Existence of quasipatterns, solutions of the Bénard - Rayleigh convection problem

Gérard looss

IUF, Université de Nice, Laboratoire J.A.Dieudonné,

Parc Valrose, F-06108 Nice Cedex02

Collaboration with B.Braaksma (Groningen)

Quasipatterns experiments

Experiment of Faraday type. Kudrolli, Pier, Gollub 1998

Steady Bénard - Rayleigh system between two horizontal planes

$$
\begin{aligned}
V \cdot \nabla V+\nabla p & =\mathcal{P}\left(\theta e_{z}+\mathcal{R}^{-1 / 2} \Delta V\right), \\
V \cdot \nabla \theta & =\mathcal{R}^{-1 / 2} \Delta \theta+V \cdot e_{z}, \\
\nabla \cdot V & =0 .
\end{aligned}
$$

Boundary Conditions: $v^{(z)}=\theta=0$ in $z=0,1$. either "rigid - rigid": $V^{(H)}=0$ in $z=0,1$, or " rigid - free" $: V^{(H)}=0$ in $z=0, \frac{\partial V^{(H)}}{\partial z}=0$ in $z=1$, or "free - rigid": $\frac{\partial V^{(H)}}{\partial z}=0$ in $z=0, V^{(H)}=0$ in $z=1$.
We do not consider the "free-free" case: $\frac{\partial V^{(H)}}{\partial z}=0$ in $z=0,1$.
We choose to look for bifurcating solutions, quasiperiodic in $x \in \mathbb{R}^{2}$, invariant under rotations of angle π / q.

Quasilattices

$$
\begin{gathered}
u=\Sigma_{\mathbf{k} \in \Gamma} u^{(\mathbf{k})} e^{i \mathbf{k} \cdot \mathbf{x}}, u^{(-\mathbf{k})}=\bar{u}^{(\mathbf{k})} \\
\Gamma=\left\{\mathbf{k}=\sum_{j=1, \ldots 2 q} m_{j} \mathbf{k}_{j}, \quad m \in \mathbb{N}^{2 q},\left|\mathbf{k}_{j}\right|=k_{c},\left(\mathbf{k}_{j}, \mathbf{k}_{j+1}\right)=\pi / q\right\}
\end{gathered}
$$

For $q=1,2,3 \quad \Gamma$ is a lattice leading to a periodic pattern See V.Yudovich et al (1963-67), W.Velte (1964-69),
K.Kirchgässner et al (1967-73), P.Rabinowitz (1968)

For $q \geq 4 \Gamma$ is a quasilattice leading to a quasipattern

Example $q=4$, the 8 wavevectors which form the basis of the quasilattice

Diophantine estimate

\mathbb{Q} vector space $\operatorname{span}\left\{\mathbf{k}_{j} ; j=1, . .2 q\right\}$ has dimension d, $d / 2=I_{0}+1 \leq q / 2$ is the degree of the minimal Polynomial for the algebraic integer $\omega=2 \cos \pi / q$ (coef in \mathbb{Z} and first coef $=1$).

$$
\begin{gathered}
\mathbf{k}=\sum_{j=1}^{2 q} m_{j} \mathbf{k}_{j}=\frac{1}{\mathfrak{d}} \sum_{s=1}^{d} m_{s}^{*} \mathbf{k}_{s}^{*}, \mathbf{m}^{*}=\left(m_{1}^{*}, . ., m_{d}^{*}\right) \in \mathbb{Z}^{d} \\
N_{\mathbf{k}}=\sum_{s=1}^{d}\left|m_{s}^{*}\right|
\end{gathered}
$$

$$
\text { for } q=4,5,6, \quad \omega=\sqrt{2}, \frac{1+\sqrt{5}}{2}, \sqrt{3}, \iota_{0}=1, d=4
$$

$$
\text { for } q=7,9, \quad I_{0}=2, d=6
$$

$$
\text { for } q=8,10,12, I_{0}=3, d=8, \text { for } q=11, I_{0}=4, d=10 \ldots
$$

For $q=4,5, \ldots, 12$ then $\mathfrak{d}=1$ and $\mathbf{k}_{s}^{*}=\mathbf{k}_{s}, s=1, \ldots, d$.
In all cases, there exists $c>0$ such that

$$
\left(|\mathbf{k}|^{2}-k_{c}^{2}\right)^{2} \geq c\left(1+N_{\mathbf{k}}^{2}\right)^{-2 I_{0}}, \text { if } \mathbf{k} \neq \mathbf{k}_{j}, j=1, . .2 q
$$

Suitable formulation

Hilbert space for the 4-components vector field $u=(V, \theta)$:

$$
\begin{aligned}
\mathcal{K}_{s}= & \left\{u=(V, \theta)(\mathbf{x}, z)=\sum_{\mathbf{k} \in \Gamma} u_{\mathbf{k}}(z) e^{i \mathbf{k} \cdot \mathbf{x}} ; \nabla \cdot V=0,\left.v_{z}\right|_{z=0,1}=0,\right. \\
& \left.\sum_{\mathbf{k} \in \Gamma}\left(\left(1+N_{\mathbf{k}}^{2}\right)^{s}\left\|u_{\mathbf{k}}\right\|_{L^{2}(0,1)}^{2}\right)<\infty\right\}
\end{aligned}
$$

