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The Water-Wave problem

Moving frame
g

z

z

-

∆ϕ = 0 for z < η(X ), ∇ϕ→ 0 as z → −∞
Boundary conditions on z = η(X )

∇η · (u + ∇Xϕ) − ∂ϕ

∂z
= 0

u · ∇ϕ+
(∇ϕ)2

2
+ µη = 0

µ = gL/c2,

Basic solution: (flat free surface) ϕ = 0, η = 0.
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3D periodic travelling waves
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Bi-periodic functions

lattice Γ of periods: λj ∈ R2, j = 1, 2

Γ = {λ = m1λ1 + m2λ2 : mj ∈ Z}

lattice Γ′ of wave vectors: Kj ∈ R2, j = 1, 2

Γ′ = {k = n1K1 + n2K2 : nj ∈ Z, λj · Kl = 2πδjl}

η bi-periodic in X ∈ R2

η(X ) =
∑

k∈Γ′

uke
ik·X
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Basic formulation

Dirichlet-Neumann linear operator Gη

ψ 7→ Gηψ =
(
1 + (∇η)2

)1/2 dϕ

dn
|z=η(X )

n normal exterior to Ω, and ϕ solution of the Dirichlet problem

∆ϕ = 0 in z < η(X ), ϕ|z=η(X ) = ψ, ∇ϕ→ 0 as z → −∞.

Basic formulation: µ > 0,u ∈ S1

F(U, µ,u) = 0, F = (F1,F2)

U = (ψ, η), ψ = ϕ(X , η(X ))

F1(U,u) = : Gη(ψ) − u · ∇η,

F2(U, µ,u) = : u · ∇ψ + µη +
(∇ψ)2

2
− 1

2(1 + (∇η)2){∇η · (∇ψ + u)}2

U ∈ Hm(R2/Γ) =: Hm
0 (R2/Γ) × Hm(R2/Γ)
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References for 3D travelling water waves
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J.Reeder,M. Shinbrot 1981, W.Craig, D.Nicholls 2000 . existence of 3D periodic

travelling gravity-capillary waves

using spatial dynamics
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Existence and regularity results without surface tension
G.Iooss, P.Plotnikov. Memoirs of A.M.S. 2009, No 940 (128p.) (Existence of

diamond waves)

T.Alazard, G.Métivier. Com. Part. Diff. Equ., 34 (10-12) 1632 - 1704, 2009.

(Regularity of diamond waves)

G.Iooss, P.Plotnikov. A.R.M.A. 200, 3 (2011), 789-880 (Existence of non

symmetric 3-D travelling waves)
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Linearized system at the origin

G(0)ψ − u · ∇η = 0, G(0) = (−∆)1/2

u · ∇ψ + µη = 0

Dispersion relation: µ|k| − (k · u)2 = 0
Assume the basis (K1,K2) of Γ′ is solution of the dispersion equation

u = u0 = (1, 0),

K1 = (1, τ1), τ1 = tan θ1

K2 = λ(1,−τ2), τ2 = tan θ2

Then τ1, τ2 and λ are linked:

µc = cos θ1 =
1

|K1|
=

λ2

|K2|

λ =
cos θ1
cos θ2

For λ = 1 the lattice Γ is a diamond pattern
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Kernel of the linearized operator

linearized operator (acts on U = (ψ, η))

L0 =

(
G(0) −u0 · ∇

u0 · ∇ µc

)

Non resonant assumption: (OK for (τ1, τ2) in a full measure set)
±K1 and ±K2 are the only solutions in Γ′ of the dispersion equation for
u = u0, µ = µc :

µc |k| − (k · u0)
2 = 0

4-dim kernel:

ζK1
= (i ,

1

µc

)e iK1·X , ζ−K1
= ζ̄K1

ζK2
= (i ,

λ

µc
)e iK2·X , ζ−K2

= ζ̄K2
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Formal Asymptotic expansion

L0U + µ̃L1U + L2(ω,U) + N2(U,U) + N3(U,U,U) + .. = 0

U = (ψ, η), µ̃ = µ− µc , ω = u − u0

Equivariance under symmetries:

