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Parc Valrose, F-06108 Nice Cedex02

Collaboration with B.Braaksma (Groningen)

G. Iooss quasipatterns



Quasipatterns experiments

Experiment of Faraday type. Kudrolli, Pier, Gollub 1998
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Steady Bénard - Rayleigh system between two horizontal
planes

V · ∇V + ∇p = P(θez + R−1/2∆V ),

V · ∇θ = R−1/2∆θ + V · ez ,

∇ · V = 0.

Boundary Conditions: v (z) = θ = 0 in z = 0, 1.
either ”rigid - rigid”: V (H) = 0 in z = 0, 1,

or ”rigid - free”:V (H) = 0 in z = 0, ∂V (H)

∂z
= 0 in z = 1,

or ”free - rigid”: ∂V (H)

∂z
= 0 in z = 0,V (H) = 0 in z = 1.

We do not consider the ”free-free” case: ∂V (H)

∂z
= 0 in z = 0, 1.

We choose to look for bifurcating solutions, quasiperiodic in
x ∈ R2, invariant under rotations of angle π/q.
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Quasilattices

u = Σk∈Γu
(k)e ik·x, u(−k) = u(k)

Γ = {k =
∑

j=1,...2q

mjkj , m ∈ N2q, |kj | = kc , (kj , kj+1) = π/q}

For q = 1, 2, 3 Γ is a lattice leading to a periodic pattern
See V.Yudovich et al (1963-67), W.Velte (1964-69),
K.Kirchgässner et al (1967-73), P.Rabinowitz (1968)

For q ≥ 4 Γ is a quasilattice leading to a quasipattern

k1

k2

k3

k4

k5

k6

k7

k8

Example q = 4, the 8 wavevectors which form the basis of the quasilattice
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Diophantine estimate

Q vector space span{kj ; j = 1, ..2q} has dimension d ,
d/2 = l0 + 1 ≤ q/2 is the degree of the minimal Polynomial for
the algebraic integer ω = 2cos π/q (coef in Z and first coef = 1).

k = Σ2q
j=1mjkj =

1

d
Σd

s=1m
∗
sk

∗
s , m∗ = (m∗

1, ..,m
∗
d ) ∈ Zd

Nk = Σd
s=1|m∗

s |

for q = 4, 5, 6, ω =
√

2,
1 +

√
5

2
,
√

3, l0 = 1, d = 4

for q = 7, 9, l0 = 2, d = 6,

for q = 8, 10, 12, l0 = 3, d = 8, for q = 11, l0 = 4, d = 10....

For q = 4, 5, ..., 12 then d = 1 and k∗s = ks , s = 1, ..., d .
In all cases, there exists c > 0 such that

(|k|2 − k2
c )2 ≥ c(1 + N2

k )−2l0 , if k 6= kj , j = 1, ..2q
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Suitable formulation

Hilbert space for the 4-components vector field u = (V , θ) :

Ks = {u = (V , θ)(x, z) =
∑

k∈Γ

uk(z)e ik·x;∇ · V = 0, vz |z=0,1 = 0,

∑

k∈Γ

(
(1 + N2

k )s ||uk||2L2(0,1)

)
< ∞}

For s > d/2, λ := R−1/2 > 0, finding a solution u ∈ Ks of

λu −Au + B(u, u) = 0,

is equivalent to find a classical solution of Bénard-Rayleigh system.
In Ks ,A is linear bounded, selfadjoint , B is quadratic, bounded.
Operators A and B commute with Rφ defined by

Rφu = (RφV (R−φx, z), θ(R−φx, z))

We are interested by quasipatterns solutions of the problem which
are invariant under Rπ/q

G. Iooss quasipatterns



Criticality

Study of the linear equation :

(A− λ)u = G ∈ Ks

comes back to the study made by V.Yudovich (1966) in the
periodic case, for any wave number |k|.

k c k |  | 

λ

0

0λ
2 

k |  | 0λ ( ) 

2 
k |  | nλ ( ) , n>0

0λ -δ
0

positive eigenvalues of A
Spectrum of A: real interval [−λ0, λ0]
λ = λ0 largest e.v. Ker(A− λ0) spanned by

ξj = Rπ(j−1)
q

(
Ûk1

(z)e ik1·x
)

, j = 1, 2, ..., 2q, with |k1| = kc
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Pseudo-inverse of (A− λ0)

(A− λ0)u = G ∈ Ks

Assume d2λ0
d|k|2

|kc
6= 0.

