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Abstract

Extending the results obtained in the sixties for bifurcating periodic patterns, exis-
tence of bifurcating quasipatterns in the steady Bénard-Rayleigh convection problem is
proved. These are two-dimensional patterns, quasiperiodic in any horizontal direction,
invariant under horizontal rotations of angle π/q. There is a small divisor problem for
q ≥ 4.
Using the results of Berti-Bolle-Procesi in 2010, we adapt it to a Navier-Stokes system
ruling the Bénard-Rayleigh convection problem. Our solution is approximated by the
truncated power series which is formally obtained by Iooss in 2009, but which is diver-
gent in general (Gevrey series).
First, we formulate the problem in introducing a suitable parameter, able to move the
spectrum of the linearized operator, as a whole, as for the Swift-Hohenberg PDE model.
For using the Nash-Moser process, we are faced with the problem of inverting a linear
operator which is the differential at a non zero point.
There are two new difficulties :
i) first, the extra dimension leading to a more complicated spectrum of the linear oper-
ator. This first difficulty leads to use specific projections for reducing the spectrum of
the studied operator, which we want to invert, to a finite set very close to 0.
ii) The second difficulty is the fact that the linearization L(N) at a non zero point leads
to a non selfadjoint operator, contrary to what occurs in previous works. This is more
serious, and leads to use the spectrum of L(N)L(N)∗ which depends mainly quadratically
on the main parameter.
A careful study of the ”bad set” of parameters, with an assumption on the convexity of
the eigenvalues of this operator, allows to obtain a good estimate, as it is necessary for
using the results of Berti et al for solving ”the range equation”. We use again separation
properties of the Fourier spectrum (see Bourgain and Craig results) for obtaining an
estimate in high Sobolev norms.
It then remains to solve the one-dimensional ”bifurcation equation. For any q ≥ 4 and
provided that a weak transversality conjecture is realized, we prove the existence of a
bifurcating convective quasipattern of order 2q, above the critical Rayleigh number.
Keywords: Rayleigh-Bénard convection, bifurcations, quasipattern, small divisors,
Nash-Moser scheme
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Figure 1: Example 8-fold quasipattern. This is an approximate solution of the Swift–
Hohenberg equation, see [11].

AMS: 35B32, 35C20, 35Q30, 52C23, 58C15, 76D05

1 Introduction

The Bénard - Rayleigh convection system is one of the most popular in hydrodynamic
stability theory, and it was the subject of numerous papers and books, mostly in physicist
litterature. The mathematical existence of steady convective patterns, as rolls or hexagonal
cells, was first proved by V.I.Yudovich et al in a series of papers in the sixties [21, 25, 26, 27].
For other mathematical results on this problem, see P. Rabinowitz [17], H. Görtler et al [9],
K. Kirchgässner et al [14].

Here, about 50 years later, we are studying the same problem, but looking for a different
type of steady convective patterns. Quasipatterns are two-dimensional patterns which have
no translation symmetries and are quasiperiodic in any spatial direction (see figure 1). The
spatial Fourier transforms of quasipatterns have discrete rotational order (most often, 8, 10
or 12-fold) and were first discovered in nonlinear pattern-forming systems in the Faraday
wave experiment [6, 8], in which a layer of fluid is subjected to vertical oscillation. Since
their discovery, they have also been in particular observed, in shaken convection [23, 18].

In many of these experiments, the domain is large compared to the size of the pattern,
and the boundaries appear to have little effect. Furthermore, the pattern is usually formed
in two directions (x1 and x2), while the third direction (z) plays little role. Mathematical
models of the experiments are therefore often posed with two unbounded directions, and
the basic symmetry of the problem is the Euclidean group of rotations, translations and
reflections of the (x1, x2) plane. This is in particular the case for the studies made in the
works [19], [20], [11] and [4].
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Quasipatterns do not fit into any spatially periodic domain and have Fourier expan-
sions with wavevectors that live on a quasilattice (defined below). At the onset of pattern
formation, the primary modes have zero growth rate, and there are other modes on the
quasilattice which have negative growth rates arbitrarily close to zero, and techniques (like
Lyapunov-Schmidt reduction, or center manifold reduction) which are used for periodic
patterns cannot be applied. These small growth rates appear as small divisors, as seen
below.

This paper is in the spirit on the paper [4] dealing with the Swift-Hohenberg PDE. It is
known that this PDE is a simple model of Bénard-Rayleigh convection for the bifurcation
to a steady spatially periodic convective regime. In the present paper we solve the same
problem but ruled by the full Boussinesq equations which are usually taken for the study
of Bénard-Rayleigh convection between two horizontal planes. This problem was studied in
[10], where Gevrey estimates are given for the formal series solution of the problem. Sum-
ming this series by an incomplete Borel resummation, provides a solution of our problem,
only up to an exponentially small term (as the Rayleigh number tends towards its critical
value).

In the present paper, we first define the functional setting in sections 2, 3 and 4 for our
unknown u. In section 5 we formulate the problem in suitable form. In section 6 we study in
details the linearized operator, and the criticality conditions. This determines the critical
value λ0 of the bifurcation parameter λ, linked to the Rayleigh number by λ = R−1/2,
and the critical wave number kc. We then give the formal series for (u, λ) in powers of the
amplitude ε of the bifurcating solution. We use the truncated series as the center of the
neighborhood where one applies later the Nash-Moser process. Section 7 reformulates the
problem for adapting it to the method used in [3] and [4] which exploits the fact that the
parameter µ = λ0−λ appears in a way which moves the spectrum of the linearized operator,
as a whole This introduces finally parameters ε, µ′, where µ′ is a scaling of µ (see (63)).
We are now faced with new difficulties: the problem is no longer in 2 dimensions, since
we have now the vertical coordinate z introducing a dependency of Fourier coefficients in
z. This leads to an infinite dimensional system, even when we truncate the Fourier modes
at a finite number N (as in [4]). This needs the use of a new projection, complicating the
operator to be inverted (see section 7.4, Lemma 36 and section 7.6).

The second new difficulty is that the linear operator which we have to invert in the
Nash-Moser process is no longer selfadjoint. This serious complication is treated in section
8. In particular, this needs the use of singular values of the truncated operator, instead of its
eigenvalues as in [4]. The square of these singular values mainly behave quadratically in the
parameter. We need an assumption on the convexity of these singular values for being able
to bound suitably the ”bad set” of parameters and obtain directly a good estimate for the
inverse of the linearized operator in the basic space with small Sobolev norm (denoted K0,s0).
We then need to use separation properties of the eigenvalues λ0(|k|2) of the unperturbed
operator, near λ0, where the wave vectors k of the Fourier modes, are restricted to Nk ≤ N
(Nk is the Zd norm in the quasilattice). This tool, introduced by Bourgain [5] and Craig
[7], was already used on simpler systems in [2] and [4] and is necessary for obtaining good
estimates in high Sobolev norms.

We show in section 9 that we can adapt the method developed in [3] by Berti, Bolle,
Procesi.
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Figure 2: Bifurcation curve. The set of ”good” ε’s is of asymptotically full measure

The existence of bifurcating convective quasipatterns, is proved in section 10 . It results
from the non empty intersection of a curve (H) defined by the bifurcation equation in the
plane of parameters (ε, µ), and the complement of the ”bad set” of parameters. This needs
a transversality assumption depending on q.

We sum up our result in the following

Theorem 1. Let q ≥ 4 be an integer and let d ≤ q be the dimension of the Q-vector space
spanned by the wave vectors kj , j = 1, ..., 2q in R2 equally spaced on a circle centered at
the origin (see the definition (4)). Assume that the neutral stability curve R(|k|2) leading
to the critical Rayleigh number Rc = 1/λ2

0 for |k| = kc, has a unique minimum, and such
that R”(k2

c ) > 0 (see Figure 4 and Condition 32). We assume a convexity condition 47
and we assume that transversality Conjecture 58 is verified. Then, there exists s0 > d/2,
ε0 > 0, such that, for ε < ε0, there exists a 1-dimensional set Λε centered on µ4, with the
following property: for any ε < ε0, belonging to a set, of asymptotically full measure as
ε → 0, there exists µε ∈ Λε such that the steady Bénard - Rayleigh system (35) admits a
quasipattern solution (u(ε), λ(ε)), C1 in the parameter ε, u(ε) ∈ K0,s0 (see Definition 19),
invariant under rotations of angle π/q, of the form

u = εu1 + ε2u2 + ε3u3 + ε4u4 +O(ε5),

λ = λ0 − µ2ε
2 − µ3ε

3 − ε4µε

where µ2 > 0, µε = µ4 + O(ε). The quasiperiodic function u1 spans the kernel of λ0 − A,
and coefficients µj , uj occurring in formulae above, are the ones defined in the truncated
asymptotic expansion of the solution (see section 6.3).

Remark 2. Condition 32 is ”generic” and can be checked numerically, while Transversality
Conjecture 58 depends on q. This one is hard to check but maybe weakened as indicated in
Remarks 60 and 61. This is then probably valid for all q. Notice that for any s′0 > s0, the
result of the Theorem above is still valid, maybe for a smaller ε0.

Remark 3. Hypothesis 47 is used for bounding the measure of the bad set of parameters.
The quadratic dependence on µ̃ = O(ε4) of the truncated selfadjoint linear operator, needs
to control the convexity of its eigenvalues, while we have no means to provide a reasonable
bound for their second derivative. This is an open question here.
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Remark 4. The expression that we obtain for the bifurcating set, solution of (35), is under
parametric form. The bifurcating set (u, λ) lies on a C1 curve. At Figure 2, we sketch the
projection of this curve in the (ε, λ) plane.

2 The Bénard - Rayleigh convection problem

Consider a viscous fluid filling the region between two horizontal planes. Each planar
boundary may be a rigid plane, or a “free” boundary. In addition, we assume that the lower
and upper planes are at temperatures T0 and T1, respectively, with T0 > T1. The difference
of temperature between the two planes modifies the fluid density, tending to place the lighter
fluid below the heavier one. The gravity then induces, through the Archimedian force, an
instability of the “conduction regime” where the fluid is at rest, while the temperature
depends linearly on the vertical coordinate z. This instability is prevented up to a certain
level by viscosity ν, so that there is a critical value of the temperature difference, below
which nothing happens and above which a steady “convective regime” bifurcates.

The Navier-Stokes momentum equation needs to be completed with an equation for
energy conservation. In the Boussinesq approximation, the dependency of the density ρ in
function of the temperature T , reads

ρ = ρ0 (1− α(T − T0)) ,

where the (constant) volume expansion coefficient α, is taken into account in the momentum
equation, only in the external volumic gravity force −ρgez, introducing a coupling between
the particles velocity and pressure (V, p), and T . We refer to [12, Vol. II] for a very complete
discussion and bibliography on various geometries and boundary conditions in this problem.

Several different scalings are used in literature. We are only considering steady solutions,
so we adopt here the formulation derived in [15] (after a scaling by R1/2 for V and by R
for θ), which leads to the following system

V · ∇V +∇p = P(θez +R−1/2∆V ), (1)

V · ∇θ = R−1/2∆θ + V · ez,
∇ · V = 0.

Here Rθ is the deviation of the temperature from the conduction profile, which satisfies
the boundary conditions, and V = (V (H), v(z)), V (H) = (v1, v2), p, and θ are functions of
X = (x, z), with x = (x1, x2) ∈ R2 the horizontal coordinates and z ∈ (0, 1) the vertical
coordinate, ez being the unitary ascendent vector. There are two dimensionless constant
numbers in this problem: the Prandtl number P and the Rayleigh number R defined as

P =
ν

κ
, R =

αgd3(T0 − T1)

νκ
,

where d is the distance between the planes, κ is the thermal diffusivity. The system (1) is
completed by the boundary conditions

vz = θ = 0, z = 0, 1,
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together with either a “rigid surface” condition

v1 = v2 = 0, (2)

or a “free surface” condition (in fact no tangential stress condition)

∂v1

∂z
=
∂v2

∂z
= 0, (3)

on the planes z = 0 or z = 1. Notice that we shall not consider here the case of free surface
condition on both planes z = 0 and 1, since this case induces an additional (little) difficulty,
which is exposed below.

Our next task is to formulate the problem ruled by the system (1) in a suitable function
space, and find critical values of the parameters, for being able to use a method similar to
the one in [4].

