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Superposition experiments

en
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Superposition of two hexagonal patterns: 0°,3°,5°,10°,20°,30°



Quasipatterns experiments

Experiments of Faraday type. Kudrolli, Pier, Gollub 1998, Epstei
Fineberg 2006 MERaE
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Definition of the quasilattice

F={keR>k= Y mk;+mkj, mj,m}eN}
j=1,...6

Special angles &, := {a € R/277Z; cos o € Q, cos(a + 7/3) € Q}.

Lemma

The set £, has a zero measure in R/27Z.

(i) If the wave vectors ki, kz, k), k) are not independent on Q,
then o € &p. )
(i) If « € &, then the lattice T is periodic with an hexagonal :
symmetry, and wave vectors ki, ko, k], ki, are combinations of only
two smaller vectors, of equal length making an angle 2m /3.

G. looss superposed patterns



Fourier series

u(x,y) function under the form of a Fourier expansion
u= Z uelkx k) — gk ¢ C. (1)
kel

k € I may be written as
k = z1k1 + z0ko + Z3k/1 + Z4k/2, (21722723,24) S Z4,

For o € £qp = &5, , I spans a 4-dimensional vector space on Q.
Ne = |z| = Z |zj| is a norm of k(z)
j=1,...4

Hilbert spaces Hs, s > 0 :

s:{u_z (k IkX k)_u( k)E(C Z|u(k 1+N2)5<OO}

kel kel
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basic Lemmas

Lemma

If a € Eqp, a function defined by a convergent Fourier series as
above represents a quasipattern, i.e. is quasiperiodic in all
directions.

A\

Lemma
For nearly all « € (0,7/6), in particular for o € Qm N (0,7/6], the

only solutions of |k(z)| =1 are +z;, :l:kj- j=1,2 and k = *+k3, or
+kj, i.e. corresponding to z = (£1,¥F1,0,0) or (0,0,£1, F1).

& is the set of a's such that Lemma above applies.

For nearly all o € Eq, N (0,7/6), and for € > 0, there exists ¢ > 0
such that, for all |z| > 0 such that |k(z)| # 1,
(|k(z)]? — 1) > e holds.
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Steady Swift-Hohenberg equation in R?

(1+A)2u=pu—u’ xeR?—u(x) €R

e™* € Ker{(1+ A)? — u} in Hs

iff Dispersion equation holds: (1 — |k|?)2 =pu, k€T
For © = 0 all wave vectors k with |k| =1 are critical
We choose to look for solutions in H, for o € Egp N &y, e
quasiperiodic in R?, moreover invariant under rotations of angle
7/3 and bifurcating for u close to 0.
define Lo = (1 + A)?
For a € & Kerlg is 2-dimensional spanned by
v= Do e w= 3TN

Jj=12,.,6 Jj=12,.,6
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S represents the imparity symmetry: Su= —u
SLo = LS, Su® = (Su)’.
Ry rotation of angle 0, centered at the origin
(Rou)(x) = u(R_px),

RoLo = LoRy, Ryu® = (Rgu)’.

T represents the symmetry with respect to the bisectrix of wave
vectors ki and kj.
_ 3 _ 3
TLo = Lo, 7u’ = (Tu)’. (2)
UN\:E’I;;\TE

Then COTEDAZUR
Rrv=v, Rppw=w, 7v=w, Tw=v
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Formal series

We look for a formal solution of SHE as

u= Zs"u,,, = Zs"un, ¢ defined by the choice of uy

n>1 n>1
order ¢ : Louy = 0, uy lies in the kernel of Lg
n=w+ Giv

the coefficient in front of w fixes the choice of the scale ¢,
provided that we choose to impose (up,w)o =0, n=23,...

order €2: Loup = Hiug,

and the compatibility condition gives

UNIVERSITE
COTED'AZUR

1 =0, up = fov.
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Formal series-continued

3
Order £3: Louz = pouy — Uy.

Compatib: auy — c — 3bﬂf = 0,
afipz —3bf — cfi = 0,

where a =6, b =36, ¢ =90,

(2w, v) = (W?v,w) = (v3 w) = (w3, v) = 0.

