligned}
$$

Then for any of the limiting curves,

$$
|\widetilde{\mu}(\varepsilon+h)-\widetilde{\mu}(\varepsilon)| \geq c|\varepsilon||h|
$$

final result 1

measure of " bad" $\widetilde{\mu}$'s $<C \gamma|\varepsilon|^{2 p+1}$ hence

The complementary subset in $(0, \varepsilon)$, is the good set of $|\varepsilon|$, which is of asymptotic full measure since $\left[|\varepsilon|-C^{\prime} \gamma \varepsilon^{2 p}\right] /|\varepsilon| \rightarrow 1$ as $\varepsilon \rightarrow 0$.

final result 2: $\beta(\varepsilon) \equiv 0$

Use a symmetry argument
$\tau U_{\varepsilon}=\beta_{1} U_{\varepsilon}$,
For $\beta_{1}=1$,

$$
\tau(\widetilde{u}(\varepsilon)+\beta(\varepsilon) v)=\tau \widetilde{u}(\varepsilon)+\beta(\varepsilon) w=\widetilde{u}(\varepsilon)+\beta(\varepsilon) v
$$

by the uniqueness of the solution u. Hence, $\beta(\varepsilon) \equiv 0$.
For $\beta_{1}=-1$,

$$
\tau \widetilde{u}(\varepsilon)+\beta(\varepsilon) w=-\widetilde{u}(\varepsilon)-\beta(\varepsilon) v
$$

by the uniqueness of the solution $-u$. This implies that in all cases

$$
\tau \widetilde{u}(\varepsilon)=\beta_{1} \widetilde{u}(\varepsilon), \beta(\varepsilon) \equiv 0
$$

Existence of quasipatterns

Theorem

Assume $\alpha \in \mathcal{E}_{2} \cap \mathcal{E}_{0} \cap \mathcal{E}_{\text {qp }}$ which is a full measure set. Then there exist $s_{0}>2$ and $\varepsilon_{0}>0$ such that for an asymptotically full measure set of values of $\varepsilon \in\left(0, \varepsilon_{0}\right)$, there exist two branches of bifurcating quasipattern solutions of SHE, invariant under rotation of angle $\pi / 3$, of the form

$$
\begin{aligned}
u & =U_{\varepsilon}+\varepsilon^{2 p} \widetilde{u}(\varepsilon), \widetilde{u} \in\{v, w\}^{\perp} \\
U_{\varepsilon} & =\varepsilon\left(w+\beta_{1} v\right)+\varepsilon^{3} \widetilde{U_{\varepsilon}}, \beta_{1}= \pm 1, \tau u=\beta_{1} u \\
\mu & =\mu_{\varepsilon}+\widetilde{\mu}(\varepsilon), \mu_{\varepsilon}=\varepsilon^{2} \mu_{2}+\ldots . . \varepsilon^{2 p} \mu_{2 p}
\end{aligned}
$$

where $\widetilde{u}(\varepsilon) \in \mathbf{Q}_{0} \mathcal{H}_{s_{0}}, w, v, \widetilde{U_{\varepsilon}}, \mu_{2 n}$ are defined above, and functions of ε are C^{1} with $\widetilde{u}(0)=0, \widetilde{\mu}(\varepsilon)=\mathcal{O}\left(\varepsilon^{2 p+2}\right) . \mathbf{S} u=-u$ corresponds to change ε into $-\varepsilon$.

References on Quasipatterns

G.I., A.M. Rucklidge. On the existence of quasipattern solutions of the Swift-Hohenberg equation. J. Nonlinear Science 20, 3, 361-394, 2010.
B.Braaksma, G.I., L.Stolovitch. Existence of quasipatterns solutions of the Swift-Hohenberg equation. A.R.M.A. 209, 1 (2013), 255-285. Erratum ARMA 211, 3 (2014), 1065.
B.Braaksma, G.I., L.Stolovitch. Existence proof of of quasipatterns solutions of the Swift-Hohenberg equation.Com. Math. Phys. 353(1), 37-67, 2017 DOI 10.1007/s00220-017-2878-x
B.Braaksma, G.I. Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231(3), 1917-1981 (2019)DOI: 10.1007/s00205-018-1313-6
 patterns. Nonlinearity (to appear in 2019)

Let us define

$$
\begin{align*}
P= & \left(q_{1}-1\right)^{2}, Q=q_{2}^{2}+3 q_{3}^{2} \\
\theta(\mathbf{z})= & {[0,2 \pi] ; \cos \theta(\mathbf{z})=q_{2} / \sqrt{Q}, \sin \theta(\mathbf{z})=\sqrt{3} q_{3} / \sqrt{Q} } \\
& |\mathbf{k}(\mathbf{z})|^{2}-1=q_{1}-1+\sqrt{Q} \cos (\alpha-\theta(\mathbf{z})) \tag{3}
\end{align*}
$$

Choose $\varepsilon>0$, for nearly all $\Omega \notin \mathbb{Q}$, there exists $C>0$ such that (classical diophantine estimate)

$$
|P / Q-\Omega| \geq \frac{C}{Q^{2+\varepsilon}}, \text { for all } Q \in \mathbb{Z} \backslash\{0\}
$$

a zero measure set in Ω corresponds to a zero measure set in β, the set of angles β such that there exists $C(\beta)>0$ such that

$$
\left|P / Q-\cos ^{2} \beta\right| \geq \frac{C(\beta)}{Q^{2+\varepsilon}}, \text { for all } Q \in \mathbb{Z} \backslash\{0\}
$$

is of full measure.