For G satisfying compatibility conditions 〈G , ξj〉 = 0, j = 1, ..., 2q

||uk||0 ≤ c(|k|2)
(|k|2 − k2

c )2
||Gk||0, k ∈ Γ except kj , j = 1, 2, ..., 2q

c(|k|2) is analytic and O(|k|4) as |k|2 tends towards ∞

diophantine estimate: 1
(|k|2−k2

c )2
≤ C (1 + N2

k )2l0 for k 6= kj
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Formal series - Approximate solution

(A− λ0)u = −µu + B(u, u), λ = λ0 − µ

u =
∑

n≥1

εnun, , µ =
∑

n≥1

εnµn, with un ∈ Ks , 〈un, u1〉0 = 0, n ≥ 2

(A− λ0)u1 = 0,

(A− λ0)u2 = −µ1u1 + B(u1, u1)

(A− λ0)u3 = −µ1u2 − µ2u1 + 2B(u1, u2).

u1 =
∑

1≤j≤2q

ξj , invariant under rotation Rπ/q, spans ker(A − λ0)

〈B(u1, u1), u1〉0 = 0, implies µ1 = 0.

µ2〈u1, u1〉0 = 〈2B(u1, u2), u1〉0 = −〈(A− λ0)u2, u2〉0 > 0, ....

Each step involves the pseudo-inverse ˜(A− λ0)
−1

, implying only
Gevrey series for

∑
n≥1 εnun and

∑
n≥1 εnµn.
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New formulation

Idea: We decompose the system, as usual in bifurcation problems.
The range equation contains the small divisor problem, we hope to
use a parameter µ̃ able to move the whole spectrum of the
linearized operator as this is used by Berti, Bolle, Procesi (2010).

u = uε + h(ε, µ′) + ε4ṽ , µ = µε + ε3µ′,

uε = εu1 + ε2u2 + ε3u3 + ε4u4, ṽ ∈ {u1}⊥ ∩ Ks

µε = ε2µ2 + ε3µ3, µ̃ = ε3µ′

Range equ. Lε,eµṽ + g(ε, µ̃) − ε4Q0B(ṽ , ṽ) = 0,

Bifurc. equ. µ̃ − ε4µ4 + O[ε3(ε + ||ṽ ||)2] = 0

Lε,eµ := Q0(A− λ0) + µ̃I + Rε,eµ

Lε,eµ is analytic while g(ε, µ̃) is only C 2 in (ε, µ̃).
Main difficulty: Solve the Range equation with respect to ṽ
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Useful estimates

For |ε| ≤ ε0, |µ̃| ≤ ε0, v ∈ Ks , s ≥ 0

||Rε,eµv ||s ≤ csε||v ||s ,
||∂eµRε,eµv ||s + ||∂2

eµ2Rε,eµv ||s + ||∂2
εeµRε,eµv ||s ≤ csε

2||v ||s ,
||∂εRε,eµv ||s + ||∂2

ε2Rε,eµv ||s ≤ cs ||v ||s

For s0 > d/2, ||2ε4Q0B(V , v)||s ≤ csε
4(||V ||s0 ||v ||s+||V ||s ||v ||s0).