This gives (¢ — 3b)(/3f — 1) =

c b PO ~
p2 = — +3—ﬁ%1 uz = [3v + usz, (U3, v) = (uz,w) = 0.
i3 only contains Fourier modes e’** with k = mi k) + mbk) gg;ggaszgg
First case: 1 =0, then up =15

Second case: 1 = %1, then pp = 33, 71y = By, TUz = P103
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higher orders

For 81 = 0 we obtain the classical bifurcating hexagonal-symmetric
expansion (uj, is orthogonal to v for all n).

For 51 = +1 the expansions are uniquely determined.

up = w+ prv, Tup = Brug

O1=1 leads to Tu = u,

61 =-1 leads to Tu = —u.

UNIVERSITE
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Formal series (end)

Theorem

Let us consider the Swift-Hohenberg model PDE . The
superposition of two hexagonal patterns, differing by a small
rotation of angle o € &y, leads to formal expansions in powers of
an amplitude e, of new bifurcating patterns invariant under
rotations of angle /3. We obtain two new branches of patterns,
with formal expansions of the form

u = e(w+pGv)+edm+ .2 .., B ==+,
(2ny1,v) = (U2pt1,w) =0, Tuzpy1 = Brliong1, TU = Pru,
2 4 2
po= epot+e gt ..+ U+ . 2 >0,
. -
v= E ek X w= g e™i* (ki k) = a.
j=1,2,...6 j=1,2,...6 :

For o € £, N &y the expansions converge, giving periodic patterns
with hexagonal symmetry.

o

G. looss superposed patterns



2 branches of quasipatterns

UNIVERSITE
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The two branches bifurcate for p > 0



Solutions of SHE, 6; =1

solutions of SHE for o« = 4°,7°,10°,30°. Order € and (
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Solutions of SHE, 6; = —1

solutions of SHE for v = 4°,7°,10°,30°. Order ¢ and 31 = —1

G. looss superposed patterns



Existence of quasipatterns

Theorem

Assume o € E2 N Ey N Eqp (full measure set). Then there exist
sp > 2 and g9 > 0 such that for an asymptotically full measure set
of values of € € (0,¢), there exists a bifurcating quasipattern
solution of SHE, invariant under rotation of angle /3, of the form

u = U.+¢e%Pu(e), e {v,w},
U. = (W+ﬂlv)+.€3a;, By ==+1,7u = fu,
U. = Uz+..e%¥ lop— 1,

po= e+ (e), pe =2+ ..e% o,

where U(e) € QoHs,, W, V, Usn_1, jion are defined above, and ;
functions of e are C* with u(0) = 0, ji(c) = O(e?P*2). Su= —u |+
corresponds to change € into —¢.

.
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Bifurcation diagram

u \

Asymptotically full measure set of good values fof p > 0 for ﬂ@ﬁgg&gﬂg
two bifurcating branches
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Idea of Proof 1

u = U.+eW, W=1+p8v, 1€ {v,w},
U. = E(W + ﬁlv) + 53/0;, 01 = %1, De =u3z+ ....€2p_4ﬁ2p_1,
po= pe+i(e), pe =+ .. pop,

(Lo — p)u+ g(e, B, 1) + Be gt + C. g(u) = 0,

where B. g is linear and O(£2) in Hs,s > 0, and C. 5 is at least
quadratic and O(e?P*1) in H,s > 2.

We expect to solve this range-equation for ji € [—2P~2,£2P2],
with respect to U which should be of order O(g), and put it into
Bifurcation equations:

afi — 6e%PT1pB B — 3e2PTHuW2T, w) = O(2PF2?),
—Brafi + 2ce® 1B 4 32PTL(2T, v) = O(e2PT?). Wk

Then solve with respect to (ji, 3) = (0O(2P*2), O(¢)). Finally
B(g) = 0 by a symmetry argument.



Idea of Proof (continued)

We have a small divisor problem:

1
(k[ —1)?