For $s>d / 2, \lambda:=\mathcal{R}^{-1 / 2}>0$, finding a solution $u \in \mathcal{K}_{s}$ of

$$
\lambda u-\mathcal{A} u+\mathcal{B}(u, u)=0
$$

is equivalent to find a classical solution of Bénard-Rayleigh system. In $\mathcal{K}_{s}, \mathcal{A}$ is linear bounded, selfadjoint, \mathcal{B} is quadratic, bounded.
Operators \mathcal{A} and \mathcal{B} commute with \mathbf{R}_{ϕ} defined by

$$
\mathbf{R}_{\phi} u=\left(R_{\phi} V\left(R_{-\phi} \mathbf{x}, z\right), \theta\left(R_{-\phi} \mathbf{x}, z\right)\right)
$$

We are interested by quasipatterns solutions of the problem which are invariant under $\mathbf{R}_{\pi / q}$

Criticality

Study of the linear equation :

$$
(\mathcal{A}-\lambda) u=G \in \mathcal{K}_{s}
$$

comes back to the study made by V.Yudovich (1966) in the periodic case, for any wave number $|\mathbf{k}|$.

positive eigenvalues of \mathcal{A}
Spectrum of \mathcal{A} : real interval $\left[-\lambda_{0}, \lambda_{0}\right]$
$\lambda=\lambda_{0}$ largest e.v. $\operatorname{Ker}\left(\mathcal{A}-\lambda_{0}\right)$ spanned by
$\boldsymbol{\xi}_{j}=\mathbf{R}_{\frac{\pi(j-1)}{q}}\left(\widehat{U}_{\mathbf{k}_{1}}(z) e^{i \mathbf{k}_{1} \cdot \mathbf{x}}\right), j=1,2, \ldots, 2 q$, with $\left|\mathbf{k}_{1}\right|=k_{c}$

Pseudo-inverse of $\left(\mathcal{A}-\lambda_{0}\right)$

$$
\left(\mathcal{A}-\lambda_{0}\right) u=G \in \mathcal{K}_{s}
$$

Assume $\left.\frac{d^{2} \lambda_{0}}{d \mid \mathbf{k}^{2}}\right|_{k_{c}} \neq 0$.
For G satisfying compatibility conditions $\left\langle G, \xi_{j}\right\rangle=0, j=1, \ldots, 2 q$

$$
\left\|u_{\mathbf{k}}\right\|_{0} \leq \frac{c\left(|\mathbf{k}|^{2}\right)}{\left(|\mathbf{k}|^{2}-k_{c}^{2}\right)^{2}}\left\|G_{\mathbf{k}}\right\|_{0}, \mathbf{k} \in \Gamma \text { except } \mathbf{k}_{j}, j=1,2, \ldots, 2 q
$$

$c\left(|\mathbf{k}|^{2}\right)$ is analytic and $\mathcal{O}\left(|\mathbf{k}|^{4}\right)$ as $|\mathbf{k}|^{2}$ tends towards ∞
diophantine estimate: $\frac{1}{\left(|\mathbf{k}|^{2}-k_{c}^{2}\right)^{2}} \leq C\left(1+N_{\mathbf{k}}^{2}\right)^{2 / 0}$ for $\mathbf{k} \neq \mathbf{k}_{j}$

$$
\begin{gathered}
\left(\mathcal{A}-\lambda_{0}\right) u=-\mu u+\mathcal{B}(u, u), \lambda=\lambda_{0}-\mu \\
u=\sum_{n \geq 1} \varepsilon^{n} u_{n}, \mu=\sum_{n \geq 1} \varepsilon^{n} \mu_{n}, \text { with } u_{n} \in \mathcal{K}_{s},\left\langle u_{n}, u_{1}\right\rangle_{0}=0, n \geq 2 \\
\left(\mathcal{A}-\lambda_{0}\right) u_{1}=0, \\
\left(\mathcal{A}-\lambda_{0}\right) u_{2}=-\mu_{1} u_{1}+\mathcal{B}\left(u_{1}, u_{1}\right) \\
\left(\mathcal{A}-\lambda_{0}\right) u_{3}=-\mu_{1} u_{2}-\mu_{2} u_{1}+2 \mathcal{B}\left(u_{1}, u_{2}\right) .
\end{gathered}
$$

$u_{1}=\sum_{1 \leq j \leq 2 q} \xi_{j}$, invariant under rotation $\mathbf{R}_{\pi / q}$, spans $\operatorname{ker}\left(\mathcal{A}-\lambda_{0}\right)$

$$
\begin{aligned}
& \left\langle\mathcal{B}\left(u_{1}, u_{1}\right), u_{1}\right\rangle_{0}=0 \text {, implies } \mu_{1}=0 .
\end{aligned}
$$

Each step involves the pseudo-inverse $\left(\widetilde{\mathcal{A - \lambda _ { 0 }}}\right)^{-1}$, implying only Gevrey series for $\sum_{n \geq 1} \varepsilon^{n} u_{n}$ and $\sum_{n \geq 1} \varepsilon^{n} \mu_{n}$.

