Quasipatterns in the superposition of two hexagonal patterns for the Swift-Hohenberg PDE

Gérard looss

IUF, Université Côte d'Azur, Laboratoire J.A.Dieudonné,

Parc Valrose, F-06108 Nice Cedex02

Superposition experiments

Superposition of two hexagonal patterns: $0^o, 3^o, 5^o, 10^o, 20^o, 30^o$

Quasipatterns experiments

Experiments of Faraday type. Kudrolli, Pier, Gollub 1998, Epstein Fineberg 2006

Definition of the quasilattice

$$\Gamma = \{\mathbf{k} \in \mathbb{R}^2; \mathbf{k} = \sum_{j=1,\dots,6} m_j \mathbf{k}_j + m'_j \mathbf{k}'_j, \ m_j, m'_j \in \mathbb{N}\}.$$

Special angles $\mathcal{E}_{p} := \{ \alpha \in \mathbb{R}/2\pi\mathbb{Z}; \cos \alpha \in \mathbb{Q}, \cos(\alpha + \pi/3) \in \mathbb{Q} \}.$

Lemma

The set \mathcal{E}_p has a zero measure in $\mathbb{R}/2\pi\mathbb{Z}$. (i) If the wave vectors $\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}'_1, \mathbf{k}'_2$ are not independent on \mathbb{Q} , then $\alpha \in \mathcal{E}_p$. (ii) If $\alpha \in \mathcal{E}_p$ then the lattice Γ is periodic with an hexagonal symmetry, and wave vectors $\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}'_1, \mathbf{k}'_2$ are combinations of only two smaller vectors, of equal length making an angle $2\pi/3$.

Fourier series

u(x, y) function under the form of a Fourier expansion

$$u = \sum_{\mathbf{k}\in\Gamma} u^{(\mathbf{k})} e^{i\mathbf{k}\cdot\mathbf{x}}, \ u^{(\mathbf{k})} = \overline{u}^{(-\mathbf{k})} \in \mathbb{C}.$$
 (1)

 $\boldsymbol{k}\in\Gamma$ may be written as

$${f k}=z_1{f k}_1+z_2{f k}_2+z_3{f k}_1'+z_4{f k}_2', \ \ (z_1,z_2,z_3,z_4)\in {\mathbb Z}^4,$$

For $\alpha \in \mathcal{E}_{qp} = \mathcal{E}_{p}^{c}$, Γ spans a 4-dimensional vector space on \mathbb{Q} .

$$N_{\mathbf{k}} = |\mathbf{z}| = \sum_{j=1,...,4} |z_j|$$
 is a norm of $\mathbf{k}(\mathbf{z})$

Hilbert spaces $\mathcal{H}_s, s \geq 0$:

$$\mathcal{H}_{s} = \left\{ u = \sum_{\mathbf{k} \in \Gamma} u^{(\mathbf{k})} e^{i\mathbf{k} \cdot \mathbf{x}}; u^{(\mathbf{k})} = \overline{u}^{(-\mathbf{k})} \in \mathbb{C}, \ \sum_{\mathbf{k} \in \Gamma} |u^{(\mathbf{k})}|^{2} (1 + N_{\mathbf{k}}^{2})^{s} < \infty \right\},$$

Lemma

If $\alpha \in \mathcal{E}_{qp}$, a function defined by a convergent Fourier series as above represents a quasipattern, i.e. is quasiperiodic in all directions.

Lemma

For nearly all $\alpha \in (0, \pi/6)$, in particular for $\alpha \in \mathbb{Q}\pi \cap (0, \pi/6]$, the only solutions of $|\mathbf{k}(\mathbf{z})| = 1$ are $\pm \mathbf{z}_j, \pm \mathbf{k}'_j$ j = 1, 2 and $\mathbf{k} = \pm \mathbf{k}_3$, or $\pm \mathbf{k}'_3$, i.e. corresponding to $\mathbf{z} = (\pm 1, \mp 1, 0, 0)$ or $(0, 0, \pm 1, \mp 1)$.

 \mathcal{E}_0 is the set of α 's such that Lemma above applies.

Lemma

For nearly all $\alpha \in \mathcal{E}_{qp} \cap (0, \pi/6)$, and for $\varepsilon > 0$, there exists c > 0such that, for all $|\mathbf{z}| > 0$ such that $|\mathbf{k}(\mathbf{z})| \neq 1$, $(|\mathbf{k}(\mathbf{z})|^2 - 1)^2 \geq \frac{c}{|\mathbf{z}|^{12+\varepsilon}}$ holds.

Steady Swift-Hohenberg equation in \mathbb{R}^2

$$(1 + \Delta)^2 u = \mu u - u^3, \ \mathbf{x} \in \mathbb{R}^2 \rightarrow u(\mathbf{x}) \in \mathbb{R}$$

$$e^{i \mathbf{k}. \mathbf{x}} \in \mathcal{K}\!er\{(1+\Delta)^2 - \mu\}$$
 in \mathcal{H}_s

iff Dispersion equation holds: $(1 - |\mathbf{k}|^2)^2 = \mu$, $\mathbf{k} \in \Gamma$ For $\mu = 0$ all wave vectors \mathbf{k} with $|\mathbf{k}| = 1$ are **critical** We choose to look for solutions in \mathcal{H}_s , for $\alpha \in \mathcal{E}_{qp} \cap \mathcal{E}_0$, i.e. quasiperiodic in \mathbb{R}^2 , moreover invariant under rotations of angle $\pi/3$ and bifurcating for μ close to 0. define $\mathbf{L}_0 = (1 + \Delta)^2$ For $\alpha \in \mathcal{E}_0$ Ker \mathbf{L}_0 is 2-dimensional spanned by

$$v = \sum_{j=1,2,\ldots,6} e^{i\mathbf{k}_j\cdot\mathbf{x}}, \quad w = \sum_{j=1,2,\ldots,6} e^{i\mathbf{k}'_j\cdot\mathbf{x}}.$$