3 Quasilattices and Diophantine bounds

Consider an integer q ≥ 4, where 2q is the order of a quasipattern, and define equally spaced
wavevectors in R2

kj = kc

(
cos

(
π
j − 1

q

)
, sin

(
π
j − 1

q

))
= R(j−1)π/qk1, j = 1, 2, . . . , 2q (4)

where kc is a positive number which is defined later, and Rθ is the rotation of angle θ around
the vertical axis (see figure 3a). We define the quasilattice Γ ⊂ R2 to be the set of points
spanned by integer combinations km of the form

km =

2q∑
j=1

mjkj , where m = (m1,m2, . . . ,m2q) ∈ N2q. (5)

The set Γ is dense in R2. Since kj and −kj = kj+q belong to Γ, then km and −km are
both in Γ. This allows to obtain real quantities of the form∑

k∈Γ

uke
ik·x, x ∈ R2, uk ∈ C

provided that
u−k = uk.

We know (see [24]) that the Q− vector space spanned by {kj , j = 1, 2, .., 2q} has
dimension d = ϕ(2q) = 2(l0 + 1) where ϕ is the Euler totient function, and l0 + 1 is the
order of the algebraic integer ω := 2 cosπ/q (l0 = 1 for q = 4, 5, 6, l0 = 2 for q = 7...)
with 2(l0 + 1) ≤ q. Let us define the subset of the d vectors {k∗j , j = 1, 2, .., d} of {kj ,
j = 1, 2, .., 2q} which forms a basis. Then

kj =

d∑
s=1

αjsk
∗
s, αjs ∈ Q.
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Figure 3: Example of quasilattice with 2q = 8, after [19]. (a) The 8 wavevectors with |k| = 1
which form the basis of the quasilattice. (b,c) The truncated quasilattices Γ9 and Γ27. The
small dots mark the positions of combinations of up to 9 or 27 of the 8 basis vectors on the
unit circle.

and any k ∈ Γ may be written in two different ways

k =

2q∑
j=1

mjkj =

d∑
s=1

rsk
∗
s, mj ∈ N, rs ∈ Q

where rs =
∑2q

j=1mjαjs.

Let us define αjs :=
njs
djs

with irreducible fractions and

d = l.c.mj=1,..2q
s=1,..d

{djs}, then dαjs = βjs ∈ Z.

Remark 5. Notice that we have d = 1 for example for q = 4, 5, 6, 7, 8, 9, 10, 11, 12 where we
can choose k∗s = ks, s = 1, .., d (see [4])

Then m∗s := drs =
∑2q

j=1mjβjs ∈ Z and

k = d−1
d∑
s=1

m∗sk
∗
s =: k(m∗) (6)

where m∗ := (m∗1, . . . ,m
∗
d) and we define the following norm in the lattice Γ, identified with

a subset of Zd :
d∑
s=1

|m∗s| =: Nk.

Remark 6. If d = 1 we can identify Γ with Zd. If d > 1 , for an arbitrary m∗ ∈ Zd\{0},
we don’t know a priori if there exists k ∈ Γ such that k(m∗) = k.

Remark 7. Whenever solutions are computed numerically, it is necessary to use only a
finite number of Fourier modes, so we define the truncated quasilattice ΓN to be:

ΓN = {k ∈ Γ : Nk ≤ N} . (7)

Figure 3(b,c) shows the truncated quasilattices Γ9 and Γ27 in the case q = 4.

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



In what follows we need a lower bound of quantities as

(k2
c − |k|2)2,k ∈ Γ

which occur in the denominator of the inverse of the linear operator, when they are not 0.
We show in [4] (after a trivial scaling)

Lemma 8. Assume q ≥ 4, then for any k ∈ Γ such that |k| 6= kc, i.e. k 6= kj , j = 1, ..., 2q
the following estimate holds true

||k|2 − k2
c | ≥

c

(1 +N2
k)l0

, (8)

for a certain c > 0 only depending on q.

4 Function spaces and operators

We characterise the functions of interest by their Fourier coefficients on the quasilattice Γ
generated by the 2q basic vectors kj :

u(x) =
∑
k∈Γ

uke
ik·x, x ∈ R2.

Define now the (Sobolev) space of scalar functions

Hs =

{
u =

∑
k∈Γ

uke
ik·x : ||u||2s =

∑
k∈Γ

(1 +Nk
2)s|uk|2 <∞

}
, (9)

which becomes a Hilbert space with the scalar product

〈w, v〉s =
∑
k∈Γ

(1 +Nk
2)swkvk. (10)

The two following Lemmas are classical results on Sobolev spaces.

Lemma 9. Assume q ≥ 4, then for s > d/2, for any u ∈ Hs and any v ∈ H0, we have

||uv||0 ≤ cs||u||s||v||0

for a certain constant cs > 0.

Lemma 10. (Moser-Nirenberg inequality) Assume q ≥ 4, and let s ≥ s0 > d/2 and let
u, v ∈ Hs. Then,

‖uv‖s ≤ C(s, s0)(‖u‖s‖v‖s0 + ‖u‖s0‖v‖s)
for some positive constant C(s, s0) that depends only on s and s0. For ` ≥ 0 and s > `+d/2,
Hs is continuously embedded into C`.

In fact we need more complicate function spaces for our system (1). This is due to
the necessity to control in terms of |k| (instead of Nk) the gain of regularity provided by
the inverse of the linear operator on the complementary space of its kernel (here, contrary
to [11] and [4], the nonlinear term looses one derivative), hence the inverse of the linear
operator is used to regain this loss (for large |k|), while the loss due to the small divisor
problem (for |k| close to kc) is in terms of Nk.
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4.1 Projection P

First, as it is a ”rule” for Navier-Stokes systems, we define a projection operator P on
divergence free vector fields. Let consider a vector field V (x, z) under the form

V (x, z) =
∑
k∈Γ

Vk(z)eik·x,

which, for a fixed z belongs to (Hs)3. We would like to decompose V as follows:

V = W +∇φ, ∇ ·W = 0, w(z)|z=0,1 = 0.

Then we consider the system

W
(H)
k + ikφk = V

(H)
k ,

w
(z)
k +

dφk
dz

= v
(z)
k , (11)

ik ·W (H)
k +

dw
(z)
k

dz
= 0,

where Vk = (V
(H)
k , v

(z)
k ) , V

(H)
k and v

(z)
k being respectively the horizontal and vertical com-

ponents of Vk, and where we want to satisfy the boundary condition

w
(z)
k |z=0,1 = 0, (12)

for the unknown vector field Wk = (W
(H)
k , w

(z)
k ). We then obtain the following equation for

φk :

d2φk
dz2

− |k|2φk = ik · V (H)
k +

dv
(z)
k

dz
, (13)

dφk
dz
|z=0,1 = v

(z)
k |z=0,1.

For k 6= 0, it is well known that, if V
(H)
k ∈ {L2(0, 1)}2, v(z)

k ∈ H1(0, 1), then there is a
unique solution φk ∈ H2(0, 1) of this Neumann problem, which satisfies the estimates

|k|2||φk||2 +

∥∥∥∥dφkdz
∥∥∥∥2

≤ ||Vk||2, (14)

and there exists a constant c1 > 0 (c1 = 7) such that

|k|4||φk||2 + |k|2
∥∥∥∥dφkdz

∥∥∥∥2

+

∥∥∥∥d2φk
dz2

∥∥∥∥2

≤ c1


∥∥∥∥∥dv

(z)
k

dz

∥∥∥∥∥
2

+ |k|2||Vk||2
 . (15)

In the case when k = 0, we have w
(z)
0 = 0, W

(H)
0 = V

(H)
0 , and dφ0

dz = v
(z)
0 defines φ0 up to

a constant. Hence, this remark, with (14) and (15) and the identity∫ 1

0
{ikφk ·W

(H)
k +

dφk
dz

w
(z)
k }dz = 0, (16)
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lead to
||Wk||2L2 = 〈Vk,Wk〉L2 ,

hence

||Wk||L2 ≤ ||Vk||L2 , (17)

|k|2||Wk||2L2 +

∥∥∥∥dWk

dz

∥∥∥∥2

L2

≤ c2

{
|k|2||Vk||2L2 +

∥∥∥∥dVkdz
∥∥∥∥2

L2

}
,

for a constant c2 independent of k ∈ Γ.

Definition 11. The operator P is the linear operator defined as

V =
∑
k∈Γ

Vk(z)eik·x
P7→W =

∑
k∈Γ

Wk(z)eik·x,

where Wk is solution of (11).

We notice that if V is divergence free and satisfies v(z)|z=0,1 = 0 then P acts as the
identity. Hence the operator P is a projection.

Remark 12. Notice that for Vk ∈ {L2(0, 1)}3 such that v
(z)
k ∈ H1(0, 1), k ∈ Γ, (which is

the case when V is divergence free), the boundary values v
(z)
k |z=0,1 have a meaning, then we

still have ||Wk||L2 ≤ ||Vk||L2 .

4.2 Function spaces

Let us define function spaces for the 4-components vector field U = (V, θ) :

Hr,s =

{
U = (V, θ)(x, z) =

∑
k∈Γ

Uk(z)eik·x;
∑
k∈Γ

(
(1 +N2

k)s||Uk||2r
)
<∞

}
(18)

where
||Uk||2r =

∑
0≤l≤r

|k|2(r−l)||Uk||2Hl .

Notice the following equivalence between (squared) norms in (18)

∑
0≤l≤r

|k|2(r−l)||Uk||2Hl ∼
∑

0≤l≤r
(1 + |k|2)(r−l)||d

lUk

dzl
||2L2 .

The space Hr,s has a natural Hilbertian structure. For example, for U, U ′ ∈ H0,s, the scalar
product reads

〈U,U ′〉0,s =
∑
k∈Γ

(
(1 +N2

k)s
∫ 1

0
Uk · U ′kdz

)
,

where Uk · U ′k is the usual hermitian scalar product in C4.
Now denoting PU = (PV, θ), we have the following
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Proposition 13. The projection P is bounded in Hr,s for r ≥ 1, and bounded in the

subspace H′0,s of H0,s such that v
(z)
k ∈ H1(0, 1), k ∈ Γ. For any U, U ′ ∈ H1,s, or H′0,s, we

have
〈U,PU ′〉0,s = 〈PU,PU ′〉0,s.

Remark 14. The above Proposition means that (I − P)H1,s is orthogonal to PH1,s with
the scalar product of H0,s. In other words, P is an orthogonal projection in H0,s restricted
to subspaces H1,s and H′0,s. Moreover, for U ∈ H′0,s, then PU ∈ H0,s is orthogonal to any
(∇φ, 0) ∈ H0,s, and ||PU ||0,s ≤ ||U ||0,s (see (16)).

Proof. The boundedness of P in H1,s results immediately from (17), and in H′0,s from
Remark 12. For the boundedness in Hr,s for r > 1, this follows easily after differentiating
(11) and (13). Now assume U, U ′ ∈ H1,s or H′0,s, and define PU ′ = (V ′, θ′), then from the
form of Vk−Wk = (∇φ, 0)k indicated in (11), we have (notice that V ′ satisfies de conditions
required on W in (11))

〈(I−P)U,PU ′〉0,s =
∑
k∈Γ

(
(1 +N2

k)s
∫ 1

0

(
ikφk · V

′(H)
k +

dφk
dz

v
′(z)
k + 0

)
dz

)

=
∑
k∈Γ

(1 +N2
k)s
∫ 1

0
φk

ik · V ′(H)
k −

dv
′(z)
k

dz

 dz


= 0.

Now we need to extend the definition of the orthogonal projector P in all H0,s. Let us
consider the orthogonal projection P0 inH0,s on the orthogonal complement of the subspace

G0,s = {U = (∇φ, 0);φ ∈ H(1)
1,s} ⊂ H0,s,

where we denote by an upper index (1) a space of scalar functions. Then, P0 is an extension

of P obtained by density of H1(0, 1) in L2(0, 1) for all v
(z)
k ,k ∈ Γ. It then results

Lemma 15. The projection P is bounded in Hr,s for r ≥ 0. It is an orthogonal projection
in H0,s, orthogonal to elements of G0,s.

In the following we need to use analogues of Lemma 10.

Lemma 16. Let u, v ∈ H(1)
1,s (scalar functions) with s ≥ s0 > d/2. Then uv ∈ H(1)

1,s and
there exists c(s, s0) > 0 such that

||uv||1,s ≤ c(s, s0)(||u||1,s||v||1,s0 + ||u||1,s0 ||v||1,s).

Lemma 17. Let u, v be scalar functions respectively in H(1)
1,s and H(1)

0,s with s ≥ s0 > d/2.