For |µ̃| ≤ |ε|

||g(ε, µ̃)||s ≤ csε
2, ||∂ε,eµg(ε, µ̃)||s ≤ csε

2,

||∂2
eµ2g(ε, µ̃)||s ≤ cs , ||∂2

ε2g(ε, µ̃)||s ≤ csε
2, ||∂2

εeµg(ε, µ̃)||s ≤ csε
2.
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Splitting by π0

We need to invert

Lε,µ̃,V = Lε,µ̃ − 2ε4Q0B(V , ·)

λ0 − λ0(|k|2) ≥ 0, λ0 − λj(|k|2) > δ0 > 0, j = 1, 2, ...

For ||k| − kc | > δ1, |λ0 − λ0(|k|2)| > δ0/2.
Projection π0: suppresses k ∈ Γ such that ||k| − kc | > δ1

Inverting Lε,µ̃,V equiv to invert L′
ε,µ̃,V :

L
′
ε,eµ,V = π0Q0(A− λ0)Q0π0 + µ̃ + Bε + ε2µ̃Cε,eµ + Rε,eµ,V

Bε, Cε,eµ and Rε,eµ,V depend analytically on their arguments.
For s ≥ s0 > d/2

||Bεv ||s ≤ cε||v ||s , ||Cε,eµv ||s + ||∂eµCε,eµv ||s ≤ c ||v ||s
||Rε,eµ,V v ||s ≤ cε4{||V ||s0 ||v ||s + ||V ||s ||v ||s0},

||∂eµRε,eµ,V v ||s ≤ cε4{||V ||s0 ||v ||s + ||V ||s ||v ||s0}

G. Iooss quasipatterns



Splitting by π0 - continued

k c k |  | 

λ

0 δ1

0λ
2 

k |  | 0λ ( ) 

2 
k |  | j λ ( ) , j>0 

+ - δ1k c k c 

0λ −δ0

positive eigenvalues of A

−λ0

R
δ'

0
-δ0-

/2δ0- 0−2λ
0

Spectrum of π0Q0(A− λ0)Q0π0
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Splitting by ΠN

Now, we truncate with the projection ΠN which
cuts the k such that Nk > N.
This defines the space EN = ΠNπ0Q0Ks

still ∞ - dim, but with an isolated finite group of ”small
eigenvalues” perturbing λ0(|k|2) − λ0,Nk ≤ N.

λ0 − λ0(|k|2) ∼ c((|k|2 − k2
c )2 ≥ c

(1 + N2)2l0
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Estimate of (ΠNL
′
ε,µ̃,V ΠN)−1 in ΠNπ0Q0Ks , N ≤ Mε

Lemma

Let V satisfy ||V ||s0 ≤ 1, and assume (ε, µ̃) ∈ [0, ε0] × [−ε, ε].

Then for N ≤ Mε, where Mε =
[

c2

ε1/4l0

]
, we have the following

estimate for s0 > d/2

||(ΠNL
′
ε,µ̃,V ΠN)−1v ||s ≤ 2c(1 + N2)2l0{||v ||s + ||V ||s ||v ||s0)},

||(ΠNLε,µ̃,V ΠN)−1v ||s ≤ 2cc ′(1 + N2)2l0{||v ||s + ||V ||s ||v ||s0)}.

Hint: Classical perturbation theory, based on the smallness of
ε(1 + N2)2l0 for N ≤ Mε
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Good set of µ̃

For M > 0, s0 > d/2 define

U (N)
M : = {u ∈ C 2([0, ε1] × [−ε, ε],EN ); u(0, µ̃) = 0,

||u||s0 ≤ 1, ||∂j
ε,µ̃u||s0 ≤ M, j = 1, 2}

For V ∈ U (N)
M let us denote L

(N,V )
ε,µ̃ =: ΠNL′

ε,µ̃,V (ε,µ̃)ΠN ,

L
(N,V )
ε,eµ = ˜(A− λ0)N + µ̃Id + B

′(N)
ε + ε2

C
′(N)
ε,eµ ,

˜(A− λ0)N =: ΠNπ0Q0(A− λ0)Q0π0ΠN

Now define the selfadjoint operator

L
(N,V )
ε,eµ L

(N,V )∗
ε,eµ = µ̃2Id + B̃

(N)
ε + C̃

(N)
ε,eµ
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L
(N,V )
ε,eµ L

(N,V )∗
ε,eµ = µ̃2Id + B̃

(N)
ε + C̃

(N)
ε,eµ

B̃
(N)
ε = ˜(A− λ0)