Tv : shift X 7→ X + v, v ∈ R2, S0 : S0(ψ, η)(X ) = (−ψ, η)(−X )

Formal Lyapunov-Schmidt method

U = W + V , W ∈ kerL0, W = AζK1
+ BζK2

+ Āζ̄K1
+ B̄ ζ̄K2

needs to invert L0 on the complement of its 4-dimensional kernel

small divisors

µc |k| − (k · u0)
2, k ∈ Γ′\{±K1,±K2}

in denominator of L−1
0 Vke

ik.X (no such problem with surface tension)
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Asymptotic expansion of non-symmetric 3-dim waves

U = (ψ, η) =
∑

p+q≥1

εp1ε
q
2Upq, ψ odd, η even in X

U10 =
1

2
(ζK1

+ ζ−K1
) = (− sinK1 ·X ,

1

µc

cos K1 ·X ), U01 =
1

2
(ζK2

+ ζ−K2
)

{TvU; v ∈ R2} torus family of solutions

µ− µc = α1ε
2
1 + α2ε

2
2 + O(ε21 + ε22)

2

u − u0 = ω = (ω1, ω2), ω1 = −ω
2
2

2
+ ..

ω2 = β1ε
2
1 + β2ε

2
2 + O(ε21 + ε22)

2

αj , βj known analytic functions of τ1 and τ2
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Existence Theorem

∋

∋

ε
1
2

ε2
2

0

Theorem

Choose l ≥ 34, m even ≥ 4, 0 < δ < 1. There is a full measure set

T ⊂ R+2 such that for τ = (τ1, τ2) ∈ T , there exists a subset E(τ ) of the

quadrant {(ε21, ε22) ∈ R+2} for which 0 is a Lebesgue point, i.e.

2

ǫ2
meas(E(τ ) ∩ {ε21 + ε22 < ǫ}) → 1 as ǫ→ 0.

Moreover, for δ < ε1/ε2 < δ−1 and (ε21, ε
2
2) ∈ E(τ ), the nonlinear system

has a unique solution (U, µ,u) ∈ Hl
(S) × R × S1 of the form

U = U2m + |ε|mŬ(ε), µ = µ2m + |ε|mµ̆(ε), u = u2m + |ε|mŭ(ε)
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Directional Stokes Drift

u

propagation direction of waves

trajectory of particles

 on the free surface

Theorem

In the frame moving with the velocity of the waves, the horizontal

projection of the asymptotic direction taken by fluid particles makes an

angle

4(1 + τ2
1 )[−τ1ε21 + λ4τ2ε

2
2] + h.o.t.

with the direction of propagation of the waves. There is a special value
ε2
1

ε2
2

= λ4τ2/τ1 + h.o.t. for which both directions are identical.
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Differential of F = (F1,F2)(U , µ, u)

∂UF [δU] = Lµ,u(U)[δφ, δη] + R(F ,U, µ,u)[δU]

Lµ,u(U) =

(
Gη J ∗

J a

)

J = V · ∇(·), J ∗ = −∇ · ((·)V )
V = u + ∇ψ − b∇η (proj of particles velocity)

δφ = δψ − bδη

a = µ+ V · ∇b, b =
1

1 + ∇η2
{∇η · (u + ∇ψ)} = V · ∇η
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∂UF [δU] = Lµ,u(U)[δφ, δη] + R(F ,U, µ,u)[δU]

Inverting Lµ,u(U) is equivalent to solve in δφ

−J ∗

(
1

a
J (δφ)

)
+ Gη(δφ) = h ∈ Hs

odd(R2/Γ)

Gη = G1 + G0 + G−1

Gj pseudodifferential operators of order j .