Then uv ∈ H(1)
0,s and there exists c(s, s0) > 0 such that

||uv||0,s ≤ c(s, s0)(||u||1,s||v||0,s0 + ||u||1,s0 ||v||0,s).
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Lemma 18. Let u, v be scalar functions respectively in H(1)
1,s and H(1)

0,0 with s ≥ s0 > d/2.

Then uv ∈ H(1)
0,0 and there exists c(s) > 0 such that

||uv||0,0 ≤ c(s)||u||1,s||v||0,0.

Lemma 19. Let u, v be scalar functions respectively in H(1)
1,0 and H(1)

0,s with s ≥ s0 > d/2.

Then uv ∈ H(1)
0,0 and there exists c(s) > 0 such that

||uv||0,0 ≤ c(s)||u||1,0||v||0,s.

The proofs of these Lemmas are made in Appendix B.

5 Formulation of the convection problem

5.1 Operators L,A and B

Definition 20. We say that U satisfies Condition b.c. if one of the following boundary
conditions are satisfied

(i) V (H)|z=0,1 = 0 (rigid-rigid),

(ii) V (H)|z=0 = dV (H)

dz |z=1 = 0 (rigid - free),

(iii) dV (H)

dz |z=0 = V (H)|z=1 = 0 (free - rigid).

Then, we define the following function spaces for r and s non-negative integers

Kr,s = PHr,s = {U = (V, θ) ∈ Hr,s;∇ · V = 0, v(z)|z=0,1 = 0}, (19)

Ds(L) = K2,s ∩ {U satisfies Condition b.c., θ|z=0,1 = 0},

and we put, respectively on these subspaces, the norms of Hr,s and H2,s. We notice that we

do not consider the case of conditions dV (H)

dz |z=0,1 = 0 (free - free) (see Remark 23 below).

Definition 21. For any U ∈ Ds(L) operators L and A are defined by:

LU = (P∆V,∆θ) , U ∈ Ds(L)

AU = (P(θez), V · ez) , U ∈ K0,s,

and the quadratic operator B by

B(U,U) =

(
1

P
P(V · ∇V ), V · ∇θ

)
, U ∈ K1,s.

It is clear that L maps continuously Ds(L) to K0,s. For s > d/2 the quadratic operator
B maps continuously Ds(L) to K1,s as this results easily from the fact that H1(0, 1) is
an algebra, as well as Hs for s > d/2 (see Lemma 16 and see Appendix C for the rest
of the proof). This means that there exists c(s, s0) such that for any U,U ′ ∈ Ds(L), and
s ≥ s0 > d/2 we have

||B(U,U ′)||1,s ≤ c(s, s0)(||U ||2,s||U ′||2,s0 + ||U ||2,s0 ||U ′||2,s), (20)
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where we define the bilinear symmetric operator (U,U ′) 7→ B(U,U ′) as

2B(U,U ′) =:

(
1

P
P(V · ∇V ′ + V ′ · ∇V ), V · ∇θ′ + V ′ · ∇θ

)
.

Moreover, we also have easily B(U,U) ∈ K0,s for U ∈ K1,s, as this results from the fact
that the product of a function in H1(0, 1) with another in L2(0, 1) lies in L2(0, 1), then
V · ∇V ∈ H0,s (see Appendix C) and for U,U ′ ∈ K1,s and s ≥ s0 > d/2 we have the
estimate

||B(U,U ′)||0,s ≤ c(s, s0)(||U ||1,s||U ′||1,s0 + ||U ||1,s0 ||U ′||1,s). (21)

Now solving the system (1) reduces to solving the equation

(λL+A)U −B(U,U) = 0, U ∈ Ds(L). (22)

where λ =: R−1/2.
Then, we show the following useful basic properties of operators L,A and B:

Lemma 22. For any s ≥ 0, the unbounded operator L with domain Ds(L) is selfadjoint,
definite negative, in the space K0,s. Moreover, for U ∈ Ds(L), there exits a scalar function
c(λ) such that

〈(λL+A)U,U〉0,s ≤ c(λ)||U ||20,s (23)

holds, with c(λ) = 1− 2λ < 0 for R < 4 (in the case of free-free boundary condition, which
we exclude, c(λ) = 0.)

For s > d/2, and U,U ′ ∈ K1,s and U,U ′ real, i.e. U = U, U ′ = U ′ we have

〈B(U,U), U〉0,0 = 0, (24)

〈2B(U,U ′), U〉0,0 = −〈B(U,U), U ′〉0,0. (25)

Proof. First we have, by using Lemma 15

〈(λL+A)U,U ′〉0,s = 〈(P(λ∆V + θez), λ∆θ + V · ez) , (V ′, θ′)〉0,s
= λ〈(∆V,∆θ) , (V ′, θ′)〉0,s + 〈(θez, V · ez), (V ′, θ′)〉0,s
= λ〈∆V, V ′〉0,s + λ〈∆θ, θ′〉0,s + 〈θ, v′(z)〉0,s + 〈v(z), θ′〉0,s.

Then we observe that 〈θ, v′(z)〉0,s + 〈v(z), θ′〉0,s is symmetric in (U,U ′). Moreover by inte-
grating by parts, since θk|z=0,1 = 0,

〈∆θ, θ′〉0,s =
∑
k∈Γ

(1 +N2
k)s
∫ 1

0

(
d2θk
dz2

− |k|2θk
)
θ′kdz

= −
∑
k∈Γ

(1 +N2
k)s
∫ 1

0

(
dθk
dz

dθ′k
dz

+ |k|2θkθ′k

)
dz,

which is symmetric in (U,U ′). The same computation holds by using the boundary condi-
tions satisfied by V for U ∈ Ds(L), and shows that 〈∆V, V ′〉0,s is symmetric in (U,U ′). This
proves that

〈(λL+A)U,U ′〉0,s = 〈U, (λL+A)U ′〉0,s,
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i.e. the operators L and A are symmetric in K0,s.
The operator L is selfadjoint in K0,s because it is easy to prove that L−1 is symmetric

in K0,s, bounded from K0,s into Ds(L) (with norm of K2,s), see Appendix A. The operator
A is symmetric and bounded in K0,s. Hence by theorem 4.3 in [13] p.287, the sum λL+ A
with domain Ds(L) is also selfadjoint in K0,s.

To prove the inequality (23), we come back to the computation above, valid for U ∈
Ds(L) :

〈(λL+A)U,U〉0,s = −λ〈∇V,∇V 〉0,s − λ〈∇θ,∇θ〉0,s + 2Re〈θ, v(z)〉0,s (26)

≤ 2||V ||0,s||θ||0,s ≤ 2||U ||20,s.

For all boundary conditions (see Definition 20) we have Poincaré inequalities: θ, v(z) and
V (H) cancel at z = 0 or (and) z = 1, so, for example

|v(z)(z)|2 = |
∫ z

0
Dv(z)(s)ds|2 ≤ z

∫ 1

0
|Dv(z)(s)|2ds,

and integrating on (0, 1) leads to the Poincaré estimates

||V ||0,s ≤
1√
2
||∇V ||0,s, ||θ||0,s ≤

1√
2
||∇θ||0,s. (27)

Hence this leads to

|2Re〈θ, v(z)〉0,s| ≤ ||∇V ||0,s||∇θ||0,s ≤ 1/2||∇V ||20,s + 1/2||∇θ||20,s,

and

〈(λL+A)U,U〉0,s ≤ (1/2− λ)[||∇V ||20,s + ||∇θ||20,s] < 0 for λ > 1/2, i.e. R < 4.

Hence for R < 4 (i.e. λ > 1/2) we have

〈(λL+A)U,U〉0,s ≤ −(2λ− 1)[||V ||20,s + ||θ||20,s] = c(λ)||U ||20,s,

with
c(λ) = 1− 2λ.

Remark 23. In the case of free-free Boundary conditions which we exclude here, we have
not ||V (H)||0,s ≤ 1√

2
||∇V (H)||0,s, hence we only have

〈(λL+A)U,U〉0,s ≤ (1/2− λ)[||∇v(z)||20,s + ||∇θ||20,s]− λ||∇V (H)||20,s ≤ 0 for λ ≥ 1/2.

In such a case, 0 is an eigenvalue of λL+A corresponding to the eigenvector U = (V (H), 0)
where V (H) = Const.

In the same way as above, for U ∈ K1,s, we have

〈B(U,U), U〉0,s =
1

P
〈V · ∇V, V 〉0,s + 〈V · ∇θ, θ〉0,s,
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and by using θp+q = θr, when p + q + r = 0, since θ is real,

〈V · ∇θ, θ〉0,0 =
∑

p+q+r=0, p,q,r∈Γ

∫ 1

0

(
(iq · V (H)

p )θq + v
(z)
p
dθq
dz

)
θrdz

=
∑

p+q+r=0, p,q,r∈Γ

∫ 1

0

(
(ir · V (H)

p )θr + v
(z)
p
dθr
dz

)
θqdz

=
1

2

∑
p+q+r=0, p,q,r∈Γ

∫ 1

0

(
(−ip · V (H)

p )θqθr + v
(z)
p
d(θqθr)

dz

)
dz

=
1

2

∑
p+q+r=0, p,q,r∈Γ

∫ 1

0

(
dv

(z)
p

dz
θqθr + v

(z)
p
d(θqθr)

dz

)
dz = 0.

In the same way, we have

〈V · ∇V, V 〉0,0 = 〈V · ∇V (H), V (H)〉0,s + 〈V · ∇v(z), v(z)〉0,s

=
1

2

∑
p+q+r=0, p,q,r∈Γ

∫ 1

0

d(v
(z)
p Vq · Vr)
dz

dz = 0,

which ends the proof of (24). Identity (25) is a consequence of (24): indeed let us consider
the identity

〈B(U + tU ′, U + tU ′), U + tU ′〉0,0 = 0

which holds for any t ∈ R. It results that the coefficient of degree 1 in t of this polynomial
is zero, which is exactly the property (25).

5.2 New formulation

For applying a method analogue to the one developed in [3] and [4], we need to control a
parameter able to move all the spectrum of the linearized operator. In the present problem,
we are lucky enough to have λ in front of an invertible operator, allowing to reformulate
suitably the problem.

We know that the operator −L is selfadjoint and positive, so we can define the sefadjoint
positive operator (−L)1/2 with dense domain (see [13] section V.11 p.281) as the inverse of

(−L)−1/2 =
1

π

∫ ∞
0

ζ−1/2(ζ − L)−1dζ,

which is selfadjoint and bounded, with the following properties. First, for U ∈ Ds(L) we
have

(−L)1/2(−L)1/2U = −LU.

Let us define the Hilbert space, adapted to boundary conditions b.c. (see definition 20),

K̃1,s = {U = (V, θ) ∈ K1,s; θ = v(z)|z=0,1 = 0, V (H)|z=0 = 0, or (and) V (H)|z=1 = 0}.

We can take in K̃1,s the norm

||U ||1̃,s := {||∇V ||20,s + ||∇θ||20,s}1/2, (28)
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which is equivalent to the usual norm in K1,s, due to Poincaré inequalities (27). Then,
because of the identity

〈−LU,U〉0,s = ||∇V ||20,s + ||∇θ||20,s,

valid for any U ∈ Ds(L), it is clear that the following identity holds

||(−L)1/2U ||0,s = ||U ||1̃,s, (29)

which can be extended to any U ∈ Ds[(−L)1/2] the domain of (−L)1/2 acting in K0,s. This
shows that the domain Ds[(−L)1/2] (dense in K0,s) satisfies

Ds[(−L)1/2] ⊂ K̃1,s, (30)

with a continuous embedding.

Definition 24. We denote by

D1/2,s := Ds[(−L)1/2].

This is an Hilbert subspace of K1,s, with the scalar product associated with the norm (28)

in K̃1,s.

Remark 25. In the sequel, the norm in D1/2,s is denoted by || · ||1̃,s or || · ||1,s or || · ||D1/2,s

as well.

Now let us consider the following equation in K0,s :

λu−Au+ B(u, u) = 0, (31)

where operators A and B are defined as:

A : = (−L)−1/2A(−L)−1/2,

B(u, u) : = (−L)−1/2B((−L)−1/2u, (−L)−1/2u).