Symmetries

S represents the imparity symmetry: $\mathbf{S}u = -u$

$$SL_0 = L_0S, Su^3 = (Su)^3.$$

 \mathbf{R}_{θ} rotation of angle $\theta,$ centered at the origin

$$(\mathbf{R}_{\theta} u)(\mathbf{x}) = u(\mathbf{R}_{-\theta} \mathbf{x}),$$
$$\mathbf{R}_{\theta} \mathbf{L}_{0} = \mathbf{L}_{0} \mathbf{R}_{\theta}, \quad \mathbf{R}_{\theta} u^{3} = (\mathbf{R}_{\theta} u)^{3}.$$

 τ represents the symmetry with respect to the bisectrix of wave vectors ${\bf k}_1$ and ${\bf k}_1'.$

$$\tau \mathbf{L}_0 = \mathbf{L}_0 \tau, \ \ \tau u^3 = (\tau u)^3.$$

Then

$$\mathbf{R}_{\pi/3}\mathbf{v} = \mathbf{v}, \ \mathbf{R}_{\pi/3}\mathbf{w} = \mathbf{w}, \ \tau\mathbf{v} = \mathbf{w}, \ \tau\mathbf{w} = \mathbf{v}$$

Formal series

We look for a formal solution of SHE as

 $u = \sum_{n \geq 1} \varepsilon^n u_n, \ \mu = \sum_{n \geq 1} \varepsilon^n \mu_n, \ \varepsilon$ defined by the choice of u_1

order ε : $\mathbf{L}_0 u_1 = 0$, u_1 lies in the kernel of \mathbf{L}_0

 $u_1 = w + \beta_1 v$

the coefficient in front of w fixes the choice of the scale ε , provided that we choose to impose $\langle u_n, w \rangle_0 = 0$, n = 2, 3, ...

order
$$\varepsilon^2$$
: $\mathbf{L}_0 u_2 = \mu_1 u_1$,

and the compatibility condition gives

$$\mu_1 = 0, \ u_2 = \beta_2 v.$$

Formal series-continued

Order
$$\varepsilon^3$$
: **L**₀ $u_3 = \mu_2 u_1 - u_1^3$.

Compatib:
$$a\mu_2 - c - 3b\beta_1^2 = 0$$
,
 $a\beta_1\mu_2 - 3b\beta_1 - c\beta_1^3 = 0$,

where
$$a = 6$$
, $b = 36$, $c = 90$,
 $\langle v^2 w, v \rangle = \langle w^2 v, w \rangle = \langle v^3, w \rangle = \langle w^3, v \rangle = 0$.

This gives $(c - 3b)(\beta_1^3 - \beta_1) = 0$,

$$\mu_2 = \frac{c}{a} + 3\frac{b}{a}\beta_1^2, \ u_3 = \beta_3 v + \widetilde{u_3}, \ \langle \widetilde{u_3}, v \rangle = \langle \widetilde{u_3}, w \rangle = 0.$$

 $\widetilde{u_3}$ only contains Fourier modes $e^{i\mathbf{k}\cdot\mathbf{x}}$ with $\mathbf{k} = m'_1\mathbf{k}'_1 + m'_2\mathbf{k}'_2$ First case: $\beta_1 = 0$, then $\mu_2 = 15$ Second case: $\beta_1 = \pm 1$, then $\mu_2 = 33$, $\tau u_1 = \beta_1 u_1$, $\tau \widetilde{u_3} = \beta_1 \widetilde{u_3}$ For $\beta_1 = 0$ we obtain the classical bifurcating hexagonal-symmetric expansion (u_n is orthogonal to v for all n). For $\beta_1 = \pm 1$ the expansions are uniquely determined. $u_1 = w + \beta_1 v$, $\tau u_1 = \beta_1 u_1$

$$eta_1 = 1$$
 leads to $au = u,$
 $eta_1 = -1$ leads to $au = -u.$

Formal series (end)

Theorem

Let us consider the Swift-Hohenberg model PDE . The superposition of two hexagonal patterns, differing by a small rotation of angle $\alpha \in \mathcal{E}_0$, leads to formal expansions in powers of an amplitude ε , of new bifurcating patterns invariant under rotations of angle $\pi/3$. We obtain two new branches of patterns, with formal expansions of the form

$$u = \varepsilon(\mathbf{w} + \beta_1 \mathbf{v}) + \varepsilon^3 \widetilde{u_3} + \dots \varepsilon^{2n+1} \widetilde{u_{2n+1}} + \dots, \quad \beta_1 = \pm 1,$$

$$\langle \widetilde{u_{2n+1}}, \mathbf{v} \rangle = \langle \widetilde{u_{2n+1}}, \mathbf{w} \rangle = 0, \quad \tau \widetilde{u_{2n+1}} = \beta_1 \widetilde{u_{2n+1}}, \quad \tau u = \beta_1 u,$$

$$\mu = \varepsilon^2 \mu_2 + \varepsilon^4 \mu_4 + \dots + \varepsilon^{2n} \mu_{2n} + \dots, \quad \mu_2 > 0,$$

$$\mathbf{v} = \sum_{j=1,2,\dots,6} e^{i\mathbf{k}_j \cdot \mathbf{x}}, \quad \mathbf{w} = \sum_{j=1,2,\dots,6} e^{j\mathbf{k}'_j \cdot \mathbf{x}}, \quad (\mathbf{k}_1, \mathbf{k}'_1) = \alpha.$$

For $\alpha \in \mathcal{E}_p \cap \mathcal{E}_0$ the expansions converge, giving periodic patterns with hexagonal symmetry.