For each Q there corresponds a finite set $\left\{\mathbf{z}_{j}\right\}$, hence a finite set $\left\{\theta\left(\mathbf{z}_{j}\right)\right\}$, so that the set of $\alpha \in(0, \pi / 6)$ such that there exists $C^{\prime}(\alpha)$ and

$$
\left|P / Q-\cos ^{2}(\alpha-\theta(\mathbf{z}))\right| \geq \frac{C^{\prime}(\alpha)}{Q^{2+\varepsilon}}, \text { for all } Q \in \mathbb{Z} \backslash\{0\}
$$

is, for each Q, the intersection of the sets above for a finite number of $\theta\left(\mathbf{z}_{j}\right)$. This set is then also of full measure.
A simple study of hyperbolas $y^{2}-\omega^{2}= \pm \frac{C^{\prime}}{Q^{\prime}}$ and an estimate of the distance to the asymptote for $\omega=1$, implies that

$$
\left|\sqrt{\frac{P}{Q}}-|\cos (\alpha-\theta)|\right| \geq \frac{C^{\prime}}{4 Q^{2+\varepsilon}}, \text { for } Q \text { large enough. }
$$

Then

$$
\left|q_{1}-1+\sqrt{Q} \cos (\alpha-\theta(\mathbf{z}))\right| \geq \frac{C^{\prime}}{4 Q^{3 / 2+\varepsilon}}
$$

and, since $Q \leq 3|\mathbf{z}|^{4}$, the Lemma follows.

Proof of the 2nd diophantine Lemma

$$
\begin{aligned}
& \tau=\sqrt{3} \tan \alpha / 2 \\
& P(\mathbf{a}, \alpha)=a_{0+} \sum_{1 \leq n \leq d} a_{n 0}\left(\frac{3-\tau^{2}}{3+\tau^{2}}\right)^{n}+a_{n-1,1}\left(\frac{3-\tau^{2}}{3+\tau^{2}}\right)^{n-1}\left(\frac{6 \tau}{3+\tau^{2}}\right) \\
&= \frac{Q(\mathbf{a}, \tau)}{\left(3+\tau^{2}\right)^{d}},
\end{aligned}
$$

It is sufficient to consider the "bad τ 's" such that $|Q(\mathbf{a}, \tau)| \leq \frac{c}{|\mathbf{a}|^{1}}$,
$Q(\mathbf{a}, \cdot)$ polynomial of degree $2 d$ not identical to 0 , with integer coefficients

$$
Q(\mathbf{a}, \tau)=\left(a_{0}+\sum_{1 \leq n \leq d}(-1)^{n} a_{n 0}\right) \Pi_{j=1, \ldots 2 d}\left(\tau-\tau_{j}\right),
$$

there exists $j(\tau)$ such that

$$
\left|\tau-\tau_{j(\tau)}\right|^{2 d} \leq|Q(\mathbf{a}, \tau)|
$$

in all cases, the bad τ 's satisfy $\left|\tau-\tau_{j(\tau)}\right| \leq\left(\frac{c}{|\mathbf{a}|^{\top}}\right)^{1 / 2 d}$. Summing for $j=1, \ldots 2 d$, their measure $|\delta \tau|$ is bounded by

$$
|\delta \tau| \leq 4 d\left(\frac{c}{|\mathbf{a}|^{\prime}}\right)^{1 / 2 d}
$$

Hence the measure of bad α, for a fixed:

$$
|\delta \alpha| \leq \frac{2}{\sqrt{3}}|\delta \tau| \leq \frac{8 d c^{1 / 2 d}}{\sqrt{3}|\mathbf{a}|^{1 /(2 d)}}
$$

We now count the number of coefficients a of polynomials corresponding to $|\mathbf{a}|$. This number is bounded by $(2|\mathbf{a}|)^{(2 d+1)}$. Hence the measure of the set of bad α 's for all $\mathbf{a} \in \mathbb{Z}^{(2 d+1)} \backslash\{0\}$ with a fixed norm $|\mathbf{a}|$ is bounded by

$$
\frac{d c^{1 / 2 d} 2^{2-2 d}}{\sqrt{3}|\mathbf{a}|^{1 /(2 d)-(2 d+1)}}
$$