2

N + B
′(N)
ε

˜(A− λ0)N + ˜(A− λ0)NB
′(N)∗
ε +

+B
′(N)
ε B

′(N)∗
ε ,

C̃
(N)
ε,eµ = µ̃[2 ˜(A− λ0)N + B

′(N)
ε + B

′(N)∗
ε ] +

+ε2[ ˜(A− λ0)N + B
′(N)
ε + µ̃]C

′(N)∗
ε,eµ +

+ε2
C
′(N)
ε,eµ [ ˜(A− λ0)N + B

′(N)∗
ε + µ̃] + ε4

C
′(N)
ε,eµ C

′(N)∗
ε,eµ ,
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Good set of µ̃ (continued)

For V ∈ U (N)
M

, then define the ”good” set of µ̃ :

G (N)
ε,γ (V ) =: {µ̃ ∈ [−ε, ε]; for all v ∈ EN ,

||ΠNL
′
ε,µ̃,V ΠN)−1v ||s0 ≤

Nτ

γ
||v ||s0}.

Consequence: if µ̃ ∈ G
(N)
ε,γ (V ), then L

(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ has all its

eigenvalues ≥ ( γ
Nτ )2 in EN .

Notice that dim(EN) = N ≤ bNd .
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Bad set of µ̃

For V ∈ U (N)
M define the ”bad” set of µ̃

B (N)
ε,γ (V ) =: {µ̃ ∈ [−ε, ε]; there exists at least one eigenvalue σj of

L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ , such that 0 ≤ σj ≤ (

γ

Nτ
)2}.

the eigenvalues of L
(N,V )
ε,eµ L

(N,V )∗
ε,eµ take the form

σj(ε, µ̃) = µ̃2 + fj(ε, µ̃), fj is C 2 in µ̃, and

|fj(ε2, µ̃2) − fj(ε1, µ̃1)| ≤ c(δ′0 + ε)(|ε2 − ε1| + |µ̃2 − µ̃1|.
Assumption For µ̃ ∈ [−ε, ε], there exists 0 < k < 2 with

|∂eµfj(ε, µ̃2) − ∂eµfj(ε, µ̃1)| ≤ k|µ̃2 − µ̃1|.

Lemma

Assume that N > Mε, d/2 < s0, (ε, µ̃) ∈ (0, ε1] × [−ε, ε], and

V ∈ U (N)
M . Then there exists C > 0, such that the measure of

B
(N)
ε,γ (V ) is bounded by Cγ/Nτ−d
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Bad set of µ̃ (proof of the bound)

Notice that in the Assumption above, we accept to loose some
regularity for the second derivative of σj with respect to µ̃. Up to
now we have no mean to control this loss.
For a ”bad” µ̃, there exists j such that

0 ≤ µ̃2 + fj(ε, µ̃) < η2, η = γ/(Nτ )

define φε(µ̃) =: µ̃2 + fj(ε, µ̃)

∂eµφε(µ̃) = 2µ̃ + ∂eµfj(ε, µ̃)

increasing function of µ̃, cancelling at a unique µ̃ = µ̃m.
Since φε(µ̃

±) = η2, then the convexity of φε implies

µ̃+ − µ̃− ≤ 2η√
(1 − k/2)

Summing up for all eigenvalues, the measure of the set of bad µ̃ is
bounded by

2bγ√
(1 − k/2)Nτ−d
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Estimate of (ΠNL
′
ε,µ̃,V ΠN)−1 in ΠNπ0Q0Ks0