2 branches of quasipatterns

The two branches bifurcate for $\mu > \mathbf{0}$

G. looss superposed patterns

Solutions of SHE, $\beta_1 = 1$

G. looss

superposed patterns

UNIVERSITE

Solutions of SHE, $\beta_1 = -1$

G. looss

superposed patterns

UNIVERSITÉ CÔTE D'AZUF

Theorem

Assume $\alpha \in \mathcal{E}_2 \cap \mathcal{E}_0 \cap \mathcal{E}_{qp}$ (full measure set). Then there exist $s_0 > 2$ and $\varepsilon_0 > 0$ such that for an asymptotically full measure set of values of $\varepsilon \in (0, \varepsilon_0)$, there exists a bifurcating quasipattern solution of SHE, invariant under rotation of angle $\pi/3$, of the form

$$\begin{split} u &= U_{\varepsilon} + \varepsilon^{2p} \widetilde{u}(\varepsilon), \ \widetilde{u} \in \{v, w\}^{\perp}, \\ U_{\varepsilon} &= \varepsilon (w + \beta_1 v) + \varepsilon^3 \widetilde{U_{\varepsilon}}, \ \beta_1 = \pm 1, \tau u = \beta_1 u, \\ \widetilde{U_{\varepsilon}} &= \widetilde{u}_3 + \dots \varepsilon^{2p-4} \widetilde{u}_{2p-1}, \\ \mu &= \mu_{\varepsilon} + \widetilde{\mu}(\varepsilon), \ \mu_{\varepsilon} = \varepsilon^2 \mu_2 + \dots \varepsilon^{2p} \mu_{2p}, \end{split}$$

where $\tilde{u}(\varepsilon) \in \mathbf{Q}_0 \mathcal{H}_{s_0}$, $w, v, \widetilde{u_{2n-1}}, \mu_{2n}$ are defined above, and functions of ε are C^1 with $\tilde{u}(0) = 0$, $\tilde{\mu}(\varepsilon) = \mathcal{O}(\varepsilon^{2p+2})$. $\mathbf{S}u = -u$ corresponds to change ε into $-\varepsilon$.

Bifurcation diagram

Asymptotically full measure set of good values for $\mu > 0$ for the two bifurcating branches

Idea of Proof 1

$$\begin{split} u &= U_{\varepsilon} + \varepsilon^{2p} W, \ W = \widetilde{u} + \beta v, \ \widetilde{u} \in \{v, w\}^{\perp}, \\ U_{\varepsilon} &= \varepsilon (w + \beta_1 v) + \varepsilon^3 \widetilde{U_{\varepsilon}}, \ \beta_1 = \pm 1, \ \widetilde{U_{\varepsilon}} = \widetilde{u}_3 + \dots \varepsilon^{2p-4} \widetilde{u}_{2p-1}, \\ \mu &= \mu_{\varepsilon} + \widetilde{\mu}(\varepsilon), \ \mu_{\varepsilon} = \varepsilon^2 \mu_2 + \dots \varepsilon^{2p} \mu_{2p}, \end{split}$$

 $(\mathbf{L}_0 - \widetilde{\mu})\widetilde{u} + g(\varepsilon, \beta, \widetilde{\mu}) + \mathcal{B}_{\varepsilon,\beta}\widetilde{u} + \mathcal{C}_{\varepsilon,\beta}(\widetilde{u}) = \mathbf{0},$

where $\mathcal{B}_{\varepsilon,\beta}$ is linear and $O(\varepsilon^2)$ in $\mathcal{H}_s, s \ge 0$, and $\mathcal{C}_{\varepsilon,\beta}$ is at least quadratic and $O(\varepsilon^{2p+1})$ in $\mathcal{H}_s, s > 2$. We expect to solve this range-equation for $\widetilde{\mu} \in [-\varepsilon^{2p-2}, \varepsilon^{2p-2}]$, with respect to \widetilde{u} which should be of order $O(\varepsilon)$, and put it into Bifurcation equations:

Bildication equations.

$$\begin{aligned} a\widetilde{\mu} &- 6\varepsilon^{2p+1}b\beta_1\beta - 3\varepsilon^{2p+1}\langle u_1^2\widetilde{u}, w \rangle = \mathcal{O}(\varepsilon^{2p+2}), \\ -\beta_1 a\widetilde{\mu} &+ 2c\varepsilon^{2p+1}\beta + 3\varepsilon^{2p+1}\langle u_1^2\widetilde{u}, v \rangle = \mathcal{O}(\varepsilon^{2p+2}). \end{aligned}$$

Then solve with respect to $(\tilde{\mu}, \beta) = (O(\varepsilon^{2p+2}), O(\varepsilon))$. Finally $\beta(\varepsilon) \equiv 0$ by a symmetry argument.