New formulation

Idea: We decompose the system, as usual in bifurcation problems. The range equation contains the small divisor problem, we hope to use a parameter $\widetilde{\mu}$ able to move the whole spectrum of the linearized operator as this is used by Berti, Bolle, Procesi (2010).

$$
\begin{aligned}
u & =u_{\varepsilon}+h\left(\varepsilon, \mu^{\prime}\right)+\varepsilon^{4} \widetilde{v}, \mu=\mu_{\varepsilon}+\varepsilon^{3} \mu^{\prime} \\
u_{\varepsilon} & =\varepsilon u_{1}+\varepsilon^{2} u_{2}+\varepsilon^{3} u_{3}+\varepsilon^{4} u_{4}, \widetilde{v} \in\left\{u_{1}\right\}^{\perp} \cap \mathcal{K}_{s} \\
\mu_{\varepsilon} & =\varepsilon^{2} \mu_{2}+\varepsilon^{3} \mu_{3}, \widetilde{\mu}=\varepsilon^{3} \mu^{\prime}
\end{aligned}
$$

Range equ. $\mathfrak{L}_{\varepsilon, \widetilde{\mu}} \tilde{v}+g(\varepsilon, \widetilde{\mu})-\varepsilon^{4} \mathbf{Q}_{0} \mathcal{B}(\tilde{v}, \tilde{v})=0$, Bifurc. equ. $\widetilde{\mu}-\varepsilon^{4} \mu_{4}+\mathcal{O}\left[\varepsilon^{3}(\varepsilon+\|\tilde{v}\|)^{2}\right]=0$

$$
\mathfrak{L}_{\varepsilon, \widetilde{\mu}}:=\mathbf{Q}_{0}\left(\mathcal{A}-\lambda_{0}\right)+\widetilde{\mu} \mathbb{I}+\mathcal{R}_{\varepsilon, \widetilde{\mu}}
$$

$\mathfrak{L}_{\varepsilon, \widetilde{\mu}}$ is analytic while $g(\varepsilon, \widetilde{\mu})$ is only C^{2} in $(\varepsilon, \widetilde{\mu})$.
Main difficulty: Solve the Range equation with respect to \tilde{v}

Useful estimates

For $|\varepsilon| \leq \varepsilon_{0},|\widetilde{\mu}| \leq \varepsilon_{0}, v \in \mathcal{K}_{s}, s \geq 0$

$$
\begin{aligned}
\left\|\mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s} & \leq c_{s} \varepsilon\|v\|_{s}, \\
\left\|\partial_{\widetilde{\mu}} \mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s}+\left\|\partial_{\widetilde{\mu}^{2}}^{2} \mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s}+\left\|\partial_{\varepsilon \widetilde{\mu}}^{2} \mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s} & \leq c_{s} \varepsilon^{2}\|v\|_{s}, \\
\left\|\partial_{\varepsilon} \mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s}+\left\|\partial_{\varepsilon^{2}}^{2} \mathcal{R}_{\varepsilon, \widetilde{\mu}} v\right\|_{s} & \leq c_{s}\|v\|_{s}
\end{aligned}
$$

For $s_{0}>d / 2,\left\|2 \varepsilon^{4} \mathbf{Q}_{0} \mathcal{B}(V, v)\right\| \|_{s} \leq c_{s} \varepsilon^{4}\left(\|V\|_{s_{0}}\|v\|_{s}+\|V\|_{s}\|v\|_{s_{0}}\right)$.
For $|\widetilde{\mu}| \leq|\varepsilon|$

$$
\begin{aligned}
\|g(\varepsilon, \widetilde{\mu})\|_{s} & \leq c_{s} \varepsilon^{2},\left\|\partial_{\varepsilon, \widetilde{\mu}} g(\varepsilon, \widetilde{\mu})\right\|_{s} \leq c_{s} \varepsilon^{2}, \\
\left\|\partial_{\widetilde{\mu}^{2}}^{2} g(\varepsilon, \widetilde{\mu})\right\|_{s} & \leq c_{s},\left\|\partial_{\varepsilon^{2}}^{2} g(\varepsilon, \widetilde{\mu})\right\|_{s} \leq c_{s} \varepsilon^{2},\left\|\partial_{\varepsilon \widetilde{\mu}}^{2} g(\varepsilon, \widetilde{\mu})\right\|_{s} \leq c_{s} \varepsilon^{2},
\end{aligned}
$$

Splitting by π_{0}

We need to invert

$$
\begin{gathered}
\mathfrak{L}_{\varepsilon, \tilde{\mu}, V}=\mathfrak{L}_{\varepsilon, \tilde{\mu}}-2 \varepsilon^{4} \mathbf{Q}_{0} \mathcal{B}(V, \cdot) \\
\lambda_{0}-\lambda_{0}\left(|\mathbf{k}|^{2}\right) \geq 0, \quad \lambda_{0}-\lambda_{j}\left(|\mathbf{k}|^{2}\right)>\delta_{0}>0, j=1,2, \ldots
\end{gathered}
$$

For $\left||\mathbf{k}|-k_{c}\right|>\delta_{1},\left|\lambda_{0}-\lambda_{0}\left(|\mathbf{k}|^{2}\right)\right|>\delta_{0} / 2$.
Projection π_{0} : suppresses $\mathbf{k} \in \Gamma$ such that $\left||\mathbf{k}|-k_{c}\right|>\delta_{1}$ Inverting $\mathfrak{L}_{\varepsilon, \tilde{\mu}, V}$ equiv to invert $\mathfrak{L}_{\varepsilon, \tilde{\mu}, V}^{\prime}$:

$$
\mathfrak{L}_{\varepsilon, \widetilde{\mu}, V}^{\prime}=\pi_{0} \mathbf{Q}_{0}\left(\mathcal{A}-\lambda_{0}\right) \mathbf{Q}_{0} \pi_{0}+\widetilde{\mu}+\mathfrak{B}_{\varepsilon}+\varepsilon^{2} \widetilde{\mu} \mathfrak{C}_{\varepsilon, \widetilde{\mu}}+\mathfrak{R}_{\varepsilon, \widetilde{\mu}, V}
$$