For (ψ, η) = 0, and µ = µc

{µ−1
c (∂x1)

2 + (−∆)1/2}(δφ) = h
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Idea of Strategy

Find a diffeomorphism of the torus such that main orders of the diff equ.
for δφ = δψ − bδη have constant coefficients, leading to

L = νD2 + (−∆)1/2, D =: ∂y1 + ρ∂y2

where this operator (diagonal on the Fourier basis) would have a
controlled inverse.
The new linear operator to invert would look like

L + perturbation of lower order

It would then be possible to invert

(L + perturbation)−1 = (I + L−1perturbation)−1L−1

Unfortunately (L−1perturbation) is unbounded
Two problems: i) find the good diffeomorphism;
ii) reduce the new operator to the sum of a diagonal operator with a
controllable inverse, plus a nicely smoothing operator.
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Strategy

1. The diffeomorphism of the torus Y ∈ (R/2πZ)2 7→ X (Y ) allowing to
change into constant coefficients the main orders of the diff. equ. for δφ,
satisfies a new equation where two new constants ρ, ν occur (ρ is the
rotation number of the velocity vector field on the free surface).
2. Extended system leads to a formal expansion solution (ε = (ε1, ε2))
provided that λ /∈ Q

Then choose parameters (ρ− λ, ν − νc) instead of (ε1, ε2).
3. Provided that ρ satisfies a diophantine condition, the differential of the
extended system reduces to a differential equ. for δφ with constant main
coefficients, with a linear operator of the form

L + A0D + B0 + L′
−1, with L = νD2 + (−∆)1/2, D =: ∂y1 + ρ∂y2

4. Descent method (change of variable close to identity) leads to

Π(L + V + F−1)Π + (I − Π)(L + P) (triangular form)

with V bounded and constant, P bounded, F−1 smoothing.
Π(L + V)−1Π controllable for suitable (ρ, ν), loss of one derivative.

G. Iooss (IUF, Univ. Nice) Water waves 17 / 25



Diffeomorphism of the torus

Y ∈ (R/2πZ)2 7→ X (Y ) = T−1Y + W(Y ), TX = (K1 · X ,K2 · X )t

dX

dt
= V (X ) ⇒ dY

dt
=

√
ν f̃ (Y )̺, ̺ =: (1, ρ), ρ rotation number of V

define: DX =: ∂y1X + ρ∂y2X , Q(X ) = I + ∇Xη ⊗∇Xη

Choose f̃ for having proportional the two main coefficients of the
differential −J ∗

(
1
a
J (δφ)

)
+ Gη(δφ)

f̃ 2 =
ã

| det X ′| (QDX · DX )1/2 , ã(Y ) = a(X (Y ))

F3(U,X , µ,u, ρ, ν) =: ∂y1X + ρ∂y2X −
( | det X ′|

νã

)1/3
Ṽ

(Q̃Ṽ · Ṽ )1/6
= 0
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Extended system

F = (F1,F2,F3)(U,X , µ,u, ρ, ν) = 0, U = (ψ, η)

Gη(ψ) − u · ∇η = 0

u · ∇ψ + µη +
(∇ψ)2

2
− 1

2(1 + (∇η)2){∇η · (∇ψ + u)}2 = 0

∂y1X + ρ∂y2X −
( | det X ′|

νã

)1/3
Ṽ

(Q̃Ṽ · Ṽ )1/6
= 0

where
ã(Y ) = a(X (Y )), Ṽ (Y ) = V (X (Y )), Q̃(Y ) = Q(X (Y ))

V = u + ∇ψ − b∇η, a = µ+ V · ∇b, Q(X ) = I + ∇η ⊗∇η

b =
1

1 + ∇η2
{∇η · (u + ∇ψ)} = V · ∇η
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Sketch of the method

For τ = (τ1, τ2) fixed such that λ /∈ Q and non resonance is satisfied
we obtain a formal asymptotic expansion for Ũ(Y ),X (Y ), µ,u, ρ, ν
solution of Extended system at order |(ε1, ε2)|m, chosen with ψm odd, ηm

even in Y

Um(Y , ε),Xm(Y , ε), µm(ε),um(ε), ρm(ε), νm(ε)

with
ρ = λ+ ρ1ε

2
1 + ρ2ε

2
2 + ..., ν = νc + ν1ε

2
1 + ν2ε

2
2 + ...