We have a small divisor problem:

$$\widetilde{\mathbf{L}_0}^{-1}e^{i\mathbf{k}\cdot\mathbf{x}}=rac{1}{(|\mathbf{k}|^2-1)^2}e^{i\mathbf{k}\cdot\mathbf{x}}$$

with $(|\mathbf{k}|^2 - 1)^2 \ge cN_{\mathbf{k}}^{-13}$ Nash-Moser method needs to invert the differential at any V near 0: $\mathcal{L}_{\varepsilon,\beta,V} - \tilde{\mu}\mathbb{I}$ where $\mathcal{L}_{\varepsilon,\beta,V}$ acts in $\mathbf{Q}_0\mathcal{H}_t$, $t \ge 0$ and is defined by

$$\mathcal{L}_{\varepsilon,\beta,V} = \mathbf{L}_{0} - \mu_{\varepsilon} \mathbb{I} + 3\mathbf{Q}_{0}(U_{\varepsilon}^{2} \cdot) - 6\varepsilon^{2p} \mathbf{Q}_{0}[U_{\varepsilon}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{Q}_{0}[(V + \beta v)^{2}(V + \beta v)(\cdot)] - 3\varepsilon^{4p} \mathbf{$$

inverse of $\mathcal{L}_{arepsilon,eta,eta}-\widetilde{\mu}\mathbb{I}$

Definition

Truncation of the space. Let $s \ge 0$ and N > 1 be an integer, we define $E_N := \prod_N \mathbf{Q}_0 \mathcal{H}_s$, which consists in keeping in the Fourier expansion of $\tilde{u} \in \mathbf{Q}_0 \mathcal{H}_s$ only those $\mathbf{k} \in \Gamma$ such that $N_{\mathbf{k}} \le N$. By construction we obtain

$$||(\Pi_N \mathbf{L}_0 \Pi_N)^{-1}||_s \le c_0 (1+N)^{13}.$$

Inverse of
$$\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I}$$
 for $N < M_{\varepsilon}$

Lemma

Let $S > s_0 > 2$ and $\varepsilon_0 > 0$ small enough and $\alpha \in (\mathcal{E}_1 \cap \mathcal{E}_0) \cup \mathcal{E}_{\mathbb{Q}}$. Then for $0 < \varepsilon \leq \varepsilon_0$ and $N \leq M_{\varepsilon}$ with $M_{\varepsilon} := \left[\frac{c_1}{\varepsilon^{2/13}}\right]$ and $(\varepsilon, \widetilde{\mu}, \beta, V) \in [-\varepsilon_0, \varepsilon_0] \times [-\varepsilon^{2p-2}, \varepsilon^{2p-2}] \times [-\beta_0, \beta_0] \times \mathcal{E}_N$, the following holds for $s \in [s_0, S]$ and V such that $||V||_s \leq 1$, $||(\Pi_N(\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I})\Pi_N)^{-1}||_s \leq 2c_0(1 + N)^{13}$

Inverse of $\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I}$ for large N

define $\Lambda := \{\varepsilon, \tilde{\mu}\}; \varepsilon \in [-\varepsilon_0, \varepsilon_0], \tilde{\mu} \in [-\varepsilon^{2p-2}, \varepsilon^{2p-2}]\}$, and for $M > 0, s_0 > 2,$ $\mathcal{U}_M^{(N)} := \{V \in C^1(\Lambda \times [-\beta_0, \beta_0], E_N); V(0, \tilde{\mu}, \beta) = 0,$ $||V||_{s_0} \le 1, ||\partial_{\varepsilon,\beta}V||_{s_0} \le M, ||\partial_{\tilde{\mu}}V||_{s_0} \le (M/\varepsilon^{2p-2})\}.$ For $V \in \mathcal{U}_M^{(N)}$, we consider the operator $\Pi_N(\mathcal{L}_{\varepsilon,\beta,V(\varepsilon,\tilde{\mu},\beta)} - \tilde{\mu}\mathbb{I})\Pi_N = \Pi_N \mathbf{L}_0 \Pi_N - \tilde{\mu}\mathbb{I}_N + \varepsilon^2 \mathcal{B}_1^{(N)}(\varepsilon) + \varepsilon^{2p+1} \mathcal{B}_2^{(N)}(\varepsilon, \beta, V(\varepsilon, \tilde{\mu}, \beta)),$

 $\Pi_N \mathbf{L}_0 \Pi_N$, $\mathcal{B}_1^{(N)}$, $\mathcal{B}_2^{(N)}$ selfadjoint in $\Pi_N \mathbf{Q}_0 \mathcal{H}_0$ and analytic in their arguments.

Eigenvalues of $\Pi_N(\mathcal{L}_{\varepsilon,\beta,V(\varepsilon,\widetilde{\mu},\beta)} - \widetilde{\mu}\mathbb{I})\Pi_N$ have the form

$$\sigma_j(\varepsilon,\widetilde{\mu},\beta) = s_j(\varepsilon) + f_j(\varepsilon,\widetilde{\mu},\beta) - \widetilde{\mu},$$

where s_j is analytic and f_j is Lipschitz

 $|f_j(\varepsilon_2,\widetilde{\mu}_2,\beta_2) - f_j(\varepsilon_1,\widetilde{\mu}_1,\beta_1)| \le c[\varepsilon^{2p}|\varepsilon_2 - \varepsilon_1| + \varepsilon^3|\widetilde{\mu}_2 - \widetilde{\mu}_1| + \varepsilon^{2p+1}|\beta_2 - \beta_1|]$

Inverse of $\mathcal{L}_{arepsilon,eta,oldsymbol{V}}-\widetilde{\mu}\mathbb{I}$ for large N (continued 1)