Since the operator A is bounded in K0,s this is also the case for A. Now for the quadratic
operator B we have

Lemma 26. Assume s > d/2, then the quadratic operator B is bounded from K0,s to

D1/2,s ↪→ K̃1,s ↪→ K0,s. Moreover for u, u′ ∈ K0,s, with s ≥ s0 > d/2 we have

||B(u, u′)||0,s ≤ ||(−L)−1/2||0,s||B(u, u′)||1̃,s ≤ c(s, s0)(||u||0,s||u′||0,s0 + ||u||0,s0 ||u′||0,s). (32)

Moreover for u ∈ K0,s, with s > d/2, the linear operator v 7→ B(u, v) is bounded in K0,0

with the estimate
||B(u, v)||0,0 ≤ c||u||0,s||v||0,0. (33)

Proof. Using (29) and (21) we obtain

||B(u, u′)||1̃,s = ||B((−L)−1/2u, (−L)−1/2u′)||0,s
≤ c(s, s0)(||(−L)−1/2u||1̃,s||(−L)−1/2u′||1̃,s0 + ||(−L)−1/2u||1̃,s0 ||(−L)−1/2u′||1̃,s)
≤ c(s, s0)(||u||0,s||u′||0,s0 + ||u||0,s0 ||u′||0,s)
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and

||B(u, u′)||0,s ≤ ||(−L)−1/2||0,s|B(u, u′)||1̃,s = c1(s, s0)(||u||0,s||u′||0,s0+||u||0,s0 ||u′||0,s). (34)

For finding estimate (33) we just need to prove that for ((−L)−1/2u, (−L)−1/2v) = (U, V ) ∈
K2,s ×K1,0 then ||B(U, V )||0,0 ≤ c′||U ||2,s||V ||1,0. This is proved in Appendix C.

Then we have the following

Lemma 27. Assuming s > d/2 and λ > 0, then finding a solution u ∈ K0,s of

λu−Au+ B(u, u) = 0, (35)

where the linear operator A is bounded and selfadjoint in K0,s, implies u ∈ D1/2,s, and is

equivalent to finding a solution U = (−L)−1/2u ∈ Ds(L) of

λLU +AU −B(U,U) = 0. (36)

Proof. Indeed, we notice that for u ∈ K0,s solution of (31), then (−L)−1/2u ∈ D1/2,s ⊂ K1,s,

hence B((−L)−1/2u, (−L)−1/2u) ∈ K0,s (see (21)) and finally B(u, u) ∈ D1/2,s. It is also
clear that Au ∈ D1/2,s. For λ 6= 0 this last property and (31) show that u ∈ D1/2,s, and

we can apply the operator (−L)1/2 to (31). Then defining U = (−L)−1/2u gives U in
Ds(L) verifying (36). Conversely, the knowledge of a solution U of (36) gives a solution
u = (−L)1/2U of (31). We may observe that the quadratic operator B is bounded in K0,s

(see (34)). Now due to the selfadjointness of operators A and (−L)−1/2 in K0,s, the operator
A is also selfadjoint in K0,s.

Remark 28. We might think that it would be advantageous to work in D1/2,s instead of K0,s.
However for the method we are using in the following, it is necessary that A be selfadjoint.
If we consider this operator in D1/2,s, then it can be shown that this is not true for boundary
conditions (ii) and (iii) in Definition 20.

5.3 Rotationnal Symmetry

The system (1), completed with the boundary conditions included in the definition of Ds(L),
is invariant under horizontal rotations of angle π/q. To make this precise, let us define the
linear operator Rπ/q, by

Rπ/qU(x, z) =
(
Rπ/qV (R−π/qx, z), θ(R−π/qx, z)

)
,

where Rφ is the horizontal rotation of angle φ. More precisely, by using the identity k ·
R−φx = Rφk · x, we have

Rπ/q

∑
k∈Γ

Uk(z)eik·x =
∑
k∈Γ

(
Rπ/qVk(z), θk(z)

)
eiRπ/qk·x. (37)

Definition 29. We say that U = (V, θ) is invariant under Rπ/q if the following holds

Rπ/qVk(z) = VRπ/qk(z), θk(z) = θRπ/qk(z).
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Then, we have the following

Lemma 30. The linear operators L,A,A and the quadratic operators B and B commute
with Rπ/q : for U ∈ Ds(L) and u ∈ K0,s

Rπ/q(λL+A)U = (λL+A)Rπ/qU, Rπ/qAu = ARπ/qu (38)

Rπ/qB(U,U) = B(Rπ/qU,Rπ/qU), Rπ/qB(u, u) = B(Rπ/qu,Rπ/qu).

Proof. This results from the commutation of the original system (1) under any horizontal
rotations, and from the commutation property

Rπ/qP = PRπ/q

which is easy to check from the construction of projection P. Moreover the operator L
commutes with Rπ/q, hence this is also valid for (−L)−1/2.

6 Criticality for A− λI and Formal bifurcation

6.1 Study of criticality

Let us consider the linear system

(A− λ)u = G ∈ K0,s, (39)

where we look for u ∈ K0,s. This system is equivalent to looking for U = (−L)−1/2u ∈ D1/2,s

such that
(λL+A)U = G′ = (−L)1/2G = (F, g) ∈ (D1/2,s)

∗ (40)

where G′ = (F, g) is given in (D1/2,s)
∗ (see the definition and properties of this dual space

at subsection A.1 of Appendix A).
Let us define the Fourier components

Uk = (V
(H)
k , v

(z)
k , θk),

G′k = (F, g)k = (F
(H)
k , f

(z)
k , gk),

then for a fixed k, the system has the form

(λLk +Ak)Uk = G′k (41)

which is exactly the same as the one obtained in the periodic case, described in details for
example in Chapter II of [1] and solved in details by V.Yudovich [25]. Notice that for
each |k| the linear operator λLk + Ak is selfadjoint in the space {K0,s}k spanned by the
k-th Fourier components of elements in K0,s, and operator Lk is studied in particular in
Appendix A.

Remark 31. Notice that in [1] and in [25] the only case of λ > 0 is considered, since
λ = 1/

√
R by definition. It results that we don’t know anything a priori on the operator,

for λ ≤ 0. However we may observe that the homogeneous system associated with (41) is
invariant when changing λ into −λ and θ into −θ (see also (1) in changing

√
R into its

opposite). It results that the spectrum of A is symmetric with respect to 0. Moreover λ = 0
is an eigenvalue with infinite multiplicity.
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Then, it is known (see Yudovich [25]) that for a fixed |k| there is a denumerable sequence
of Rj (= 1/λ2

j ) such that the system (41) has a non trivial solution for (F, g)k = 0, and

there is a variational principle for finding R0(|k|2) = minRj (see Velte [22]). It is also
known mathematically (see Yudovich [25]) that the function R0(|k|2) is analytic, tends
towards ∞ as |k|2 → 0 and as |k|2 → ∞, and that there is a minimum Rc obtained for
a critical value k2

c . However, it is only known numerically (see [1]), that this minimum is
unique and the kernel of λLk + Ak for k = k1 = (kc, 0) is one-dimensional ([25]). We now
define λ0 = 1/

√
Rc.

It results that the kernel of the linear operator (A − λ0I) is 2q - dimensional, spanned
by ξj = (−L)1/2ξ′j , with

ξ′j = Rπ(j−1)
q

(
Ûk1(z)eik1·x

)
, j = 1, 2, ..., 2q, (42)

in the kernel of λ0L+A , where

Ûk1 = (V
(H)
k1

, v
(z)
k1
, θk1)

is solution of the homogeneous system (41) for k = k1, and with G′k = 0, and R = Rc.
We need now to estimate the inverse of the linear operator defined by the system (41)

for R = Rc and |k| 6= kc. From the now standard study of the resolvent operator for
Navier-Stokes type of system (see [28]), as here, but in a periodic frame, we deduce that
there is a function c(|k|2) bounded as |k| → ∞ and |k| → 0 such that (we notice that
||G′||(D1/2,s)

∗ ≤ c||G||0,s for a certain c > 0)

||Uk||21 = ||DUk||2L2 + (1 + |k|2)||Uk||2L2 ≤ [c(|k|2)]2||Gk||2L2 . (43)

For |k| near kc, we know that c(|k|2) diverges as |k|2 → k2
c . In fact let consider the dispersion

equation, obtained when we look for eigenvectors of the homogeneous system (41) which has
constant coefficients (see [1]). Then, the modulus of the dispersion equation, which cancels
for |k| = kc, is bounded from below by the inverse c(|k|2)−1. This dispersion equation
depends analytically on |k|2 ([25]) and we now need

Condition 32. We assume that the second derivative R′′0(|k|2) 6= 0 for |k| = kc at
R0(k2

c ) = Rc.

Notice that we give a formula for d2

d|k|2 (1/
√
Rc) in Appendix D. The dispersion relation

cancels with a (only) double root for |k|2 = k2
c . This means that we have in fact

c(|k|2) =
c1(|k|2)

(|k|2 − k2
c )

2 for |k| 6= kc (44)

where c1 is bounded for all bounded |k|2 and is O(|k|4) as |k| → ∞.
For |k| = kc and k ∈ Γ, this implies that k belongs to the basis of the quasipattern.

Then, following [1], [25] and [26] the system (41) is solvable provided the compatibility
conditions

〈G, ξj〉0,0 = 〈G′, ξ′j〉0,0 =

∫ 1

0
G′kj · Ûkjdz =

∫ 1

0
(Fkj · V̂kj + gkj · θ̂kj )dz = 0, j = 1, ..., 2q

hold. It results that
||uk||0 = ||Uk||1 ≤ c(|k|2)||Gk||0. (45)
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Figure 4: Sketch of positive eigenvalues of A in function of |k|, and definition of critical
lambda λ0. δ1 is used to define the projection π0 at section7.4

Remark 33. The classical linear stability theory ([1], [27]) says that

〈(λ0L+A)U,U〉0,0 < 0 for all U ∈ Ds(L) not in ker(λ0L+A), (46)

i.e., using that D1/2,s is dense in K0,s:

〈(A− λ0)u, u〉0,0 < 0 for all u ∈ K0,s not in ker(A− λ0). (47)

We also know, from the discussion above, that for any fixed |k| we have a decreasing se-
quence of positive eigenvalues, and a sequence of symmetric ones, for the selfadjoint bounded
operator A :

λ0(|k|2) > λ1(|k|2).... ≥ λn(|k|2) ≥ ... ≥ 0... ≥ −λn(|k|2) ≥ ...− λ1(|k|2) > −λ0(|k|2),

(see Figure 4 for positive eigenvalues) corresponding to eigenvectors, depending on x as
eik·x. The largest eigenvalue reaches a maximum λ0 at k2

c . Now the lattice Γ is well defined,
thanks to (4). When k varies in Γ, the set of values for |k| is dense on the half positive line.
It results that the spectrum (closed in R) of A is the closed interval [−λ0, λ0]. Moreover, as
this is useful later, we notice that for all k ∈ Γ,

λ0 − λj(|k|2) > δ0, λ0(|k|2)− λj(|k|2) ≥ δ0(|k|) > 0, j = 1, 2, ....,∞, (48)

with δ0(|k|) > δ0 > 0 for |k| close to kc.

6.2 Pseudo-inverse of A− λ0I

Let us define the orthogonal projection P0 on the kernel of A− λ0I: for any u ∈ K0,s

P0u =
∑

1≤j≤Q
γjξj , γj =

〈u, ξj〉0,0
〈ξ1, ξ1〉0,0

, (49)

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



where we notice that
〈ξ1, ξ1〉0,0 = 〈ξj , ξj〉0,0, j = 2, .., 2q.

We denote by Q0 = I−P0 the projection on the complementary space (of codimension 2q).
Since the eigenvectors ξj belong to K0,s for any s, the projection Q0 is bounded in K0,s for
any s. Notice that when u is invariant under Rπ/q, then γj = γ1 for j = 2, .., 2q.

Now coming back to the linear system

(A− λ0)u = G,

where G ∈ K0,s satisfies the compatibility condition P0G = 0, the above estimate (45), and
the form (44) of c(|k|2) show that there is a unique solution u satisfying P0u = 0 and there
exists a constant c > 0 such that

||uk||0 ≤ c
[

(1− δkc(|k|))(1 + |k|2)2

(|k|2 − k2
c )

2 + δkc(|k|)
]
||Gk||0,

where δkc(|k|) = 1 if |k| = kc, and = 0 otherwise. By using the diophantine inequality (8),
this leads to the following

Lemma 34. Assuming λ′′0(|k|2)||k|=kc 6= 0 (see (138)) for the second derivative of λ0 at
|k| = kc, then for any s ≥ 0, the linear operator (A− λ0) has a bounded inverse from the
subspace Q0K0,s to the subspace Q0K0,s−4l0 . In other words, for any δ1 > 0 small enough,
there exists c > 0 such that for u solution in Q0K0,s−4l0 of (A − λ0)u = G ∈ Q0K0,s, the
following estimate holds

||uk||0 ≤ c(1 +N2
k)2l0 ||Gk||0, for ||k| − kc| < δ1,

||uk||0 ≤ c

δ2
1

||Gk||0, for ||k| − kc| ≥ δ1.