~—1

ik-x ik-x

LO e =

with ([k|? — 1)2 > cN 3
Nash-Moser method needs to invert the differential at any V near
0: L. 3 v — pl where L. g acts in QoH¢, t > 0 and is defined by

L. v = Lo—uI4+3Qo(U2)—62PQo[U-(V+5v)(-)]-3* Qo[ (V +3v)?(

UNIVERSITE
COTED'AZUR
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inverse of L. 3y — pul

Definition

Truncation of the space. Let s > 0 and N > 1 be an integer, we
define Ep := MNMyQoHs, which consists in keeping in the Fourier
expansion of u € QoHs only those k € I' such that M, < N. By
construction we obtain

[(MaLoMa)~|s < co(1 + N3,

A\

Inverse of L. gy — pul for N < M.

Lemma

Let S > sy > 2 and g9 > 0 small enough and o € (€1 N &) U Eg.
Then for 0 < e < ¢eg and N < M. with M, := Lfﬁ} and

(e, 11,8, V) € [—¢c0,0] X [-€2P72,e%P72] x [, Bo] X En, the
following holds for s € [sp, S] and V such that ||V||s < 1,
(W= 5,y — )]s < 2c0(1 + V)12 |
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Inverse of L. 3y — ul for large N

define A := {e, fi); e € [~e0, 0], i € [-€?P72,e%P72]}, and for
M > 0, So > 2,
uy o ={ve A x [, fol, En): V(0, /i, B) = 0,
1Vils < 1,102V llsy < M. [0V ls, < (M/2P2)}.

For V € U,(V’,V), we consider the operator
(L pvenp — ANy = MykoMy — fly + 28 () +
+e20 1B (e, B, V (e, i, B)),

MyLoMy, B, B selfadjoint in MyQoHo and analytic in their
arguments.
Eigenvalues of My (L. 5 v (7,3 — #1)lMy have the form

Uj(Ev /77 ﬁ) = Sj(E) + 6(67 /-77 ﬁ) - /77 UN\;:.E:;;\TE

COTED'AZUR

where s; is analytic and f; is Lipschitz

|fi(£2, iz, B2)—fi(e1, fin, B1)| < c[e?P|ea—er|+&3|fia—in | +e2P | Ba— 1]
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Inverse of L. g — pul for large N (continued 1)

Bad set of ji

BY.(vV) = {fiel-cocoli(e,0, V) € [~eo,0] x [ o o] x U,
3j € {1, N} o3, 7 B)] < o=}
B (v) = 1(/7;(5,5),;7,-*(5,5)),

0<7f(e,8) — i (e, ) <

NT’
4b
II]eaS(Béi}Qﬁ/(V)) < NT:/‘“
Good set of fi: G (V) = [~e0,20\BY. (V). e
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Inverse of L. g — pul for large N (continued 2)

Lemma

Assume v < 7 = (213/2t1¢y)~1 and T > 33 + 26p. For V € U,(VI,V)
and (g, 3) € [—eo0,e0] X [0, Po] fixed, then if

e Gl (V)N[-e22,e%72 N> 1

- _ N™
NN (Le g vie s — ADMN) o < PR

Moreover, for N > M., the measure of the "bad set”Ba(%)ﬁ(V) is
bounded by 4by/N™=*, while it is 0 for N < M..

This estimate is in £(QoHo). In fact, we need to obtain a tame

estimate for (My (L. g v(e 0 — B)My) ™! in L(QoHs) for s > 0,
with an exponent on N not depending on s. &t azin
We use Bourgain 1995, Craig 2000, Berti-Bolle 2010 with a

suitable adaptation.
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Inverse of L. sy — pll in QoHs for large N (continued 3)

Singular set in Z9: S(N) := {z € T(N); (1 — |k(2)|?)? < p} with
[(N) :={z € Z* 0<|z| < N, k(z) € N\{kj,k},j =1,...,6}}.

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010)
There exists pg > 0 independent of N such that if p €]0, pg] then
S(N) = Upea Qa is a union of disjoint clusters €, satisfying :
e (H1), for all a« € A, M, < 2m,, where M, = max,cq, |z| and
my = mingeq,, |2|;
@ (H2), there exists 0 = d(d) €]0, 1] independent of N such
that if a, 0 € A, # (3 then
dist(Qa,Qp) 1= minzeq, 27cq, |2 — 2| > w UNWERSWE

COTED'AZUR
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Basic ingredient for the Lemma above

Define the positive definite matrix A in Z9:
|k (Z)|2 (z, Az) = q1 + g2 cos v + q3\/§sma

where g1, g2, g3 are quadradic forms of z with integer coefficients.
Then, for any Q-linearly independent family {e;,j =1,...,d <4}
in Z*, let consider the matrix M such that M, ,, = (e/, Aep,).