Bad set of $\tilde{\mu}$

$$\begin{split} B_{\varepsilon,\beta,\gamma}^{(N)}(V) &= \begin{cases} \widetilde{\mu} \in [-\varepsilon_{0}, \varepsilon_{0}]; (\varepsilon, \beta, V) \in [-\varepsilon_{0}, \varepsilon_{0}] \times [-\beta_{0}, \beta_{0}] \times \mathcal{U}_{M}^{(N)}, \\ &\exists j \in \{1, ... \mathcal{N}\}, |\sigma_{j}(\varepsilon, \widetilde{\mu}, \beta)| < \frac{\gamma}{N^{\tau}} \end{cases} \\ B_{\varepsilon,\beta,\gamma}^{(N)}(V) &= \cup_{j=1}^{\mathcal{N}} (\widetilde{\mu}_{j}^{-}(\varepsilon, \beta), \widetilde{\mu}_{j}^{+}(\varepsilon, \beta)), \\ &0 < \widetilde{\mu}_{j}^{+}(\varepsilon, \beta) - \widetilde{\mu}_{j}^{-}(\varepsilon, \beta) \leq \frac{4\gamma}{N^{\tau}}, \\ & \max(B_{\varepsilon,\beta,\gamma}^{(N)}(V)) \leq \frac{4b\gamma}{N^{\tau-4}}, \end{cases} \\ \\ \mathsf{Good set of } \widetilde{\mu}: \ \mathsf{G}_{\varepsilon,\beta,\gamma}^{(N)}(V) := [-\varepsilon_{0}, \varepsilon_{0}] \backslash B_{\varepsilon,\beta,\gamma}^{(N)}(V). \end{split}$$

Inverse of $\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I}$ for large N (continued 2)

Lemma

Assume
$$\gamma \leq \tilde{\gamma} = (2^{13/2+1}c_0)^{-1}$$
 and $\tau > 33 + 26p$. For $V \in \mathcal{U}_M^{(N)}$
and $(\varepsilon, \beta) \in [-\varepsilon_0, \varepsilon_0] \times [-\beta_0, \beta_0]$ fixed, then if
 $\tilde{\mu} \in \mathcal{G}_{\varepsilon,\beta,\gamma}^{(N)}(V) \cap [-\varepsilon^{2p-2}, \varepsilon^{2p-2}], N > 1$

$$||(\Pi_N(\mathcal{L}_{\varepsilon,\beta,V(\varepsilon,\widetilde{\mu},\beta)}-\widetilde{\mu}\mathbb{I})\Pi_N)^{-1}||_0\leq rac{N^{ au}}{\gamma}.$$

Moreover, for $N > M_{\varepsilon}$, the measure of the "bad set" $B_{\varepsilon,\beta,\gamma}^{(N)}(V)$ is bounded by $4b\gamma/N^{\tau-4}$, while it is 0 for $N \leq M_{\varepsilon}$.

This estimate is in $\mathcal{L}(\mathbf{Q}_0\mathcal{H}_0)$. In fact, we need to obtain a tame estimate for $(\prod_N (\mathcal{L}_{\varepsilon,\beta,V(\varepsilon,\widetilde{\mu},\beta)} - \widetilde{\mu}\mathbb{I})\prod_N)^{-1}$ in $\mathcal{L}(\mathbf{Q}_0\mathcal{H}_s)$ for s > 0, with an exponent on N not depending on s. We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a suitable adaptation. Inverse of $\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I}$ in $\mathbf{Q}_0\mathcal{H}_s$ for large N (continued 3)

Singular set in \mathbb{Z}^d : $S(N) := \{ \mathbf{z} \in \Gamma(N); (1 - |\mathbf{k}(\mathbf{z})|^2)^2 < \rho \}$ with

 $\Gamma(N) := \{ \mathbf{z} \in \mathbb{Z}^4; \ 0 \leq |\mathbf{z}| \leq N, \ \mathbf{k}(\mathbf{z}) \in \Gamma \setminus \{ \mathbf{k}_j, \mathbf{k}_j', j = 1, ..., 6 \} \}.$

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010) There exists $\rho_0 > 0$ independent of N such that if $\rho \in]0, \rho_0]$ then $S(N) = \bigcup_{\alpha \in \mathcal{A}} \Omega_{\alpha}$ is a union of disjoint clusters Ω_{α} satisfying :

- (H1), for all $\alpha \in A$, $M_{\alpha} \leq 2m_{\alpha}$ where $M_{\alpha} = \max_{\mathbf{z} \in \Omega_{\alpha}} |\mathbf{z}|$ and $m_{\alpha} = \min_{\mathbf{z} \in \Omega_{\alpha}} |\mathbf{z}|$;
- (H2), there exists δ = δ(d) ∈]0,1[independent of N such that if α, β ∈ A, α ≠ β then dist(Ω_α, Ω_β) := min<sub>z∈Ω_α,z'∈Ω_β |z z'| ≥ (M_α+M_β)^δ/2
 </sub>

Basic ingredient for the Lemma above

Define the positive definite matrix **A** in \mathbb{Z}^d :

$$|\mathbf{k}(\mathbf{z})|^2 = \langle \mathbf{z}, \mathbf{A}\mathbf{z} \rangle = q_1 + q_2 \cos \alpha + q_3 \sqrt{3} \sin \alpha$$

where q_1, q_2, q_3 are quadradic forms of **z** with integer coefficients. Then, for any \mathbb{Q} -linearly independent family $\{\mathbf{e}_j, j = 1, ..., d \leq 4\}$ in \mathbb{Z}^4 , let consider the matrix **M** such that $M_{l,m} = \langle \mathbf{e}_l, \mathbf{A}\mathbf{e}_m \rangle$. We have