6.3 Formal power series for bifurcating solution

Let us rewrite the system (35) as

(A− λ0)u = −µu+ B(u, u), (50)

where

λ0 =
1√
Rc

, λ = λ0 − µ.

We are looking for a solution of (50) in K0,s, s > d/2, which is invariant under Rπ/q

under the form of a formal expansion

u =
∑
n≥1

εnun, (51)

µ =
∑
n≥1

εnµn (52)
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where in fact un ∈ D1/2,s (see Lemma 27). Identifying powers of ε at orders ε, ε2, ε3, leads
to the system

(A− λ0)u1 = 0, (53)

(A− λ0)u2 = −µ1u1 + B(u1, u1) (54)

(A− λ0)u3 = −µ1u2 − µ2u1 + 2B(u1, u2). (55)

Equation (53) gives (here we choose the coefficient in front of the eigenvector, which deter-
mines the parameter ε)

u1 =
∑

1≤j≤2q

ξj , (56)

which is invariant under Rπ/q, and we observe, thanks to property (24), still valid for B
that

〈B(u1, u1), u1〉0,0 = 0,

and since
Rπ/qB(u1, u1) = B(u1, u1),

this means that (see the definition of projection P0 in (49))

P0B(u1, u1) = 0,

hence equation (54) is solvable with µ1 = 0, and since the Fourier series of B(u1, u1) is
finite, we find a unique u2 ∈ D1/2,s, orthogonal to u1 in K0,0 :

u2 = ˜(A− λ0)
−1
B(u1, u1), (57)

which is invariant under Rπ/q, and where ˜(A− λ0)
−1

is the pseudo-inverse of (A − λ0) as
defined by Lemma 34. Now, the compatibility condition for solving (55) gives

〈µ2u1 − 2B(u1, u2), u1〉0,0 = 0. (58)

Then we use the identity (25) to obtain

〈2B(u1, u2), u1〉0,0 = −〈B(u1, u1), u2〉0,0
= −〈(A− λ0)u2, u2〉0,0 > 0.

The result above, in the periodic case, was first obtained by V.Yudovich in [26]. The last
inequality results from the fact that P0u2 = 0, and from the property (47). It results that
µ2 is positive, determined by

µ2 =
−〈(A− λ0)u2, u2〉0,0

〈u1, u1〉0,0
> 0. (59)

Now the unique solution u3 of (55), orthogonal to u1 in K0,0, takes the form

u3 = 2 ˜(A− λ0)
−1

Q0B(u1, u2), (60)
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and is invariant under Rπ/q and again lies in D1/2,s because of the finiteness of its Fourier
series. Now, from

(A− λ0)u4 = −µ2u2 − µ3u1 + 2B(u1, u3) + B(u2, u2),

we observe that µ2u2 is orthogonal to u1. The factors eik·x in the expression for 2B(u1, u3)+
B(u2, u2) are such that

k =
∑

1≤j≤2q

mjkj , and
∑

mj = 4,

so that the scalar product with u1 may be different from 0, as this can be seen in the case
when q is a multiple of 3. It results from the compatibility condition, that

µ3 =
〈2B(u1, u3) + B(u2, u2), u1〉0,0

〈u1, u1〉0,0
, (61)

and

u4 = ˜(A− λ0)
−1

Q0[−µ2u2 + 2B(u1, u3) + B(u2, u2)]

is invariant under Rπ/q and still in D1/2,s. Going on the computation, we obtain in particular

µ4 =
〈2B(u1, u4) + 2B(u2, u3), u1〉0,0

〈u1, u1〉0,0
. (62)

We show in [10] that we can go on in computing the successive terms of the series which
appear to be of Gevrey type. Making an incomplete Borel resummation of these series,
invariant under Rπ/q, provides a solution of (50) up to an exponentially small term as ε
tends towards 0. Our purpose now is to improve such a result in proving that there exist
indeed quasipatterns solutions of (50).

7 Adapted formulation and Splitting of the space

7.1 Decomposition of u

In all what follows, we study functions u, v in K0,s, invariant under rotations Rπ/q. In this
frame the kernel of the linear operator (A− λ0) is one-dimensional. Let us define the new
unknown function ṽ in rewriting the solution of (50) in K0,s, s > d/2 as

u = uε + ε4ṽ, µ = µε + ε3µ′,

uε = εu1 + ε2u2 + ε3u3 + ε4u4, (63)

µε = ε2µ2 + ε3µ3, ṽ ∈ {u1}⊥ ∩ K0,s,

where the coefficients u1, u2, u3, u4, µ2, µ3 are defined above, and we assume below that
ε > 0 (the same proof applies for ε < 0). Then

(A− λ0)uε = −µεuε + B(uε, uε) + ε5fε
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where fε is a known quasiperiodic function with a finite Fourier expansion with Nk ≤ 8.
Now we have by (50):

(A− λ0)(uε + ε4ṽ) + (µε + ε3µ′)(uε + ε4ṽ)− B(uε + ε4ṽ, uε + ε4ṽ) = 0,

which becomes
Lεv + ε3µ′ṽ + µ′ε−1uε + εfε − ε4B(ṽ, ṽ) = 0, (64)

with
Lεṽ = (A− λ0 + µε)ṽ − 2B(uε, ṽ). (65)

7.2 Decomposition of the system

Let us use the projection Q0 = I−P0 on the orthogonal complement of u1 in the subspace
of K0,0 invariant under Rπ/q, defined at subsection 6.2. We might notice that the formal

computation made at section 6.3 gives ṽ = εu5 +O(ε2) in {u1}⊥, with µ′ = εµ4 +O(ε2).
Equation (64) decomposes into the bifurcation equation, using the projection P0 onto

the kernel {u1} of (A− λ0) :

µ′u1 + εP0fε − 2P0B(ṽ, uε)− ε4P0B(ṽ, ṽ) = 0, (66)

with
P0f0 = −µ4u1,

and the range equation (projection onto {u1}⊥) :

Q0Lεṽ + ε3µ′ṽ + g̃(ε, µ′)− ε4Q0B(ṽ, ṽ) = 0, (67)

where
Q0Lε = Q0(A− λ0 + µε)− 2Q0B(uε, ·),

g̃(ε, µ′) := µ′ε(u2 + εu3 + ε2u4) + εQ0fε.

7.3 Optimization of variables

In what follows, we need to obtain a solution of (67) which is C2− bounded in µ̃. So,we
need to have operators and functions in (67) with bounded first and second derivatives with
respect to µ̃ = ε3µ′. This is not the case for the term g̃(ε, µ′), so we need to slightly modify
the definition of ṽ, in such a way that g̃(ε, µ′) has a more suitable form.

Let us define (see Lemma 26, using that uε ∈ K0,t for all t > 0) the linear operator Sε
bounded by csε in Q0K0,s for any s ≥ 0, as

Q0Lε = Q0(A− λ0) + Sε,
Sε : = µε − 2Q0B(uε, ·).

We notice that g̃(ε, µ′) has a finite Fourier expansion with Nk ≤ 8 (because of fε). Hence
[Q0(A− λ0)]−1g̃(ε, µ′) ∈ Q0K0,s for any s ≥ 0. In the same way, we can define

h(ε, µ′) =

I +
∑

n=1,2,3,4

(−1)n
(
[Q0(A− λ0)]−1(Sε + µ̃)

)n [Q0(A− λ0)]−1g̃(ε, µ′), (68)
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which is still well defined in Q0K0,s for s ≥ 0, and h is analytic in its arguments (ε, µ′).
Indeed, the operator

(
[Q0(A− λ0)]−1(Sε + µ̃)

)n
is bounded on finite Fourier series in eik·x

leading to a finite Fourier series with Nk increased by 4n. Finally h(ε, µ′) has a finite Fourier
expansion with wave vectors bounded by Nk = 16 + 8 = 24.

We can now check that

(Q0Lε + µ̃)h(ε, µ′) = g̃(ε, µ′) +
(
(Sε + µ̃)[Q0(A− λ0)]−1

)5
g̃(ε, µ′).

We do not use Neumann series for inverting (Q0Lε+µ̃) because of the small divisor difficulty.
We notice that ε2g̃(ε, µ′) = µ̃(u2+εu3+ε2u4)+ε3Q0fε, hence ε2h(ε, µ′) := h̃(ε, µ̃) is analytic
in (ε, µ̃) with

||h̃(ε, µ̃)||0,s ≤ cs(ε3 + |µ̃|).
Now we define the new v as

v = ṽ + h(ε, µ′), (69)

so that (67) becomes
Lε,µ̃v + g(ε, µ̃)− ε4Q0B(v, v) = 0, (70)

with

Lε,µ̃ = Q0Lε + µ̃+ 2ε2Q0B(h̃(ε, µ̃), ·), (71)

g(ε, µ̃) = −
(
(Sε + µ̃)[Q0(A− λ0)]−1

)5
g̃(ε, µ′)−Q0B(h̃(ε, µ̃), h̃(ε, µ̃)).

We notice that the first term on the right hand side of g(ε, µ̃) is now C4− bounded in µ̃
since, up to order µ̃4 it is analytic, and the non analyticity only occurs at orders ε2µ′µ̃4 and
εµ′µ̃5. Since we restrict to µ̃ ∈ [−ε, ε] the values for µ̃, we finally obtain in (70) the required
properties for all terms, with

||g(ε, µ̃)||0,s ≤ csε
2, ||∂ε,µ̃g(ε, µ̃)||0,s ≤ csε2, (72)

||∂2
µ̃2g(ε, µ̃)||0,s ≤ cs, ||∂2

ε2g(ε, µ̃)||0,s ≤ csε2, ||∂2
εµ̃g(ε, µ̃)||0,s ≤ csε2.

Let us define the linearized operator

Lε,µ̃,V := Lε,µ̃ − 2ε4Q0B(V, ·),

for V ∈ K0,s for s > d/2. Then, we need a careful study of this linearized operator for
applying the result of [3].

Lemma 35. The operator Lε,µ̃,V is analytic in its arguments for (ε, µ̃, V ) ∈ (0, ε0)×[−ε, ε]×
Q0K0,s, s ≥ s0 > d/2. It is acting in Q0K0,t for t ∈ [0, s] (see the result of Lemma 26),with

Lε,µ̃,V : = Q0(A− λ0) + µ̃+Rε,µ̃ − 2ε4Q0B(V, ·) (73)

Rε,µ̃ = µε − 2Q0B(uε − ε2h̃(ε, µ̃), ·),

and, for ||V ||0,s0 ≤ 1, we have the estimates

||Rε,µ̃v||0,s ≤ csε||v||0,s,
||∂µ̃Rε,µ̃v||0,s + ||∂2

µ̃2Rε,µ̃v||0,s + ||∂2
εµ̃Rε,µ̃v||0,s ≤ csε

2||v||0,s,
||∂εRε,µ̃v||0,s + ||∂2

ε2Rε,µ̃v||0,s ≤ cs||v||0,s,
||2ε4Q0B(V, v)||0,s ≤ csε

4(||v||0,s + ||V ||0,s||v||0,s0).
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Figure 5: Spectrum of π0Q0(A− λ0)Q0π0

7.4 First splitting of the space (operator π0)

We are interested in the inversion of the operator Lε,µ̃,V in a certain subspace. The first
difficulty comes from the infinite dimension of the system, despite of the use of a projection
ΠN suppressing the Fourier modes eik·x such that Nk > N. So, we use now the property
described in (48) for the spectrum of the operator Q0(A − λ0)Q0 which is selfadjoint in
K0,s :

λ0 − λ0(|k|2) ≥ 0,

λ0 − λj(|k|2) > δ0 > 0, j = 1, 2, ...

λ0(|k|2) → 0 as |k| → 0 or ∞.

Let us consider δ1 > 0, defined at Lemma 34. Then for k ∈ Γ, the inequality ||k| − kc| > δ1

implies λ0−λ0(|k|2) > δ′0 (= O(δ2
1) (recall that λ0(|k|2) is analytic in |k|2 with a maximum

λ0 in kc) and choose δ1 small enough for having δ′0 < δ0/2. We now define the projection π0,
orthogonal in Q0K0,s, for any s ≥ 0, which consists in eliminating the Fourier modes k ∈ Γ
such that ||k| − kc| > δ1. We give at Figure 5 a sketch of the spectrum of the selfadjoint
operator π0Q0(A− λ0)Q0π0. We notice that the selfadjoint operator

(I− π0)Q0(A− λ0)Q0(I− π0)

has an inverse bounded by 1/δ′0, since its eigenvalues (dense in the spectrum) are in absolute
value larger than δ′0.