We have

detM = L[ag + > < pey an0 €08 @ + ap_11 cos" av/3sina)],
with integers a,, bounded by 69 maxy,{|em|?}.

Then, we can prove: for a € & (full measure set), there exists

C > 0 such that for all a € Z(24+1\ {0},

| = 2d(2d + 1), UN\\;E’I;‘S\TE

9
‘ | I COTED'AZUR

|detM| >

with [a] = |ao| + D" <,<qlanol + [an-1.1]
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Inverse of L. g — ul for large N in H; for large N (end)
S

Lemma
Assume o € &. Let v and T be as in Lemma for Hy, and choose
sp >3+ TT+4 where § is the number introduced in previous
Lemma, and define

m =27 + 6.
Assume (e, i1, 3, V) € [—¢e1,e1] X [ 2,e2] x [~Bo, Bo] x Z/{,(V’,V),
with €1 small enough and 11 € QE B, V(V), where

g(ﬁv( ) = mMs<K§NG€(f;?,y(V)U[_€2P—27E2p—2]'

Let S > sp. Then for all s € [sp, S| there exists K(s) > 0 such that
for any u € MyQoHs, we have for any N > 1

Wi

- 1~ N™ o ~ :
(M (Le g v (e gy — EDMN) "1l < K(S)7(|IUIIS+|IV||sIIUI|so)-

.

The proof follows Berti-Bolle 2010



Resolution of the Range equation

We set ji = 2P~2]i

Nash-Moser method, following Berti-Bolle-Procesi 2010 leads to:

Theorem

Assume oo € £, NEY N Eqp and let so be as in Lemma above. Then
for all 0 < v <75 there exist e5(7y) € (0,20) and a C*— map V :
(0,e2(7)) x [-1,1] — Hsy+a such that V(0, 1, 3) = 0 and if

e €(0,e2(7)), i € [-1,1\C g4, the function u = V (e, i, 3) is
solution of the range equation. Here C. g is a subset of [-1,1],
which is a Lipschitz function of (e, 3) and has a Lebesgue measure
less than C~|e|® for some constant C > 0, independent of (¢, 3,7).

UNIVERSITE
COTED'AZUR
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Resolution of the Bifurcation equations

afi — 6e>bp1 8 — 3> (Ui V (e, 11, B), w) = O(Y),
—bhrapi+2¢e> + 33 (17 V (e, 11, B), v) = O(e*).

Implicit function theorem gives
i 20 = PR, = 2g(e), ()
eh(e) and eg(e) are C! functions of € € [0, 1].

Define "bad layers” of degree N: BSy(V) :={(e, 1z, B) €

A x [_ﬁO’ ﬁO]; 3/ ﬁ € (ﬁj_(Ev ﬁ)’ ﬁ7(57 ﬁ))}

In the 3-dimensional space (e, i, 3) we need to check that the

curve (H) crosses transversally the bad set formed by the infinitely::
many thin layers UnenB,Sn, (Va-1), where N, = [No(7)]%", and#5iik
V,, are the successive points obtained in the Newton iteration of

the Nash-Moser method.
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Structure of the "bad set” in the space (e, 1z, )

The intersection of the surface 5 = eg(e) with UpenBnSn,(Va-1)
is a set of bad strips, bounded by curves of the form

~:|: Nn Nn :l:Nn
i) = ™)+ g M),
() = 5"(0) 4352 + O(*)
|gji(Nn)(€2) _ gji(N”)(El)‘ < cetlep — e

Then for any of the limiting curves,

(e + h) — ()| = clel[hl

Which is sufficient for having a transverse intersection with (H) e

COTED'AZUR
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final result 1

measure of "bad" fi's < Cv|e[?P*1 hence

CrlelPtt _ CofePt? 10-2P
min|slope| cle] < C7€ )

measure of "bad” ¢'s <

The complementary subset in (0,¢), is the good set of ||, which is
of asymptotic full measure since [|e| — C'v&?P]/|e| — 1 as € — 0.