 $det \mathbf{M} = \frac{1}{2^4} [a_0 + \sum_{1 \le n \le d} a_{n0} \cos^n \alpha + a_{n-1,1} \cos^{n-1} \alpha(\sqrt{3} \sin \alpha)],$ with integers a_{nm} bounded by $6^d \max_m \{|\mathbf{e}_m|^{2d}\}.$ Then, we can prove: for $\alpha \in \mathcal{E}_2$ (full measure set), there exists C > 0 such that for all $\mathbf{a} \in \mathbb{Z}^{(2d+1)} \setminus \{0\}$,

$$|\det \mathbf{M}| \geq rac{\mathcal{C}}{|\mathbf{a}|^{\prime}}, \ l = 2d(2d+1),$$

with $|\mathbf{a}| = |a_0| + \sum_{1 \le n \le d} |a_{n0}| + |a_{n-1,1}|$

Inverse of $\mathcal{L}_{\varepsilon,\beta,V} - \widetilde{\mu}\mathbb{I}$ for large N in \mathcal{H}_s for large N (end)

Lemma

Assume $\alpha \in \mathcal{E}_2$. Let γ and τ be as in Lemma for \mathcal{H}_0 , and choose $s_0 \geq 3 + \frac{\tau+4}{\delta}$ where δ is the number introduced in previous Lemma, and define

$$m=2\tau+6.$$

Assume $(\varepsilon, \widetilde{\mu}, \beta, V) \in [-\varepsilon_1, \varepsilon_1] \times [-\varepsilon^2, \varepsilon^2] \times [-\beta_0, \beta_0] \times \mathcal{U}_M^{(N)}$, with ε_1 small enough and $\widetilde{\mu} \in \mathcal{G}_{\varepsilon,\beta,\gamma}^{(N)}(V)$, where

$$\mathcal{G}^{(N)}_{arepsilon,eta,\gamma}(V)=\cap_{M_arepsilon< K\leq N}G^{(K)}_{arepsilon,eta,\gamma}(V)\cup [-arepsilon^{2p-2},arepsilon^{2p-2}].$$

Let $S > s_0$. Then for all $s \in [s_0, S]$ there exists K(s) > 0 such that for any $\tilde{u} \in \prod_N \mathbf{Q}_0 \mathcal{H}_s$, we have for any N > 1

$$||(\Pi_N(\mathcal{L}_{\varepsilon,\beta,V(\varepsilon,\widetilde{\mu},\beta)}-\widetilde{\mu}\mathbb{I})\Pi_N)^{-1}\widetilde{u}||_s \leq K(s)\frac{N^m}{\gamma}(||\widetilde{u}||_s+||V||_s||\widetilde{u}||_{s_0}).$$

The proof follows Berti-Bolle 2010

We set $\widetilde{\mu} = \varepsilon^{2p-2} \widehat{\mu}$

Nash-Moser method, following Berti-Bolle-Procesi 2010 leads to:

Theorem

Assume $\alpha \in \mathcal{E}_2 \cap \mathcal{E}_0 \cap \mathcal{E}_{qp}$ and let s_0 be as in Lemma above. Then for all $0 < \gamma \leq \widetilde{\gamma}$ there exist $\varepsilon_2(\gamma) \in (0, \varepsilon_0)$ and a $C^1 - map V$: $(0, \varepsilon_2(\gamma)) \times [-1, 1] \to \mathcal{H}_{s_0+4}$ such that $V(0, \widehat{\mu}, \beta) = 0$ and if $\varepsilon \in (0, \varepsilon_2(\gamma)), \ \widehat{\mu} \in [-1, 1] \setminus C_{\varepsilon,\beta,\gamma}$, the function $\widetilde{u} = V(\varepsilon, \widehat{\mu}, \beta)$ is solution of the range equation. Here $C_{\varepsilon,\beta,\gamma}$ is a subset of [-1, 1], which is a Lipschitz function of (ε, β) and has a Lebesgue measure less than $C\gamma |\varepsilon|^3$ for some constant C > 0, independent of $(\varepsilon, \beta, \gamma)$.

Resolution of the Bifurcation equations

$$\begin{split} &a\widehat{\mu} - 6\varepsilon^3 b\beta_1\beta - 3\varepsilon^3 \langle u_1^2 V(\varepsilon,\widehat{\mu},\beta), w \rangle = \mathcal{O}(\varepsilon^4), \\ &-\beta_1 a\widehat{\mu} + 2c\varepsilon^3\beta + 3\varepsilon^3 \langle u_1^2 V(\varepsilon,\widehat{\mu},\beta), v \rangle = \mathcal{O}(\varepsilon^4). \end{split}$$

Implicit function theorem gives

$$\widetilde{\mu} = \varepsilon^{2p-2}\widehat{\mu} = \varepsilon^{2p+2}h(\varepsilon), \ \beta = \varepsilon g(\varepsilon), \ (\mathsf{H})$$

 $\varepsilon h(\varepsilon)$ and $\varepsilon g(\varepsilon)$ are C^1 functions of $\varepsilon \in [0, \varepsilon_1]$.