new parameters: (ρ, ν) : ρ = ρm(ε), ν = νm(ε) instead of ε = (ε1, ε2)
Newton iteration scheme (starts with the approximate solution) for the
Nash-Moser theorem
Perturbation: Ŭ, W̆ , µ̆, ŭ determined at each step of the iteration, after
inverting the differential

∂(U,X ,µ,u)F
taken at every iterated point

G. Iooss (IUF, Univ. Nice) Water waves 20 / 25



Equation for δ̃φ = u

νD2u + pDu + G1u + G0u + L−1u = f

symbol of G1 = (G1(Y )k̃ · k̃)1/2, k̃ = (k1 + ρk2, k2), coef of k2
2 = 1

A =
1

4π2

∫
G1(Y )dY , Ac =

(
ν2
c −νc cos θ1

−νc cos θ1 1

)
positive definite

L(k) = −ν(k1 + ρk2)
2 + (Ak̃ · k̃)1/2 symbol of L = νD2 + (−∆)1/2

ρ and ν fixed functions of ε, and A function of ε and of the iteration point.

Theorem

∀α > 0,∃T ⊂(R+)2 with full measure, and such that for any

τ = (τ1, τ2) ∈ T , the Kernel of Lc is 4-dim:{e±iy1 , e±iy2},

∃c > 0; |k1 + λk2| ≥
c

|k|1+α
, ∀k ∈ Z2\{0}

|Lc (k)| ≥ c

|k|1/2+α
, ∀k ∈ Z2\Striv , Striv = {(0, 0), (±1, 0), (0,±1)}
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Descent method

successive change of variables
starts with L + A0D + B0 + L′

−1

First step leads to
L + B′

0 + L′′
−1

Second step introduces a projection Π satisfying

L−1(I − Π) and D−1Π regularizing operators

and leads to the new operator (triangular form)

Π(L + V + F−1)Π + (I − Π)(L + P)

with V bounded and constant, P bounded, F−1 smoothing.
Π(L + V)−1Π controllable for suitable (ρ, ν), with the loss of one
derivative.
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Inverse estimate

Thm. Let 0 < α < 1/2, 1/(2 + α) < γ < 1/2, τ ∈ T . there exists a
subset E(τ ) of the quadrant {(ε21, ε22) ∈ R+2} for which 0 is a Lebesgue
point, i.e.

2

ǫ2
meas(E(τ ) ∩ {ε21 + ε22 < ǫ}) → 1 as ǫ→ 0

and for ε21 + ε22 < ǫ, (ε21, ε
2
2) ∈ E(τ ) the following estimates hold (the

second being uniform in all iteration points)

|k1 + ρm(ε)k2| ≥
c

|k|1+α
, |L(k) + V (k)| ≥ cǫγ

|k|α+1/2
, ∀k ∈ Z2\Striv

⇒ ||Π(L + V)−1Π||s→s−1 ≤ C
ǫγ on (ker Lc)

⊥
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Inverse of the differential

For τ = (τ1, τ2) ∈ T and ε21 + ε22 < ǫ, (ε21, ε
2
2) ∈ E(τ ), there is an m > 0

such that for any s ≥ m, and for all iteration points staying in a certain ball

||{Π(L + V + F−1)Π + (I − Π)(L + P)}−1||L(Hs ,Hs−1)∩(ker Lc )⊥ ≤ c(s)

ǫ

Hence the Nash-Moser theorem applies
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Existence Theorem

Theorem

Choose l ≥ 34, m even ≥ 4, 0 < δ < 1. There is a full measure set

T ⊂ R+2 such that for τ ∈ T , there exists a subset E(τ ) of the quadrant

{(ε21, ε22) ∈ R+2} for which 0 is a Lebesgue point, i.e.

2

ǫ2
meas(E(τ ) ∩ {ε21 + ε22 < ǫ}) → 1 as ǫ→ 0.

Moreover, for δ < ε1/ε2 < δ−1 and ε = (ε1, ε2) ∈ E(τ ), the nonlinear

system has a unique solution (U, µ,u) ∈ Hl
(S) × R × S1 of the form

U = U2m + |ε|mŬ(ε), µ = µ2m + |ε|mµ̆(ε), u = u2m + |ε|mŭ(ε)
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