$\mathfrak{B}_{\varepsilon}, \mathfrak{C}_{\varepsilon, \widetilde{\mu}}$ and $\mathfrak{R}_{\varepsilon, \widetilde{\mu}, V}$ depend analytically on their arguments.
For $s \geq s_{0}>d / 2$

$$
\begin{aligned}
& \left\|\mathfrak{B}_{\varepsilon} v\right\|_{s} \leq c \varepsilon\|v\|_{s},\left\|\mathfrak{C}_{\varepsilon, \widetilde{\mu}} v\right\|_{s}+\left\|\partial_{\widetilde{\mu}} \mathfrak{C}_{\varepsilon, \widetilde{\mu}} v\right\|_{s} \leq c\|v\|_{s} \\
& \left\|\Re_{\varepsilon, \widetilde{\mu}, V} v\right\|_{s} \leq c \varepsilon^{4}\left\{\|V\|_{s_{0}}\|v\|_{s}+\|V\|_{s}\|v\|_{s_{0}}\right\}, \\
& \left\|\partial_{\widetilde{\mu}} \mathfrak{R}_{\varepsilon, \widetilde{\mu}, V} v\right\|_{s} \leq c \varepsilon^{4}\left\{\|V\|_{s_{0}}\|v\|_{s}+\|V\|\left\|_{s}\right\| v \|_{s_{0}}\right\}
\end{aligned}
$$

Splitting by π_{0} - continued

positive eigenvalues of \mathcal{A}

Spectrum of $\pi_{0} \mathbf{Q}_{0}\left(\mathcal{A}-\lambda_{0}\right) \mathbf{Q}_{0} \pi_{0}$

Splitting by Π_{N}

Now, we truncate with the projection Π_{N} which cuts the \mathbf{k} such that $N_{\mathrm{k}}>N$.
This defines the space $E_{N}=\Pi_{N} \pi_{0} \mathbf{Q}_{0} \mathcal{K}_{s}$ still ∞ - dim, but with an isolated finite group of "small eigenvalues" perturbing $\lambda_{0}\left(|\mathbf{k}|^{2}\right)-\lambda_{0}, N_{\mathbf{k}} \leq N$.

$$
\lambda_{0}-\lambda_{0}\left(|\mathbf{k}|^{2}\right) \sim c\left(\left(|\mathbf{k}|^{2}-k_{c}^{2}\right)^{2} \geq \frac{c}{\left(1+N^{2}\right)^{21_{0}}}\right.
$$

Estimate of $\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \tilde{\mu}, V}^{\prime} \Pi_{N}\right)^{-1}$ in $\Pi_{N} \pi_{0} \mathbf{Q}_{0} \mathcal{K}_{s}, N \leq M_{\varepsilon}$

Lemma

Let V satisfy $\|V\|_{s_{0}} \leq 1$, and assume $(\varepsilon, \tilde{\mu}) \in\left[0, \varepsilon_{0}\right] \times[-\varepsilon, \varepsilon]$. Then for $N \leq M_{\varepsilon}$, where $M_{\varepsilon}=\left[\frac{c_{2}}{\varepsilon^{1 / 4 q_{0}}}\right]$, we have the following estimate for $s_{0}>d / 2$

$$
\begin{aligned}
& \left.\left\|\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \tilde{\mu}, V}^{\prime} \Pi_{N}\right)^{-1} v\right\|_{s} \leq 2 c\left(1+N^{2}\right)^{2 l_{0}}\left\{\|v\|_{s}+\|V\|_{s}\|v\|_{s_{0}}\right)\right\} \\
& \left.\left\|\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \tilde{\mu}, V} \Pi_{N}\right)^{-1} v\right\|_{s} \leq 2 c c^{\prime}\left(1+N^{2}\right)^{2 l_{0}}\left\{\|v\|_{s}+\|V\|_{s}\|v\|_{s_{0}}\right)\right\}
\end{aligned}
$$

Hint: Classical perturbation theory, based on the smallness of $\varepsilon\left(1+N^{2}\right)^{2 / 0}$ for $N \leq M_{\varepsilon}$

Good set of $\tilde{\mu}$

For $M>0, s_{0}>d / 2$ define

$$
\begin{aligned}
\mathcal{U}_{M}^{(N)}:= & \left\{u \in C^{2}\left(\left[0, \varepsilon_{1}\right] \times[-\varepsilon, \varepsilon], E_{N}\right) ; u(0, \tilde{\mu})=0,\right. \\
& \left.\|u\|_{s_{0}} \leq 1,\left\|\partial_{\varepsilon, \tilde{\mu}}^{j} u\right\|_{s_{0}} \leq M, j=1,2\right\}
\end{aligned}
$$

For $V \in \mathcal{U}_{M}^{(N)}$ let us denote $\mathfrak{L}_{\varepsilon, \tilde{\mu}}^{(N, V)}=: \Pi_{N} \mathfrak{L}_{\varepsilon, \tilde{\mu}, V(\varepsilon, \tilde{\mu})}^{\prime} \Pi_{N}$,

$$
\begin{gathered}
\mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V)}=\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}+\widetilde{\mu} \mathbb{I} d+\mathfrak{B}_{\varepsilon}^{\prime(N)}+\varepsilon^{2} \mathfrak{C}_{\varepsilon, \widetilde{\mu}}^{\prime(N)}, \\
\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}=: \Pi_{N} \pi_{0} \mathbf{Q}_{0}\left(\mathcal{A}-\lambda_{0}\right) \mathbf{Q}_{0} \pi_{0} \Pi_{N}
\end{gathered}
$$