Then, for |µ̃| ≤ ε and ||V ||0,s0 ≤ 1, s0 > d/2, the operator

(I− π0)Lε,µ̃,V (I− π0)

is a perturbation of order ε of (I−π0)Q0(A−λ0)Q0(I−π0) (see (73)): for ε0 small enough,
we have for s ∈ [0, s0],

||µ̃+ µε − 2Q0B(uε, ·)− 2ε4Q0B(V, ·)||0,s ≤ cε, (74)

hence, for ε0 small enough, and δ′0 > 2cε, the operator (I− π0)Lε,µ̃,V (I− π0) has an inverse
bounded by 2/δ′0 in (I − π0)Q0K0,s0 . Notice that a true estimate of the inverse in Q0K0,s

for s > s0 would need a bound for ||V ||0,s, which we have not, except for s = s0. Let us now
show that the inversion of Lε,µ̃,V reduces to the inversion of a small perturbation L′ε,µ̃,V of
π0Lε,µ̃,V π0 in π0Q0K0,s0 for d/2 < s0.

Indeed, let us consider the linear system

Lε,µ̃,V v = f ∈ Q0K0,s0 . (75)
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This leads to

π0Lε,µ̃,V (v0 + v1) = π0f,

(I− π0)Lε,µ̃,V (v0 + v1) = (I− π0)f,

where
v0 = π0v, v1 = (I− π0)v.

Solving first with respect to v1 gives

v1 = Q(1,1)(I− π0)f + Q(1,0)v0, (76)

with bounded operators Q(1,1) and Q(1,0) defined by

Q
(1,1)
ε,µ̃,V = : [(I− π0)Lε,µ̃,V (I− π0)]−1 ∈ L((I− π0)Q0K0,s0), (77)

Q
(1,0)
ε,µ̃,V = : −Q(1,1)

ε,µ̃,V (I− π0)Lε,µ̃,V ∈ L(π0Q0K0,s0 , (I− π0)Q0K0,s0). (78)

Then the system satisfied by v0 becomes

L′ε,µ̃,V v0 = π0f + Q
(0,1)
ε,µ̃,V (I− π0)f, (79)

with
Q

(0,1)
ε,µ̃,V =: −π0Lε,µ̃,VQ

(1,1)
ε,µ̃,V ∈ L((I− π0)Q0K0,s0 , π0Q0K0,s0) (80)

L′ε,µ̃,V := π0Lε,µ̃,V [I + Q
(1,0)
ε,µ̃,V ]π0 ∈ L(π0Q0K0,s0). (81)

We show in the next subsection, for V ∈ Q0K0,s such that ||V ||0,s0 < 1 and δ′0 well chosen,
that there exists c(s) > 0 with the following tame estimates, valid for d/2 < s0 ≤ s ≤ s and
0 ≤ ε ≤ ε1(s) :

||Q(1,1)
ε,µ̃,V v||0,s ≤

c(s)

δ′0
{||v||0,s + ε4||V ||0,s||v||0,s0} ∀v ∈ (I− π0)Q0K0,s, (82)

||Q(1,0)
ε,µ̃,V v||0,s ≤

c(s)

δ′0
ε{||v||0,s + ε4||V ||0,s||v||0,s0} ∀v ∈ π0Q0K0,s,

||Q(0,1)
ε,µ̃,V v||0,s ≤

c(s)

δ′0
ε{||v||0,s + ε4||V ||0,s||v||0,s0} ∀v ∈ (I− π0)Q0K0,s.

7.5 Structure of L′ε,µ̃,V

We need to study the structure of L′ε,µ̃,V defined by (81). This is summed up in the following

Lemma 36. For s such that s ≥ s ≥ s0 > d/2, there exists ε0 > 0 such that for 0 < ε ≤
ε1(s) ≤ ε0, |µ̃| ≤ ε0, and V ∈ Q0K0,s, with ||V ||0,s0 ≤ 1, we have

L′ε,µ̃,V = π0Q0(A− λ0)Q0π0 + µ̃+ Bε + ε2µ̃Cε,µ̃ + Rε,µ̃,V , (83)

with
Bε = −2π0Q0B(uε, ·)Q0π0 +O(ε2),
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Bε, Cε,µ̃ and Rε,µ̃,V depend analytically on their arguments, with Rε,µ̃,0 = 0 and a constant
c(s) such that for any v ∈ π0Q0K0,s

||Bεv||0,s ≤ cε||v||0,s,
||Cε,µ̃v||0,s + ||∂µ̃Cε,µ̃v||0,s ≤ c||v||0,s,

||Rε,µ̃,V v||0,s ≤ cε4{||v||0,s + ||V ||0,s||v||0,s0}, (84)

||∂µ̃Rε,µ̃,V v||0,s ≤ cε4{||v||0,s + ||V ||0,s||v||0,s0},
||∂εRε,µ̃,V v||0,s ≤ cε3{||v||0,s + ||V ||0,s||v||0,s0}.

Proof. We examine first Q
(1,1)
ε,µ̃,V which is the inverse of (I − π0)Lε,µ̃,V (I − π0). Thanks to

(73), we can write

(I−π0)Lε,µ̃,V (I−π0) = (I−π0)Q0(A− λ0)Q0(I−π0)+µ̃Id+(I−π0)P(ε, µ̃, V )(I−π0), (85)

where Id is the identity in the subspace (I− π0)Q0K0,s and

P(ε, µ̃, V ) =: µε − 2Q0B(uε − ε2h̃(ε, µ̃), ·)− 2ε4Q0B(V, ·).

Now, for V ∈ Q0K0,s, the operator P(ε, µ̃, V ) takes values in L((I − π0)Q0K0,s) for d/2 <
s0 ≤ s ≤ s , and satisfies for ε ∈ [0, ε0], ε0 small enough and ||V ||0,s0 ≤ 1, |µ̃| ≤ ε,

||(I− π0)P(ε, µ̃, V )(I− π0)v||0,s ≤ c{ε||v||0,s + ε4||V ||0,s||v||0,s0}.

Let us define the operator

S =: [(I− π0)Q0(A− λ0)Q0(I− π0)]−1(I− π0){µ̃+ P(ε, µ̃, V )(I− π0)},

then
[(I− π0)Lε,µ̃,V (I− π0)]−1 = (I + S)−1[(I− π0)Q0(A− λ0)Q0(I− π0)]−1,

then, we need to invert (I + S) in checking a tame estimate.
For ε < ε1(s) ≤ ε0, |µ̃| ≤ ε and ||V ||0,s0 ≤ 1, there exists a constant c > 0 such that for

any v ∈ (I− π0)Q0K0,s

||Sv||0,s ≤
c

δ′0
[ε||v||0,s + ε4||V ||0,s||v||0,s0 ],

and for ε0 small enough such that (ε+ ε4) ≤ 2ε, we have for any p ∈ N

||Spv||0,s ≤
c

δ′0
(
2cε0

δ′0
)p−1[(|µ̃|+ ε)||v||0,s + ε4||V ||0,s||v||0,s0 ],

hence for any v ∈ (I− π0)Q0K0,s

||(I + S)−1v||0,s ≤ ||v||0,s +
c

δ′0
(1− 2cε0

δ′0
)−1[ε||v||0,s + ε4||V ||0,s||v||0,s0 ].

It results that, for δ′0 > 4cε0, [(I−π0)Lε,µ̃,V (I−π0)]−1 = Q
(1,1)
ε,µ̃,V is analytic in its arguments

and satisfies, for ε0 small enough, the estimate

||Q(1,1)
ε,µ̃,V v||0,s ≤ c

′/δ′0(||v||0,s + ε4||V ||0,s||v||0,s0) ∀v ∈ (I− π0)Q0K0,s
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which is the first part of (82). Coming back to (81) with (78) and (80), we observe that

(I− π0)Q0[(A− λ0) + µε + µ̃]Q0π0 = π0Q0[(A− λ0) + µε + µ̃]Q0(I− π0) = 0

because the coefficients of the linear operator are independent of x. Then

(I− π0)Lε,µ̃,V π0 = −2(I− π0)Q0B(uε − ε2h̃, ·)Q0π0 − 2ε4(I− π0)Q0B(V, ·)π0,

π0Lε,µ̃,V (I− π0) = −2π0Q0B(uε − ε2h̃, ·)Q0(I− π0)− 2ε4π0Q0B(V, ·)(I− π0),

both operators being of order ε (with the tame estimates), and depending analytically on
their arguments. It finally results from (78) and (80) that the rest of estimate (82) holds.
Finally

π0Lε,µ̃,VQ
(1,0)
ε,µ̃,V = C(1)

ε + ε2µ̃Cε,µ̃ + R′ε,µ̃,V (86)

with C
(1)
ε ,Cε,µ̃ and R′ε,µ̃,V analytic in their arguments, taking values in L(π0Q0K0,s) for

s0 ≤ s ≤ s, and a careful examination of (77), (78), (81), (73) leads ∀v ∈ π0Q0K0,s, to

C(1)
ε = O(ε2),

||R′ε,µ̃,V v||0,s ≤ cε5(||v||0,s + ||V ||0,s||v||0,s0),

||∂ε,µ̃R′ε,µ̃,V v||0,s ≤ cε4(||v||0,s + ||V ||0,s||v||0,s0).

Finally, from (81) we can write

L′ε,µ̃,V = π0Lε,µ̃,V π0 + C(1)
ε + ε2µ̃Cε,µ̃ + R′ε,µ̃,V , (87)

where R′ε,µ̃,V is at least linear in V . This leads to (83), (84) and to the result of the
Lemma.

Remark 37. We may observe that the spectrum of L′ε,µ̃,V in π0Q0K0,s0 results from a
perturbation of order ε of the spectrum of the selfadjoint operator π0Q0(A − λ0)Q0π0, the
spectrum of which is the closure of the set of eigenvalues λj(|k|2) − λ0, j = 0, 1, .., k ∈ Γ,
with

−δ′0 ≤ λ0(|k|2)− λ0 < 0, and ± λj(|k|2)− λ0 < −δ0, j = 1, 2, ..

and − λ0(|k|2)− λ0 < −δ0 where k ∈ Γ with 0 < ||k| − kc| ≤ δ1.

It results that, for ε small enough, the spectrum of L′ε,µ̃,V in π0Q0K0,s0 has a gap in its
real part, between −3δ0/4 and −δ0/2. Hence the eigenvalues which might be close to 0, are
those coming from λ0(|k|2) − λ0 uniquely, and this allows us to come back to a situation
analogue to the one in [4], except for the selfadjointness of the operator which is not true
here, starting at order ε.

Remark 38. We notice that the restriction on δ1 leads to a restriction on δ′0 = O(δ2
1).

The restriction on δ′0 made in the proof of Lemma above is independent of ε0, for ε0 small
enough.
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Remark 39. The operator L′ε,µ̃,V depends analytically on (ε, µ̃, V ), therefore, we can give
its expression for ε = 0. From Lemma 36 we have

L′0,µ̃,V = π0Q0(A− λ0)Q0π0 + µ̃I. (88)

Coming back to the linear equation (75), we finally have

Lemma 40. For s0 > d/2, s > s0, 0 < ε ≤ ε1(s) ≤ ε0, |µ̃| ≤ ε0, V ∈ Q0K0,s such that
||V ||0,s0 ≤ 1, and s ∈ [s0, s], assume that there exists C(s) > 0 such that

||L′−1
ε,µ̃,V f0||0,s ≤ C(s)[||f0||0,s + ||V ||0,s||f0||0,s0 ], for any f0 = π0f, with f ∈ Q0K0,s.

Then, for s ∈ [s0, s], ε0 small enough and f ∈ Q0K0,s

||L−1
ε,µ̃,V f ||0,s ≤ C

′(s)[||f ||0,s + ||V ||0,s||f ||0,s0 ], (89)

where C ′(s) = 3Cs) + c(s)/δ′0.

Proof. We start with (79) and the estimate for Q
(0,1)
ε,µ̃,V in (82). We obtain, for ε small enough

||v0||0,s ≤ C(s)[||π0f + Q
(0,1)
ε,µ̃,V (I− π0)f ||0,s + ||V ||0,s||π0f + Q

(0,1)
ε,µ̃,V (I− π0)f ||0,s0 ]

≤ 2C(s)[||f ||0,s + ||V ||0,s||f ||0,s0 ].