UNIVERSITE
COTED'AZUR
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final result 2: G(e) =0

Use a symmetry argument
TU: = iU,
For /31 = 1,

7(@(e) + Ble)v) = 7ui(e) + B(e)w = T(e) + B(e)v
by the uniqueness of the solution u. Hence, 3(¢) = 0.
For B = —1,
Tu(e) + f(e)w = —u(e)—H(e)v

by the uniqueness of the solution —u. This implies that in all cases

UNIVERSITE

TH(E) - ﬂla(f), /3(5) =0 COTE DAZUR
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Existence of quasipatterns

Theorem

Assume o € E2 N &y N Egp which is a full measure set. Then there
exist sy > 2 and g9 > 0 such that for an asymptotically full
measure set of values of € € (0,e), there exist two branches of
bifurcating quasipattern solutions of SHE, invariant under rotation
of angle /3, of the form

u = U.+®h(e), ue{v,w,
U = e(w+Biv) +e3Us, pr=+1,7u=pu,
po= pe+i(e), pe =2+ ... pp

where u(e) € QoHs,, w, v, ’UZ,,Q” are defined above, and
functions of € are C* with u(0) = 0, fi(¢) = O(¢?P*2). Su= —u
corresponds to change € into —¢.
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Proof of the first diophantine Lemma

Let us define

P = (n—1)?% Q=d5+3d,
0(z) € [0,2n]; cosf(z) = q/VQ, sind(z) = V3q3/V Q.

k(z)]? —1=q1 — 1+ v/Qcos(a — 6(z)). (3)
Choose ¢ > 0, for nearly all Q ¢ Q, there exists C > 0 such that
(classical diophantine estimate)

|P/Q— Q| > for all Q € Z\{0}.

o2+ ’

a zero measure set in Q corresponds to a zero measure set in 3,
the set of angles 3 such that there exists C(3) > 0 such that

. ::::
( UNIVERSITE
/8 COTED'AZUR

for all Q € Z\{0}

C
|P/Q — cos? 3| > Q2

is of full measure.
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Proof of the first diophantine Lemma - continued

For each Q there corresponds a finite set {z;}, hence a finite set
{0(z;)}, so that the set of o € (0, 7/6) such that there exists
C'(«) and

C'(a)

|P/Q — cos*(a — 6(2))| > Q2

for all Q € Z\{0}

is, for each @, the intersection of the sets above for a finite
number of 6(z;). This set is then also of full measure.

A simple study of hyperbolas y? — w? = i% and an estimate of
the distance to the asymptote for w = 1, implies that

\/g — | cos(a — 0)|

Then

C/ UN\VERS\TE

lg1 — 1+ /Qcos(a — 0(z))| > 2032

and, since @ < 3|z|*, the Lemma follows.

!/

> 207 for @ large enough.
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Proof of the 2nd diophantine Lemma

7 =+/3tana/2,
3—72\" 372\ 67
o) = s ¥ a0(20) v (52) 7 (450)
ey 3471 3471 3471
B Q(a,7)
B+ T

It is sufficient to consider the "bad 7's” such that |Q(a, )| < ﬁv
Q(a, -) polynomial of degree 2d not identical to 0, with integer
coefficients

Qa.m) = (a+ Y (~1)"an0)M1...20(7 — 7).

1<n<d

UNIVERSITE
COTED'AZUR

there exists j(7) such that

‘T - 7—j(7')|2d < ‘Q(a77)|
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1/2d
in all cases, the bad 7's satisfy [T — 7| < (ﬁ) . Summing
for j = 1,...2d, their measure |d7| is bounded by

1/2d
\5T\<4d<| ‘> .

Hence the measure of bad « , for a fixed:

5 8dc1/2d
\/_| |_ \/’| ‘// 2d)°

We now count the number of coefficients a of polynomials
corresponding to |a|. This number is bounded by (2[a|)(2d+1),
Hence the measure of the set of bad o's for all a € Z(29+1)\ {0}
with a fixed norm |a| is bounded by

0| <

UNIVERSITE

dC1/2d22—2d COTE PAZUR
\/§‘a|//(2d)—(2d+l) :
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