Now define the selfadjoint operator

$$
\mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V)} \mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V) *}=\widetilde{\mu}^{2} \mathbb{I} d+\widetilde{\mathfrak{B}}_{\varepsilon}^{(N)}+\widetilde{\mathfrak{C}}_{\varepsilon, \widetilde{\mu}}^{(N)}
$$

$$
\begin{aligned}
& \mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V)} \mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V) *}=\widetilde{\mu}^{2} \mathbb{I} d+\widetilde{\mathfrak{B}}_{\varepsilon}^{(N)}+\widetilde{\mathfrak{C}}_{\varepsilon, \widetilde{\mu}}^{(N)} \\
& \widetilde{\mathfrak{B}}_{\varepsilon}^{(N)}=\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}^{2}+\mathfrak{B}_{\varepsilon}^{\prime(N)}\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}+\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N} \mathfrak{B}_{\varepsilon}^{\prime(N) *}+ \\
&+\mathfrak{B}_{\varepsilon}^{\prime(N)} \mathfrak{B}_{\varepsilon}^{\prime(N) *} \\
& \widetilde{\widetilde{\mathfrak{C}}_{\varepsilon, \widetilde{\mu}}^{(N)}=} \widetilde{\mu}\left[2\left(\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}+\mathfrak{B}_{\varepsilon}^{\prime(N)}+\mathfrak{B}_{\varepsilon}^{(N) *}\right]+ \\
&\left.+\varepsilon^{2}\left[\widetilde{\left(\left(\mathcal{A}-\lambda_{0}\right.\right.}\right)_{N}+\mathfrak{B}_{\varepsilon}^{\prime(N)}+\widetilde{\mu}\right] \mathfrak{C}_{\varepsilon, \widetilde{\mu}}^{\prime(N) *}+ \\
&\left.+\varepsilon^{2} \mathfrak{C}_{\varepsilon, \widetilde{\mu}}^{\prime(N)}\left[\widetilde{\mathcal{A}-\lambda_{0}}\right)_{N}+\mathfrak{B}_{\varepsilon}^{\prime(N) *}+\widetilde{\mu}\right]+\varepsilon^{4} \mathfrak{C}_{\varepsilon, \widetilde{\mu}}^{\prime(N)} \mathfrak{C}_{\varepsilon, \widetilde{\mu}}^{\prime(N) *}
\end{aligned}
$$

Good set of $\tilde{\mu}$ (continued)

For $V \in \mathcal{U}_{M}^{(N)}$, then define the "good" set of $\tilde{\mu}$:

$$
\begin{aligned}
G_{\varepsilon, \gamma}^{(N)}(V) \quad & =:\left\{\tilde{\mu} \in[-\varepsilon, \varepsilon] ; \text { for all } v \in E_{N},\right. \\
& \left.\left.\| \Pi_{N} \mathfrak{L}_{\varepsilon, \tilde{\mu}, V}^{\prime}, \Pi_{N}\right)^{-1} v\left\|_{s_{0}} \leq \frac{N^{\tau}}{\gamma}\right\| v \|_{s_{0}}\right\} .
\end{aligned}
$$

Consequence: if $\tilde{\mu} \in G_{\varepsilon, \gamma}^{(N)}(V)$, then $\mathfrak{L}_{\varepsilon, \tilde{\mu}}^{(N, V)} \mathfrak{L}_{\varepsilon, \tilde{\mu}}^{(N, V) *}$ has all its eigenvalues $\geq\left(\frac{\gamma}{N^{\tau}}\right)^{2}$ in E_{N}. Notice that $\operatorname{dim}\left(E_{N}\right)=\mathcal{N} \leq b N^{d}$.

Bad set of $\tilde{\mu}$

For $V \in \mathcal{U}_{M}^{(N)}$ define the "bad" set of $\tilde{\mu}$
$B_{\varepsilon, \gamma}^{(N)}(V) \quad=:\left\{\tilde{\mu} \in[-\varepsilon, \varepsilon] ;\right.$ there exists at least one eigenvalue σ_{j} of

$$
\left.\mathfrak{L}_{\varepsilon, \mu}^{(N, V)} \mathfrak{L}_{\varepsilon, \tilde{\mu}}^{(N, V) *}, \text { such that } 0 \leq \sigma_{j} \leq\left(\frac{\gamma}{N^{\tau}}\right)^{2}\right\}
$$

the eigenvalues of $\mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V)} \mathfrak{L}_{\varepsilon, \widetilde{\mu}}^{(N, V) *}$ take the form

$$
\begin{gathered}
\sigma_{j}(\varepsilon, \widetilde{\mu})=\widetilde{\mu}^{2}+f_{j}(\varepsilon, \widetilde{\mu}), f_{j} \text { is } C^{2} \text { in } \widetilde{\mu}, \text { and } \\
\left|f_{j}\left(\varepsilon_{2}, \widetilde{\mu}_{2}\right)-f_{j}\left(\varepsilon_{1}, \widetilde{\mu}_{1}\right)\right| \leq c\left(\delta_{0}^{\prime}+\varepsilon\right)\left(\left|\varepsilon_{2}-\varepsilon_{1}\right|+\left|\widetilde{\mu}_{2}-\widetilde{\mu}_{1}\right| .\right.
\end{gathered}
$$