Using now (76) with (82), we obtain successively

||Q(1,0)
ε,µ̃,V v0||0,s ≤ 2ε

c(s)

δ′0
C(s)[||f ||0,s + ||V ||0,s||f ||0,s0 ],

||v1||0,s ≤
2c(s)

δ′0
[||f ||0,s + ||V ||0,s||f ||0,s0 ],

and v0 + v1 is L−1
ε,µ̃,V f for which (89) holds in the norm Q0K0,s.

7.6 Projection ΠN

We define the projection ΠN as the suppression of Fourier modes with k ∈ Γ such that
Nk > N. The range of this projection is then

EN := ΠNπ0Q0K0,s,

which is in fact independent of s (however its norm depends on s), and where we do not
forget that coefficients are functions of z ∈ [0, 1], here in L2. A difference with the spaces
EN occuring in [4] and [3] (for example), is that our EN is infinite dimensional. However
the spectrum of the linear operator ΠNL

′
ε,µ̃,V ΠN is discrete since, for a given V , it is a

perturbation of the operator ΠNπ0Q0(A−λ0)Q0π0ΠN , where the number of Fourier modes
eik·x is finite (number N bounded by bNd, d being defined in section 3 and b independent
of N), and that for any fixed |k|, the spectrum of ΠNπ0Q0(A−λ0)Q0π0ΠN is discrete, only
composed with eigenvalues of finite multiplicities. Notice also that

ΠNπ0 = π0ΠN ,

and that Lemma 40 is still valid, when restricted to EN .

30

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Estimates of the inverse of (ΠNL
′
ε,µ̃,V ΠN)

8.1 Estimate of (ΠNL
′
ε,µ̃,V ΠN)−1 in ΠNπ0Q0K0,s0 for small N

Lemma 41. Let s0 > d/2, V ∈ K0,s0 satisfies ||V ||0,s0 ≤ 1, and assume (ε, µ̃) ∈ [0, ε0] ×
[−ε, ε]. Then for N ≤Mε, where Mε is defined by (92), we have the following estimates

||(ΠNL
′
ε,µ̃,V ΠN )−1v||0,s0 ≤ 2c(1 +N2)2l0 ||v||0,s0 , for v ∈ ΠNπ0Q0K0,s0 , (90)

||(ΠNLε,µ̃,V ΠN )−1v||0,s0 ≤ 2cc′(1 +N2)2l0 ||v||0,s0 for v ∈ ΠNQ0K0,s0 . (91)

Proof. We use Lemma 36 and

ΠNπ0Q0L
′
ε,µ̃,V Q0π0ΠN = ΠNπ0Q0(A− λ0)Q0π0ΠN + µ̃+

+ΠNπ0Q0[Bε + ε2µ̃Cε,µ̃ + Rε,µ̃,V ]Q0π0ΠN ,

with the estimates (for |µ̃| ≤ ε)

||ΠNπ0Q0[µ̃+ Bε + ε2µ̃Cε,µ̃ + Rε,µ̃,V ]Q0π0ΠN ||0,s0 ≤ c1ε.

Now, by construction, and from Lemma 34, we have

||(ΠNπ0Q0(A− λ0)Q0π0ΠN )−1||0,s0 ≤ c(1 +N2)2l0 .

Then, if we have
cc1ε(1 +N2)2l0 ≤ 1/2

we can use Neumann series, to invert the operator (ΠNL
′
ε,µ̃,V ΠN ) in ΠNπ0Q0K0,s0 , and

obtain (90) provided that

N ≤Mε =
[ c2

ε1/4l0

]
≤
(

1

(2cc1ε)1/2l0
− 1

)1/2

, (92)

where the brackets [·] mean the integer part of. The result for (ΠNLε,µ̃,V ΠN )−1 comes from
Lemma 40.

8.2 Good set of µ̃

Let us define for M > 0, s0 > d/2

U (N)
M : = {u ∈ C2([0, ε1[×[−ε, ε], EN ); u(0, µ̃) = 0, (93)

||u||0,s0 ≤ 1, ||∂ε,µ̃u||0,s0 ≤M, ||∂2
ε,µ̃u||0,s0 ≤M}.

We do not forget that Lemma 36 says that operator L′ε,µ̃,V is analytic in (ε, µ̃, V ).

Now, for V ∈ U (N)
M we need to study the inverse of ΠNL

′
ε,µ̃,V (ε,µ̃)ΠN when it exists, in

function of µ̃ for ε fixed. As an operator in L(EN ) with the norm induced by L(K0,s0),
its eigenvalues result from a small perturbation of the selfadjoint operator ΠNπ0Q0(A −
λ0)π0ΠNQ0 which has a discrete set of eigenvalues (notice that since we do not impose
a bound on ||V ||0,s, the perturbation might not be small for s > s0). Since we are only
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interested into the eigenvalues very close to 0, the eigenvalues which interest us are the ones
which perturb the (negative) eigenvalues λ0(|k|2)− λ0 close to 0, obtained for |k| near kc.

For s = s0, let us introduce the projection Π′ commuting with ΠNL
′
ε,µ̃,V ΠN , associated

with this group of eigenvalues close to 0 (separated from the rest of the spectrum at a
distance at least δ0/4). We then apply the results (such as [13] Theorem 6.17 p.178) on
bounded operators with a separation of the spectrum in two bounded parts. We then
obtain that the spectrum of the operator

(I−Π′)ΠNL
′
ε,µ̃,V (ε,µ̃)ΠN (I−Π′)

lies at a distance at least 3δ0/4 from 0, hence its inverse is bounded by a constant C. We
can then proceed exactly as with the projection π0 at section 7.4 and prove the following

Lemma 42. For s0 > d/2, 0 < ε ≤ ε0, |µ̃| ≤ ε, V ∈ Q0K0,s0 such that ||V ||0,s0 ≤ 1, there
exists c” > 0 such that

||(ΠNL
′
ε,µ̃,V ΠN )−1||0,s0 ≤ c”||(Π′ΠNL

′
ε,µ̃,V ΠNΠ′)−1||0,s0 .

We are in the same finite-dimensional space as in [4]. The definition of the good set of µ̃ is
only linked with the finite set of eigenvalues perturbing λ0(|k|2)−λ0 for k ∈ Γ, ||k|−kc| ≤ δ1,
and located in the strip

−3δ0/4 < Re(·) < δ0/4,

for ε small enough. However, we cannot use directly the method of [4], since the operator
Π′ΠNL

′
ε,µ̃,V ΠNΠ′ is not selfadjoint.

From Lemma 36 we have

Π′ΠNL
′
ε,µ̃,V ΠNΠ′ = Π′ΠNπ0Q0(A− λ0)Q0π0ΠNΠ′ + µ̃Id+

+Π′ΠNBεΠNΠ′ + ε2µ̃Π′ΠNCε,µ̃ΠNΠ′ + Π′ΠNRε,µ̃,V ΠNΠ′

where Id is the identity in Π′EN . The new property is that the negative selfadjoint operator
Π′ΠNπ0Q0(A− λ0)Q0π0ΠNΠ′ satisfies

||Π′ΠNπ0Q0(A− λ0)Q0π0ΠNΠ′||0,s0 ≤ δ′0 (94)

which is the size of its spectrum even in absence of ΠN (the norm in L(EN ) is the norm
induced by L(K0,s0)).

In the sequel of this subsection and the next one, we simplify the notations in defining

L
(N,V )
ε,µ̃ =: Π′ΠNL

′
ε,µ̃,V (ε,µ̃)ΠNΠ′, (95)

which is analytic in (ε, µ̃) when V = 0. Then we define

V (ε, µ̃) = V0(ε) + V1(ε, µ̃),

where V0, V1 are C2 in their arguments, and V1 satisfies (see properties required in U (N)
M )

||V1(ε, µ̃)||0,s0 ≤M |µ̃|, ||∂µ̃V1(ε, µ̃)||0,s0 ≤M, ||∂µ̃V1(ε, µ̃2)− ∂µ̃V1(ε, µ̃1)|| ≤M |µ̃2 − µ̃1|.
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Then, we also decompose accordingly Rε,µ̃,V (ε,µ̃) as

Rε,µ̃,V (ε,µ̃) = ε4R(0)
ε + ε4R

(1)
ε,µ̃,

where R
(0)
ε , R

(1)
ε,µ̃ are C2 in their arguments, and R

(1)
ε,µ̃ satisfies

||R(1)
ε,µ̃v||0,s0 ≤ M |µ̃|||v||0,s0 , ||∂µ̃R

(1)
ε,µ̃v||0,s0 ≤M ||v||0,s0

||(∂µ̃R
(1)
ε,µ̃2
− ∂µ̃R

(1)
ε,µ̃1

)v||0,s0 ≤ M |µ̃2 − µ̃1|||v||0,s0 .

Then,

L
(N,V )
ε,µ̃ = ˜(A− λ0)N + B′(N)

ε + µ̃Id+ ε2C
′(N)
ε,µ̃ ,

with
˜(A− λ0)N =: ΠNπ0Q0(A− λ0)Q0π0ΠN

B′(N)
ε = ΠN (Bε + ε4R(0)

ε )ΠN ,

C
′(N)
ε,µ̃ = ΠN (µ̃Cε,µ̃ + ε2R

(1)
ε,µ̃)ΠN ,

Let us now consider the selfadjoint operator L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ , which may now be written

as
L

(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ = µ̃2Id+ C̃

(N)
ε,µ̃ + B̃(N)

ε , (96)

where (we simplify in omitting below the writting of Π′):

B̃(N)
ε = ˜(A− λ0)

2

N + B′(N)
ε

˜(A− λ0)N + ˜(A− λ0)NB
′(N)∗
ε + B′(N)

ε B′(N)∗
ε ,

C̃
(N)
ε,µ̃ = µ̃[2 ˜(A− λ0)N + B′(N)

ε + B′(N)∗
ε ] + ε2[ ˜(A− λ0)N + B′(N)

ε + µ̃]C
′(N)∗
ε,µ̃ +

+ε2C
′(N)
ε,µ̃ [ ˜(A− λ0)N + B′(N)∗

ε + µ̃] + ε4C
′(N)
ε,µ̃ C

′(N)∗
ε,µ̃ ,

where the adjoint is taken with the scalar product in EN induced by the scalar product in

K0,s0 . Operators B̃
(N)
ε and C̃

(N)
ε,µ̃ are C1 in their arguments. Moreover there exists c > 0

such that

||B̃(N)
ε2 − B̃(N)

ε1 ||0s0 ≤ c(δ′0 + ε)|ε2 − ε1|, C̃
(N)
ε,0 = 0

||C̃(N)
ε2,µ̃2

− C̃
(N)
ε1,µ̃1
||0,s0 ≤ c(δ′0 + ε)(|ε2 − ε1|+ |µ̃2 − µ̃1|), (97)

||∂µ̃C̃
(N)
ε,µ̃2
− ∂µ̃C̃

(N)
ε,µ̃1
||0,s0 ≤ cε2|µ̃2 − µ̃1|.

Let us now define

Definition 43. For V ∈ U (N)
M and τ, γ > 0 (to be determined later), the ”good” set of µ̃ is

the set

G(N)
ε,γ (V ) :=

{
µ̃ ∈ [−ε, ε]; ||(Π′ΠNL

′
ε,µ̃,V ΠNΠ′)−1v||0,s0 ≤

N τ

γ
||v||0,s0 , for any v ∈ Π′EN

}
,

where || · ||0,s means the norm in L(EN ) induced by L(K0,s).

Saying that µ̃ is ”good”, i.e. µ̃ ∈ G(N)
ε,γ (V ), implies that the positive selfadjoint operator

L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ has all its eigenvalues larger than ( γ

Nτ )2. It is now possible to give a bound
for the measure of the bad set for µ̃.

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8.3 Bad set of µ̃

By definition, the bad set of µ̃ is the complement of the good set. Hence for V ∈ U (N)
M ,

B(N)
ε,γ (V ) :=

{
µ̃ ∈ [−ε, ε]; ∃v ∈ Π′EN such that

||(Π′ΠNL
′
ε,µ̃,V ΠNΠ′)−1v||0,s0 > Nτ

γ ||v||0,s0 .

}
.

Now we prove the following

Lemma 44. Assume that N > Mε, d/2 < s0, τ > d + 12l0, (ε, µ̃) ∈ (0, ε1] × [−ε, ε], and

V ∈ U (N)
M . Moreover assume that Condition 47 holds, then there exists a constant C > 0,

such that the measure of B
(N)
ε,γ (V ) is bounded by

Cγ

N τ−d ,

The following proof only considers eigenvalues close to 0, i.e. we use, without mentioning
it, the projection Π′ which eliminates the infinite dimensional subspace corresponding to
”large” eigenvalues.