Lemma

Let d = 2(l0 + 1) be the dimension of the Q- vector space spanned
by the wave vectors kj , j = 1, ..., 2q, and τ > d + 2 + 24l0. Let N

be ≥ 1. Assume moreover that 0 < γ ≤ γ̃ = c′

c22l0+1 ,

(ǫ, µ̃,V ) ∈ [0, ǫ1] × [−ε, ε] × U (N)
M with µ̃ ∈ G

(N)
ε,γ (V ), ǫ1 small

enough. For s0 > d
2 , there exists c ′ > 0 independent of N and γ,

such that for any v ∈ EN , we have

||(ΠNL
′
ε,eµ,V (ε,eµ)ΠN)−1v ||s0 ≤ c ′

Nτ

γ
||v ||s0

and the same estimate holds for (ΠNLε,eµ,V (ε,eµ)ΠN)−1.

We need an estimate in all Ks , with an exponent on N
independent of s. We may proceed as for the Swift-Hohenberg
PDE, in adapting Bourgain 1995, Craig 2000, bert-Bolle 2010.
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Separation property of the singular set

Singular set in Zd :
S(N) := {z ∈ Γ(N); (λ0 − λ0(|k(z)|2) < ρ, k(z) ∈ Γ(N)} with

k(z) = d
−1

d∑

s=1

zsk
∗
s , z = (z1, ..., zs ) ∈ Zd

Γ(N) := {z ∈ Zd ; 0≤|z| ≤ N, k(z) ∈ Γ\{kj , j = 1, ..., 2q}}.

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010)
There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then
S(N) =

⋃
α∈A Ωα is a union of disjoint clusters Ωα satisfying :

(H1), for all α ∈ A, Mα ≤ 2mα where Mα = maxz∈Ωα |z| and
mα = minz∈Ωα |z|;
(H2), there exists δ = δ(d) ∈]0, 1[ independent of N such
that if α, β ∈ A, α 6= β then

dist(Ωα,Ωβ) := minz∈Ωα,z′∈Ωβ
|z − z′| ≥ (Mα+Mβ)δ

2
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Estimate of (ΠNL
′
ε,µ̃,V ΠN)−1 in ΠNπ0Q0Ks for all

s ∈ [s0, s]

Lemma

Let d = 2(l0 + 1) be the dimension of the Q- vector space spanned
by the wave vectors kj , j = 1, ..., 2q, and τ > d + 2 + 24l0 as in

previous Lemma. Assume moreover that 0 < γ ≤ γ̃ = c′

c22l0+1 , and

(ǫ, µ̃,V ) ∈ [0, ǫ1] × [−ε, ε] × U (N)
M

, µ̃ ∈ G(N)
ǫ,γ (V ) = ∩K≤NG

(K)
ε,γ (V ),

ǫ1 small enough. There exists s0(d , δ, τ) > d
2 where δ is the

number introduced in separation property (H2), and let s > s0.
There exists m(d , δ, τ) such that for all s ∈ [s0, s ] there exists
K (s) > 0 such that for any h ∈ ΠNπ0Q0K0,s , we have

||(ΠNL
′
ε,eµ,V (ε,eµ)ΠN)−1h||s ≤ K (s)

Nm

γ
(||h||s + ||V (ǫ, µ̃)||s ||h||s0),

and the same estimate holds for (ΠNLε,eµ,V (ε,eµ)ΠN)−1.

Main ingredient for applying the Nash-Moser iteration process.
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Resolution of the Range equation

Uses Nash-Moser method, following Berti-Bolle-Procesi 2010 with
a complement for having a solution v ∈ Ks0 of the range equation,
which is C 2.