Assumption For $\widetilde{\mu} \in[-\varepsilon, \varepsilon]$, there exists $0<k<2$ with

$$
\left|\partial_{\widetilde{\mu}} f_{j}\left(\varepsilon, \widetilde{\mu}_{2}\right)-\partial_{\widetilde{\mu}} f_{j}\left(\varepsilon, \widetilde{\mu}_{1}\right)\right| \leq k\left|\widetilde{\mu}_{2}-\widetilde{\mu}_{1}\right|
$$

Lemma

Assume that $N>M_{\varepsilon}, d / 2<s_{0},(\varepsilon, \tilde{\mu}) \in\left(0, \varepsilon_{1}\right] \times[-\varepsilon, \varepsilon]$, and $V \in \mathcal{U}_{M}^{(N)}$. Then there exists $C>0$, such that the measure of $B_{\varepsilon, \gamma}^{(N)}(V)$ is bounded by $C \gamma / N^{\tau-d}$

Bad set of $\tilde{\mu}$ (proof of the bound)

Notice that in the Assumption above, we accept to loose some regularity for the second derivative of σ_{j} with respect to $\widetilde{\mu}$. Up to now we have no mean to control this loss.
For a "bad" $\tilde{\mu}$, there exists j such that

$$
\begin{gathered}
0 \leq \widetilde{\mu}^{2}+f_{j}(\varepsilon, \widetilde{\mu})<\eta^{2}, \eta=\gamma /\left(N^{\tau}\right) \\
\text { define } \phi_{\varepsilon}(\widetilde{\mu})=: \widetilde{\mu}^{2}+f_{j}(\varepsilon, \widetilde{\mu}) \\
\partial_{\widetilde{\mu}} \phi_{\varepsilon}(\widetilde{\mu})=2 \widetilde{\mu}+\partial_{\widetilde{\mu}} f_{j}(\varepsilon, \widetilde{\mu})
\end{gathered}
$$

increasing function of $\widetilde{\mu}$, cancelling at a unique $\widetilde{\mu}=\widetilde{\mu}_{m}$. Since $\phi_{\varepsilon}\left(\widetilde{\mu}^{ \pm}\right)=\eta^{2}$, then the convexity of ϕ_{ε} implies

$$
\widetilde{\mu}^{+}-\tilde{\mu}^{-} \leq \frac{2 \eta}{\sqrt{(1-k / 2)}}
$$

Summing up for all eigenvalues, the measure of the set of bad $\widetilde{\mu}$ is bounded by

$$
\frac{2 b \gamma}{\sqrt{(1-k / 2)} N^{\tau-d}}
$$

Estimate of $\left(\Pi_{N} \mathfrak{L}_{\epsilon, \tilde{\mu}, V}^{\prime} \Pi_{N}\right)^{-1}$ in $\Pi_{N} \pi_{0} \mathbf{Q}_{0} \mathcal{K}_{s_{0}}$

Lemma

Let $d=2\left(I_{0}+1\right)$ be the dimension of the \mathbb{Q} - vector space spanned by the wave vectors $k_{j}, j=1, \ldots, 2 q$, and $\tau>d+2+24 I_{0}$. Let N be ≥ 1. Assume moreover that $0<\gamma \leq \widetilde{\gamma}=\frac{c^{\prime}}{c^{2}{ }^{2}(0+1}$,
$(\epsilon, \widetilde{\mu}, V) \in\left[0, \epsilon_{1}\right] \times[-\varepsilon, \varepsilon] \times \mathcal{U}_{M}^{(N)}$ with $\widetilde{\mu} \in G_{\varepsilon, \gamma}^{(N)}(V), \epsilon_{1}$ small enough. For $s_{0}>\frac{d}{2}$, there exists $c^{\prime}>0$ independent of N and γ, such that for any $v \in E_{N}$, we have

$$
\left\|\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \widetilde{\mu}, V(\varepsilon, \widetilde{\mu})}^{\prime} \Pi_{N}\right)^{-1} v\right\|_{s_{0}} \leq c^{\prime} \frac{N^{\tau}}{\gamma}\|v\|_{s_{0}}
$$

and the same estimate holds for $\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \widetilde{\mu}, V(\varepsilon, \widetilde{\mu})} \Pi_{N}\right)^{-1}$.
We need an estimate in all \mathcal{K}_{s}, with an exponent on N independent of s. We may proceed as for the Swift-Hohenberg PDE, in adapting Bourgain 1995, Craig 2000, bert-Bolle 2010.

Separation property of the singular set

Singular set in \mathbb{Z}^{d} :

$$
\begin{aligned}
S(N) & :=\left\{\mathbf{z} \in \Gamma(N) ;\left(\lambda_{0}-\lambda_{0}\left(|\mathbf{k}(\mathbf{z})|^{2}\right)<\rho, \mathbf{k}(\mathbf{z}) \in \Gamma(N)\right\}\right. \text { with } \\
\mathbf{k}(\mathbf{z}) & =\mathfrak{d}^{-1} \sum_{s=1}^{d} z_{s} \mathbf{k}_{s}^{*}, \mathbf{z}=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{Z}^{d} \\
\Gamma(N) & :=\left\{\mathbf{z} \in \mathbb{Z}^{d} ; 0 \leq|\mathbf{z}| \leq N, \mathbf{k}(\mathbf{z}) \in \Gamma \backslash\left\{\mathbf{k}_{j}, j=1, \ldots, 2 q\right\}\right\} .
\end{aligned}
$$

Useful lemma (uses Bourgain 1995, Craig 2000, Berti-Bolle 2010) There exists $\rho_{0}>0$ independent of N such that if $\left.\rho \in\right] 0, \rho_{0}$] then $S(N)=\bigcup_{\alpha \in \mathcal{A}} \Omega_{\alpha}$ is a union of disjoint clusters Ω_{α} satisfying :