Define "bad layers" of degree N: $BS_N(V) := \{(\varepsilon, \tilde{\mu}, \beta) \in \Lambda \times [-\beta_0, \beta_0]; \exists j; \tilde{\mu} \in (\tilde{\mu}_j^-(\varepsilon, \beta), \tilde{\mu}_j^+(\varepsilon, \beta))\}$. In the 3-dimensional space $(\varepsilon, \tilde{\mu}, \beta)$ we need to check that the curve (H) crosses transversally the bad set formed by the infinitely many thin layers $\bigcup_{n \in \mathbb{N}} B_n S_{N_n}(V_{n-1})$, where $N_n = [N_0(\gamma)]^{2^n}$, and V_n are the successive points obtained in the Newton iteration of the Nash-Moser method. The intersection of the surface $\beta = \varepsilon g(\varepsilon)$ with $\bigcup_{n \in \mathbb{N}} B_n S_{N_n}(V_{n-1})$ is a set of bad strips, bounded by curves of the form

$$egin{array}{rcl} \widetilde{\mu}_j^{\pm(N_n)}(arepsilon)&=&s_j^{(N_n)}(arepsilon)+g_j^{\pm(N_n)}(arepsilon),\ &s_j^{(N_n)}(arepsilon)&=&s_j^{(N_n)}(0)+3arepsilon^2+\mathcal{O}(arepsilon^4)\ &|g_j^{\pm(N_n)}(arepsilon_2)-g_j^{\pm(N_n)}(arepsilon_1)|&\leq&carepsilon^4|arepsilon_2-arepsilon_1| \end{array}$$

Then for any of the limiting curves,

$$|\widetilde{\mu}(\varepsilon + h) - \widetilde{\mu}(\varepsilon)| \ge c|\varepsilon||h|$$

Which is sufficient for having a transverse intersection with $(H)_{UNVERSITE PAZER}$

measure of "bad" $\widetilde{\mu}$'s $< C\gamma|\varepsilon|^{2p+1}$ hence measure of "bad" ε 's $< \frac{C\gamma|\varepsilon|^{2p+1}}{\min|\text{slope}|} < \frac{C\gamma|\varepsilon|^{2p+1}}{c|\varepsilon|} \le C'\gamma\varepsilon^{2p}$.

The complementary subset in $(0, \varepsilon)$, is the good set of $|\varepsilon|$, which is of asymptotic full measure since $[|\varepsilon| - C'\gamma\varepsilon^{2p}]/|\varepsilon| \to 1$ as $\varepsilon \to 0$.

final result 2: $\beta(\varepsilon) \equiv 0$

Use a symmetry argument $\tau U_{\varepsilon} = \beta_1 U_{\varepsilon},$ For $\beta_1 = 1,$

$$\tau(\widetilde{u}(\varepsilon) + \beta(\varepsilon)v) = \tau\widetilde{u}(\varepsilon) + \frac{\beta(\varepsilon)w}{\varepsilon} = \widetilde{u}(\varepsilon) + \frac{\beta(\varepsilon)v}{\varepsilon}$$

by the uniqueness of the solution u. Hence, $\beta(\varepsilon) \equiv 0$.

For $\beta_1 = -1$,

$$\tau \widetilde{u}(\varepsilon) + \beta(\varepsilon)w = -\widetilde{u}(\varepsilon) - \beta(\varepsilon)v$$

by the uniqueness of the solution -u. This implies that in all cases

 $au \widetilde{u}(\varepsilon) = \beta_1 \widetilde{u}(\varepsilon), \ \beta(\varepsilon) \equiv 0$

Theorem

Assume $\alpha \in \mathcal{E}_2 \cap \mathcal{E}_0 \cap \mathcal{E}_{qp}$ which is a full measure set. Then there exist $s_0 > 2$ and $\varepsilon_0 > 0$ such that for an asymptotically full measure set of values of $\varepsilon \in (0, \varepsilon_0)$, there exist two branches of bifurcating quasipattern solutions of SHE, invariant under rotation of angle $\pi/3$, of the form

$$u = U_{\varepsilon} + \varepsilon^{2p} \widetilde{u}(\varepsilon), \ \widetilde{u} \in \{v, w\}^{\perp},$$

$$U_{\varepsilon} = \varepsilon(w + \beta_1 v) + \varepsilon^3 \widetilde{U_{\varepsilon}}, \ \beta_1 = \pm 1, \tau u = \beta_1 u_{\varepsilon},$$

$$\mu = \mu_{\varepsilon} + \widetilde{\mu}(\varepsilon), \ \mu_{\varepsilon} = \varepsilon^2 \mu_2 + \dots \varepsilon^{2p} \mu_{2p}$$

where $\tilde{u}(\varepsilon) \in \mathbf{Q}_0 \mathcal{H}_{s_0}$, $w, v, U_{\varepsilon}, \mu_{2n}$ are defined above, and functions of ε are C^1 with $\tilde{u}(0) = 0$, $\tilde{\mu}(\varepsilon) = \mathcal{O}(\varepsilon^{2p+2})$. $\mathbf{S}u = -u$ corresponds to change ε into $-\varepsilon$.

G.I., A.M. Rucklidge. On the existence of quasipattern solutions of the Swift-Hohenberg equation. J. Nonlinear Science 20, 3, 361-394, 2010.

B.Braaksma, G.I., L.Stolovitch. Existence of quasipatterns solutions of the Swift-Hohenberg equation. A.R.M.A. 209, 1 (2013), 255-285. Erratum ARMA 211, 3 (2014), 1065.