F(ǫ, µ̃, v) =: Lε,µ̃v + g(ε, µ̃) − ε4Q0B(v , v) = 0,

Theorem

Let s0 and γ̃ be as above. Then for all 0 < γ < γ̃ there exist
ǫ2(γ) ∈ [0, ǫ0] and a C 2−map
V : (0, ǫ2(γ)) × [−ε, ε] → ΠNπ0Q0Ks0 , such that V (0, µ̃) = 0,
||V ||s0 ≤ 1, ||∂eµV ||s0 ≤ M, ||∂2

eµV ||s0 ≤ M, and if ǫ ∈ (0, ǫ2(γ)),
µ̃ ∈ ([−ε, ε] \ Cǫ,γ), the function V (ǫ, µ̃) is solution of the range
equation F(ǫ, µ̃, v) = 0. Here Cǫ,γ is a subset of [−ε, ε] which is
Hl̈der continuous in ε, and has Lebesgue-measure less than Cγǫ6

for some constant C > 0 independent of ǫ and γ.

Hint: Proof adapted from Berti, Bolle, Procesi 2010.
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Resolution of the Bifurcation equation

µ̃ − ε4µ4 + O[ε3(ε + ||ṽ ||)2] = 0

ṽ = V (ε, µ̃) − h(ε, µ̃)

We solve this bifurcation equation with respect to µ̃:

µ̃ = ǫ4µ4 + ε5h̃(ε), ”curve” (H) , h̃ ∈ C 1

We need to satisfy that (ε, µ̃) lies in the good set, defined in the
Theorem above.

G. Iooss quasipatterns



Bad Strips

Definition

For N and V fixed, a set of ”bad intervals” is defined by

BSN(V ) = {(ε, µ̃) ∈ [0, ε2] × [−ε3, ε3]; µ̃ ∈ I (N)
ε },

where I
(N)
ε is one of the intervals (µ̃−

j (ε), µ̃+
j (ε)),or with one of the

bounds replaced by ±ε3, as defined above.

BSN(V ) is a union of thin Hölder strips in the plane (ε, µ̃). For the
proof of the range theorem, we choose µ̃ outside of
∪n∈NBSNn

(Vn−1) where Nn = [N0(γ)]2
n

, and Vn are the successive
points in the Newton iteration process.

ε

(H)

0

μ
~
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Resolution of the Bifurcation equation- Transversality
condition

We need a ”transversality condition” to obtain a bound for the bad
set of ε corresponding to the intersection of ∪ε∈(0,ε2)Cε,γ with (H):

The slopes t(ε) of the curves µ̃±
j (ε), are such that there exists

c > 0 independent of (N, ε), with cε2 < |t(ε)|.

0

(H)

ε

ε3
μ
~

(H)

bad strip

δε
slope t

slope ε3

μ
~

ε

δμ~
δμ~
|t|

Sketch of the ”bad set” in the plane (ε, µ̃) and its intersection by
the ”line” (H) given by the bifurcation equation.
The drawing on the right side explains the bound for the measure
of δε ≤ δµ̃/cε2 ≤ Cε4.
Notice that, as for the Swift-Hohenberg equation, we can weaken
this transversality condition, so that the true hypothesis is that the
curves µ̃±

j (ε) are not flat.
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Final result

Theorem

Let q ≥ 4 be an integer. Assume that Hypothesis λ
′′

0 6= 0 holds
and that transversality condition above is verified. Moreover
assume the convexity condition above, on small eigenvalues σj .
Then, there exists s0 > d/2, ε0 > 0, such that, for any s ≥ s0,
there exists a 1-dimensional set Λε centered on µ4, with the
following property : for any |ε| < ε0, belonging to a set of
asymptotically full measure as ε → 0 there exist µε ∈ Λε, such that
the steady Bénard - Rayleigh system admits a quasipattern
solution (u, λ), C 1 in ε, u ∈ Ks , λ = λ0 − µ2ε

2 − µ3ε
3 − ε4µε

invariant under rotations of angle π/q of the form

u = εu1 + ε2u2 + ε3u3 + ε4u4 + O(ε5),

where µ2 > 0, and coefficients µ2, µ4, uj occurring in formulae
above, are the ones defined in the truncated asymptotic expansion
of the solution.
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