- (H1), for all $\alpha \in \mathcal{A}, M_{\alpha} \leq 2 m_{\alpha}$ where $M_{\alpha}=\max _{\mathbf{z} \in \Omega_{\alpha}}|\mathbf{z}|$ and $m_{\alpha}=\min _{\mathbf{z} \in \Omega_{\alpha}}|\mathbf{z}| ;$
- (H2), there exists $\delta=\delta(d) \in] 0,1[$ independent of N such that if $\alpha, \beta \in \mathcal{A}, \alpha \neq \beta$ then

$$
\operatorname{dist}\left(\Omega_{\alpha}, \Omega_{\beta}\right):=\min _{\mathbf{z} \in \Omega_{\alpha}, \mathbf{z}^{\prime} \in \Omega_{\beta}}\left|\mathbf{z}-\mathbf{z}^{\prime}\right| \geq \frac{\left(M_{\alpha}+M_{\beta}\right)^{\delta}}{2}
$$

Estimate of $\left(\Pi_{N} \mathfrak{L}_{e, \tilde{\mu}, V}^{\prime} \Pi_{N}\right)^{-1}$ in $\Pi_{N} \pi_{0} \mathbf{Q}_{0} \mathcal{K}_{s}$ for all

 $s \in\left[s_{0}, \bar{s}\right]$
Lemma

Let $d=2\left(I_{0}+1\right)$ be the dimension of the \mathbb{Q} - vector space spanned by the wave vectors $k_{j}, j=1, \ldots, 2 q$, and $\tau>d+2+24 I_{0}$ as in previous Lemma. Assume moreover that $0<\gamma \leq \widetilde{\gamma}=\frac{c^{\prime}}{c 2^{2} 0^{+1}}$, and $(\epsilon, \widetilde{\mu}, V) \in\left[0, \epsilon_{1}\right] \times[-\varepsilon, \varepsilon] \times \mathcal{U}_{M}^{(N)}, \widetilde{\mu} \in \mathcal{G}_{\epsilon, \gamma}^{(N)}(V)=\cap_{K \leq N} G_{\varepsilon, \gamma}^{(K)}(V)$, ϵ_{1} small enough. There exists $s_{0}(d, \delta, \tau)>\frac{d}{2}$ where δ is the number introduced in separation property (H2), and let $\bar{s}>s_{0}$. There exists $m(d, \delta, \tau)$ such that for all $s \in\left[s_{0}, \bar{s}\right]$ there exists $K(s)>0$ such that for any $h \in \Pi_{N} \pi_{0} Q_{0} \mathcal{K}_{0, s}$, we have

$$
\left\|\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \widetilde{\mu}, V(\varepsilon, \widetilde{\mu})}^{\prime} \Pi_{N}\right)^{-1} h\right\|_{s} \leq K(s) \frac{N^{m}}{\gamma}\left(\|h\|_{s}+\|V(\epsilon, \widetilde{\mu})\|_{s}\|h\|_{s_{0}}\right)
$$

and the same estimate holds for $\left(\Pi_{N} \mathfrak{L}_{\varepsilon, \widetilde{\mu}, V(\varepsilon, \widetilde{\mu})} \Pi_{N}\right)^{-1}$.
Main ingredient for applying the Nash-Moser iteration process.

G. looss

Resolution of the Range equation

Uses Nash-Moser method, following Berti-Bolle-Procesi 2010 with a complement for having a solution $v \in \mathcal{K}_{s_{0}}$ of the range equation, which is C^{2}.

$$
\mathcal{F}(\epsilon, \tilde{\mu}, v)=: \mathfrak{L}_{\varepsilon, \tilde{\mu}} v+g(\varepsilon, \tilde{\mu})-\varepsilon^{4} \mathbf{Q}_{0} \mathcal{B}(v, v)=0
$$

Theorem

Let s_{0} and $\tilde{\gamma}$ be as above. Then for all $0<\gamma<\tilde{\gamma}$ there exist $\epsilon_{2}(\gamma) \in\left[0, \epsilon_{0}\right]$ and a $C^{2}-\operatorname{map}$
$V:\left(0, \epsilon_{2}(\gamma)\right) \times[-\varepsilon, \varepsilon] \rightarrow \Pi_{N} \pi_{0} Q_{0} \mathcal{K}_{s_{0}}$, such that $V(0, \widetilde{\mu})=0$, $\|V\|_{s_{0}} \leq 1,\left\|\partial_{\widetilde{\mu}} V\right\|_{s_{0}} \leq M,\left\|\partial_{\widetilde{\mu}}^{2} V\right\|_{s_{0}} \leq M$, and if $\epsilon \in\left(0, \epsilon_{2}(\gamma)\right)$, $\widetilde{\mu} \in\left([-\varepsilon, \varepsilon] \backslash C_{\epsilon, \gamma}\right)$, the function $V(\epsilon, \widetilde{\mu})$ is solution of the range equation $\mathcal{F}(\epsilon, \tilde{\mu}, v)=0$. Here $C_{\epsilon, \gamma}$ is a subset of $[-\varepsilon, \varepsilon]$ which is Hïder continuous in ε, and has Lebesgue-measure less than $C \gamma \epsilon^{6}$ for some constant $C>0$ independent of ϵ and γ.

Hint: Proof adapted from Berti, Bolle, Procesi 2010.