B.Braaksma, G.I., L.Stolovitch. Existence proof of of quasipatterns solutions of the Swift-Hohenberg equation.Com. Math. Phys. 353(1), 37-67, 2017 DOI 10.1007/s00220-017-2878-x

B.Braaksma, G.I. Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231(3), 1917-1981 (2019)DOI: 10.1007/s00205-018-1313-6

G.I. Existence of quasipatterns in the superposition of two hexagonal compatterns. Nonlinearity (to appear in 2019)

Proof of the first diophantine Lemma

Let us define

$$P = (q_1 - 1)^2, \ Q = q_2^2 + 3q_3^2,$$

$$\theta(\mathbf{z}) \in [0, 2\pi]; \ \cos \theta(\mathbf{z}) = q_2 / \sqrt{Q}, \ \sin \theta(\mathbf{z}) = \sqrt{3}q_3 / \sqrt{Q}.$$

$$|\mathbf{k}(\mathbf{z})|^2 - 1 = q_1 - 1 + \sqrt{Q}\cos(\alpha - \theta(\mathbf{z})).$$
(3)

Choose $\varepsilon > 0$, for nearly all $\Omega \notin \mathbb{Q}$, there exists C > 0 such that (classical diophantine estimate)

$$|P/Q - \Omega| \geq rac{C}{Q^{2+arepsilon}}, ext{ for all } Q \in \mathbb{Z} ackslash \{0\}.$$

a zero measure set in Ω corresponds to a zero measure set in β , the set of angles β such that there exists $C(\beta) > 0$ such that

$$|P/Q - \cos^2 \beta| \geq rac{C(eta)}{Q^{2+arepsilon}}, ext{ for all } Q \in \mathbb{Z} ackslash \{0\}$$

is of full measure.

Proof of the first diophantine Lemma - continued

For each Q there corresponds a finite set $\{z_j\}$, hence a finite set $\{\theta(z_j)\}$, so that the set of $\alpha \in (0, \pi/6)$ such that there exists $C'(\alpha)$ and

$$|P/Q - \cos^2(lpha - heta(\mathbf{z}))| \geq rac{C'(lpha)}{Q^{2+arepsilon}}, ext{ for all } Q \in \mathbb{Z} ackslash \{\mathbf{0}\}$$

is, for each Q, the intersection of the sets above for a finite number of $\theta(\mathbf{z}_j)$. This set is then also of full measure. A simple study of hyperbolas $y^2 - \omega^2 = \pm \frac{C'}{Q^I}$ and an estimate of the distance to the asymptote for $\omega = 1$, implies that

$$\left|\sqrt{\frac{P}{Q}} - |\cos(lpha - heta)|\right| \ge \frac{C'}{4Q^{2+arepsilon}}, ext{ for } Q ext{ large enough}.$$

Then

$$||q_1-1+\sqrt{Q}\cos(lpha- heta(\mathbf{z}))|\geq rac{C'}{4Q^{3/2+arepsilon}},$$

UNIVERSITÉ

and, since $Q \leq 3|\mathbf{z}|^4$, the Lemma follows.

Proof of the 2nd diophantine Lemma

$$\tau = \sqrt{3} \tan \alpha/2,$$

$$P(\mathbf{a}, \alpha) = a_{0+} \sum_{1 \le n \le d} a_{n0} \left(\frac{3-\tau^2}{3+\tau^2}\right)^n + a_{n-1,1} \left(\frac{3-\tau^2}{3+\tau^2}\right)^{n-1} \left(\frac{6\tau}{3+\tau^2}\right) \\ = \frac{Q(\mathbf{a}, \tau)}{(3+\tau^2)^d},$$

It is sufficient to consider the "bad τ 's" such that $|Q(\mathbf{a}, \tau)| \leq \frac{c}{|\mathbf{a}|'}$, $Q(\mathbf{a}, \cdot)$ polynomial of degree 2*d* not identical to 0, with integer coefficients

$$Q(\mathbf{a},\tau) = (a_0 + \sum_{1 \le n \le d} (-1)^n a_{n0}) \prod_{j=1,\dots,2d} (\tau - \tau_j),$$

there exists $j(\tau)$ such that

$$|\tau - \tau_{j(\tau)}|^{2d} \le |Q(\mathbf{a}, \tau)|$$

in all cases, the bad τ 's satisfy $|\tau - \tau_{j(\tau)}| \leq \left(\frac{c}{|\mathbf{a}|'}\right)^{1/2d}$. Summing for j = 1, ...2d, their measure $|\delta \tau|$ is bounded by

$$|\delta \tau| \leq 4d \left(rac{c}{\left|\mathbf{a}
ight|^{l}}
ight)^{1/2d}$$

Hence the measure of bad α , for ${\bf a}$ fixed:

$$|\delta \alpha| \leq \frac{2}{\sqrt{3}} |\delta \tau| \leq \frac{8 d c^{1/2d}}{\sqrt{3} |\mathbf{a}|^{l/(2d)}}$$

We now count the number of coefficients **a** of polynomials corresponding to $|\mathbf{a}|$. This number is bounded by $(2|\mathbf{a}|)^{(2d+1)}$. Hence the measure of the set of bad α 's for all $\mathbf{a} \in \mathbb{Z}^{(2d+1)} \setminus \{0\}$ with a fixed norm $|\mathbf{a}|$ is bounded by

$$\frac{dc^{1/2d}2^{2-2d}}{\sqrt{3}|\mathbf{a}|^{l/(2d)-(2d+1)}}.$$