Resolution of the Bifurcation equation

$$
\begin{gathered}
\widetilde{\mu}-\varepsilon^{4} \mu_{4}+\mathcal{O}\left[\varepsilon^{3}(\varepsilon+\|\tilde{v}\|)^{2}\right]=0 \\
\tilde{v}=V(\varepsilon, \widetilde{\mu})-h(\varepsilon, \widetilde{\mu})
\end{gathered}
$$

We solve this bifurcation equation with respect to $\widetilde{\mu}$:

$$
\widetilde{\mu}=\epsilon^{4} \mu_{4}+\varepsilon^{5} \tilde{h}(\varepsilon), \text { "curve" }(\mathrm{H}), \tilde{h} \in C^{1}
$$

We need to satisfy that $(\varepsilon, \tilde{\mu})$ lies in the good set, defined in the Theorem above.

Bad Strips

Definition

For N and V fixed, a set of "bad intervals" is defined by

$$
B S_{N}(V)=\left\{(\varepsilon, \tilde{\mu}) \in\left[0, \varepsilon_{2}\right] \times\left[-\varepsilon^{3}, \varepsilon^{3}\right] ; \tilde{\mu} \in I_{\varepsilon}^{(N)}\right\}
$$

where $I_{\varepsilon}^{(N)}$ is one of the intervals $\left(\tilde{\mu}_{j}^{-}(\varepsilon), \tilde{\mu}_{j}^{+}(\varepsilon)\right)$,or with one of the bounds replaced by $\pm \varepsilon^{3}$, as defined above.
$B S_{N}(V)$ is a union of thin Hölder strips in the plane $(\varepsilon, \widetilde{\mu})$. For the proof of the range theorem, we choose $\tilde{\mu}$ outside of $\cup_{n \in \mathbb{N}} B S_{N_{n}}\left(V_{n-1}\right)$ where $N_{n}=\left[N_{0}(\gamma)\right]^{2 n}$, and V_{n} are the successive points in the Newton iteration process.

Resolution of the Bifurcation equation- Transversality condition

We need a "transversality condition" to obtain a bound for the bad set of ε corresponding to the intersection of $\cup_{\varepsilon \in\left(0, \varepsilon_{2}\right)} C_{\varepsilon, \gamma}$ with (H) : The slopes $t(\varepsilon)$ of the curves $\tilde{\mu}_{j}^{ \pm}(\varepsilon)$, are such that there exists $c>0$ independent of (N, ε), with $c \varepsilon^{2}<|t(\varepsilon)|$.

Sketch of the "bad set" in the plane $(\varepsilon, \tilde{\mu})$ and its intersection by the "line" (H) given by the bifurcation equation.
The drawing on the right side explains the bound for the measure of $\delta \varepsilon \leq \delta \tilde{\mu} / c \varepsilon^{2} \leq C \varepsilon^{4}$.
Notice that, as for the Swift-Hohenberg equation, we can weaken this transversality condition, so that the true hypothesis is that the curves $\tilde{\mu}_{i}^{ \pm}(\varepsilon)$ are not flat.

Final result

Theorem

Let $q \geq 4$ be an integer. Assume that Hypothesis $\lambda_{0}^{\prime \prime} \neq 0$ holds and that transversality condition above is verified. Moreover assume the convexity condition above, on small eigenvalues σ_{j}. Then, there exists $s_{0}>d / 2, \varepsilon_{0}>0$, such that, for any $s \geq s_{0}$, there exists a 1-dimensional set $\bar{\Lambda}_{\varepsilon}$ centered on μ_{4}, with the following property : for any $|\varepsilon|<\varepsilon_{0}$, belonging to a set of asymptotically full measure as $\varepsilon \rightarrow 0$ there exist $\bar{\mu}_{\varepsilon} \in \bar{\Lambda}_{\varepsilon}$, such that the steady Bénard - Rayleigh system admits a quasipattern solution (u, λ), C^{1} in $\varepsilon, u \in \mathcal{K}_{s}, \lambda=\lambda_{0}-\mu_{2} \varepsilon^{2}-\mu_{3} \varepsilon^{3}-\varepsilon^{4} \bar{\mu}_{\varepsilon}$ invariant under rotations of angle π / q of the form

$$
u=\varepsilon u_{1}+\varepsilon^{2} u_{2}+\varepsilon^{3} u_{3}+\varepsilon^{4} u_{4}+\mathcal{O}\left(\varepsilon^{5}\right)
$$

where $\mu_{2}>0$, and coefficients μ_{2}, μ_{4}, u_{j} occurring in formulae above, are the ones defined in the truncated asymptotic expansion of the solution.

References on Quasipatterns

G.I., A.M. Rucklidge. On the existence of quasipattern solutions of the Swift-Hohenberg equation. J. Nonlinear Science 20, 3, 361-394, 2010.
G.looss. Quasipatterns in steady Bénard-Rayleigh convection. Izvestiya Vuzov Severo-Kavkazskii Region, Special Issue Actual problems of mathematical hydrodynamics 2009, Natural Science, p. 92 -105. Volume in honor of 75th anniversary of the birth of V.Yudovich.
B.Braaksma, G.I., L.Stolovitch. Existence proof of of quasipatterns solutions of the Swift-Hohenberg equation.Com. Math. Phys. 353(1), 37-67, 2017 DOI 10.1007/s00220-017-2878-x
B.Braaksma, G.I. Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231(3), 1917-1981 (2019) DOI: 10.1007/s00205-018-1313-6
G.I. Existence of quasipatterns in the superposition of two hexagonal patterns. Nonlinearity (to appear in 2019)