Let us prove the following.

Lemma 45. For ε small enough, µ̃ ∈ [−ε, ε], s0 > d/2, the eigenvalues of L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃

take the form
σj(ε, µ̃) = µ̃2 + fj(ε, µ̃), (98)

where fj(ε, µ̃) is Lipschitz in (ε, µ̃) with

|fj(ε2, µ̃2)− fj(ε1, µ̃1)| ≤ c(δ′0 + ε)(|ε2 − ε1|+ |µ̃2 − µ̃1|. (99)

Moreover, for ε fixed, fj(ε, µ̃) is C2 with respect to µ̃.

Proof. We use the Lidskii theorem (see [13] theorem 6.10 p.126) for comparing the eigenval-

ues fj of operators C̃
(N)
ε2,µ̃2

+ B̃
(N)
ε2 and C̃

(N)
ε1,µ̃1

+ B̃
(N)
ε1 , and the estimate (97), which directly

leads to (99). Then, it remains to add µ̃2 for obtaing the eigenvalues σj of L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ .

The property that fj(ε, µ̃) is C2 with respect to µ̃ results from the selfadjointness and from
[13] see p.115 and the proof of theorem 6.8 p.122 applied on the reduced operator (using
the eigenprojection associated with a group of eigenvalues which split for µ̃ close to µ̃0).

Remark 46. Let us consider eigenvalues µ̃gj(ε, µ̃) of the selfadjoint operator C̃
(N)
ε,µ̃ which

we write as
C̃

(N)
ε,µ̃ = µ̃C̃(1)

ε + µ̃C̃
(2)
ε,µ̃,

where C̃
(2)
ε,µ̃ is C1 in µ̃ and

C̃
(2)
ε,0 = 0, ∂µ̃C̃

(2)
ε,0 = 0, ||C̃(2)

ε,µ̃||0,s0 ≤ cε
2|µ̃|. (100)

By the Lidskii theorem we know that

µ̃gj(ε, µ̃) = µ̃g
(1)
j (ε) + µ̃g

(2)
j (ε, µ̃),
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with
g

(1)
j (ε) eigenvalue of C̃(1)

ε ,

and {g(2)
1 (ε, µ̃), ..., g

(2)
N (ε, µ̃)} belongs to the convex hull of the vectors obtained from {γ1, ...γN }

by all possible permutations, where γj ’s are the eigenvalues of C̃
(2)
ε,µ̃ in EN . Then, because

of (100), we obtain

|g(2)
j (ε, µ̃)| ≤ cε2|µ̃|.

Applying again the Lidskii theorem, in considering the eigenvalues fj(ε, µ̃) of the selfadjoint

operator C̃
(N)
ε,µ̃ + B̃

(N)
ε , this leads to

fj(ε, µ̃) = sε + µ̃f
(1)
j (ε, µ̃)

where µ̃f
(1)
j (ε, µ̃) belongs to the convex hull of the vectors obtained from {µ̃g1(ε, µ̃), ...µ̃gN (ε, µ̃)}

by all possible permutations, where µ̃gj(ε, µ̃)’s are the eigenvalues of C̃
(N)
ε,µ̃ in EN , and we

cannot decompose f
(1)
j (ε, µ̃) as f

(1)
j (ε, 0)+f

(2)
j (ε, µ̃), with f

(2)
j (ε, µ̃) Lipschitz in µ̃. For being

able to claim such a decomposition, we need to control the Lipschitz constant with respect
to µ̃ of the second derivative with respect to µ̃, in 0 of fj(ε, µ̃). It is shown for example in

[13] that such an information uses a bound for the pseudo-inverse of B̃
(N)
ε − sε, which is

of the size of the inverse of the distance of sε from the spectrum of B̃
(N)
ε . This distance is

unfortunately very small of order N−4l0 .

Let us now try another way. For a given ε, let us consider an eigenvalue sε of B̃
(N)
ε ,

and define the associated orthogonal eigenprojection Pε. Then, because B̃
(N)
ε is selfadjoint,

we have
Pε(B̃

(N)
ε − sε) = 0.

The operator C̃
(N)
ε,µ̃ acts as a perturbation, and let us consider fj which belongs to the sε -

group of eigenvalues, resulting from the perturbation of sε, and denote by Pε,µ̃ the orthogonal
eigenprojection associated with the sε - group of eigenvalues. Then, by definition there is
an eigenvector ζj(ε, µ̃) satisfying

{C̃(N)
ε,µ̃ + B̃(N)

ε − fj(ε, µ̃)}ζj(ε, µ̃) = 0,

which is equivalent to

Pε{C̃(N)
ε,µ̃ + sε − fj(ε, µ̃)}ζj(ε, µ̃) = 0.

We have Pεζj(ε, µ̃) ∈ PεEN , and also, since PεPε,µ̃ is one to one from Pε,µ̃EN onto PεEN ,

ζj(ε, µ̃) = (PεPε,µ̃)−1Pεζj(ε, µ̃),

which means that Pεζj(ε, µ̃) is an eigenvector belonging to the eigenvalue fj(ε, µ̃) − sε for

the operator PεC̃
(N)
ε,µ̃ (PεPε,µ̃)−1Pε acting in the subspace PεEN . We just need to decompose

into a part which is linear in µ̃ plus a rest of order µ̃2. Then, the problem is that we have no
nice bound for the derivative ∂µ̃(PεPε,µ̃) because there occurs again (see [13] p.77 formula

(2.14)) the pseudo-inverse of B̃
(N)
ε − sε, only bounded by the inverse of the (very small)

distance of sε from the rest of spectrum of B̃
(N)
ε .
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Proof of Lemma 44. Assume that µ̃ ∈ B
(N)
ε,γ (V ), then it results that the norm of

(L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ )−1 is > (N

τ

γ )2 and that there exists j such that

0 ≤ σj(ε, µ̃) < η2 =: (
γ

N τ
)2. (101)

We need to measure the set (depending on ε) of µ̃ such that

0 ≤ µ̃2 + fj(ε, µ̃) < η2.

Let us consider the function of µ̃

φε(µ̃) =: µ̃2 + fj(ε, µ̃),

defined for |µ̃| ≤ ε. Thanks to (99), we then have

µ̃2 − c(δ′0 + ε)|µ̃|+ fj(ε, 0) ≤ φε(µ̃) ≤ µ̃2 + c(δ′0 + ε)|µ̃|+ fj(ε, 0), (102)

which means that the graph of µ̃ 7→ φε(µ̃) is situated between two close parabolas. This
implies that the roots µ̃ of φε(µ̃) = η2 are bounded, when they exist. The maximal and
minimal roots are noted µ̃±. So we have

µ̃+2 + fj(ε, µ̃
+) = η2,

with the same equation for µ̃−. In the case when these roots do not exist, the bad set is
empty for the eigenvalue σj(ε, µ̃).

In all cases, we have (positive operator)

φε(µ̃) ≥ 0 for µ̃ ∈ [µ̃−, µ̃+],

and the function has at least a minimum in µ̃m such that

µ̃− < µ̃m < µ̃+, 0 ≤ φε(µ̃m) < η2.

Then this leads to
µ̃+2 − µ̃2

m + fj(ε, µ̃
+)− fj(ε, µ̃m) < η2,

and applying (99), we obtain

µ̃+2 − µ̃2
m − c(δ′0 + ε)(µ̃+ − µ̃m) < η2,

hence,

(µ̃+ − c

2
(δ′0 + ε))2 − (µ̃m −

c

2
(δ′0 + ε))2 < η2.

If µ̃m − c
2(δ′0 + ε) and µ̃+ − c

2(δ′0 + ε) have the same sign, we use now the property that
0 < a2 − b2 < η2 leads to |a − b| < η, when a and b have the same sign. This allows to
conclude that, in such a case

µ̃+ − µ̃m < η.
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In the same way if µ̃m + c
2(δ′0 + ε) and µ̃− + c

2(δ′0 + ε) have the same sign,

(µ̃− +
c

2
(δ′0 + ε))2 − (µ̃m +

c

2
(δ′0 + ε))2 < η2.

gives
µ̃m − µ̃− < η,

and finally the bad interval would be bounded by 2η.
Since we are unable to prove the suitable property for fj(ε, µ̃), we need the following

Condition 47. Functions fj(ε, µ̃) defined in (98) have their derivative with respect to µ̃
which are Lipschitz: for µ̃ ∈ [−ε, ε], there exists 0 < k < 2 with

|∂µ̃fj(ε, µ̃2)− ∂µ̃fj(ε, µ̃1)| ≤ k|µ̃2 − µ̃1|. (103)

We may observe that this assumption takes into account of a loss of boundedness from

the estimate (97) for the operator C̃
(N)
ε,µ̃ , since the Lipschitz constant for the derivative is

k < 2 in place of cε2. However, this is a true assumption, with no proof at this time.
Now, in using Hypothesis (103), we claim that the function µ̃ 7→ φε(µ̃) is convex:

∂µ̃φε(µ̃) = 2µ̃+ ∂µ̃fj(ε, µ̃)

is an increasing function of µ̃, cancelling in µ̃ = µ̃m. This property, combined with the
property (102), leads to a unique minimum in µ̃m, and to a measure of bad µ̃ in the (worse)
case given when the graph of φε is tangent to the axis. We have

φε(µ̃)− φε(µ̃m) =

∫ µ̃

µ̃m

(2µ̃+ ∂µ̃fj(ε, µ̃))dµ̃

=

∫ µ̃

µ̃m

(2(µ̃− µ̃m) + ∂µ̃fj(ε, µ̃)− ∂µ̃fj(ε, µ̃m))dµ̃

≥ (2− k)

2
(µ̃− µ̃m)2,

Since φε(µ̃
±) = η2, we obtain

µ̃+ − µ̃− ≤ 2η√
(1− k/2)

Summing up for all eigenvalues, using that the dimension N of EN is bounded by bNd,
the measure of the set of bad µ̃ , is bounded by

2bγ√
(1− k/2)N τ−d

. (104)

Remark 48. We give precisions at section 10 on the structure of the bad set in the plane
(ε, µ̃). It is shown that the curves µ̃−(ε), µ̃+(ε) are Hölder continuous functions of ε with
exponent 1/2.
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The estimate of Lemma 44 is then proved with C = 2b√
(1−k/2)

. Finally let us observe that

this measure is small with respect to the length 2ε3 of the interval for µ̃ = ε3µ′, provided
that

ε3N τ−d ≥ ε3M12l0
ε N τ−d−12l0 ≥ c′2N τ−d−12l0

is large enough. This is the case, as soon as τ > d+ 12l0.

Then we have the following

Proposition 49. Let d = 2(l0 + 1) be the dimension of the Q- vector space spanned by
the wave vectors kj , j = 1, ..., 2q, and τ > d + 2 + 24l0. Let N be ≥ 1. Assume moreover

that 0 < γ ≤ γ̃ = c′

c22l0+1 , (where c is the constant occuring in (90) ) and (ε, µ̃, V ) ∈
[0, ε1] × [−ε, ε] × U (N)

M with µ̃ ∈ G(N)
ε,γ (V ), ε1 small enough. For s0 >

d
2 , there exists c′ > 0

independent of N and γ, such that for any v ∈ Π′π0EN , we have

||(Π′ΠNL
′
ε,µ̃,V (ε,µ̃)ΠNΠ′)−1v||0,s0 ≤ c′

N τ

γ
||v||0,s0 , (105)

and the same estimate holds for (ΠNLε,µ̃,V (ε,µ̃)ΠN )−1 for v ∈ EN .

Proof. If N ≥ 1, then 2cγ ≤ c′/22l0 ≤ c′Nτ

(1+N2)2l0
, i.e.

2c(1 +N2)2l0 ≤ c′N
τ

γ
.

Then the estimate for (L
(N,V )
ε,µ̃ )−1v follows for N ≤ Mε from (90). For N > Mε by

definition of the good set of µ̃, the estimate on (Π′ΠNL
′
ε,µ̃,V (ε,µ̃)ΠNΠ′)−1v follows. For

(ΠNLε,µ̃,V (ε,µ̃)ΠN )−1 the estimate follows from Lemma 42.

Remark 50. The choice to take τ > d + 2 + 24l0 will be explained later (see Lemma 55).
With such a choice, we have 1

Nτ−d−2 ≤ 1

M
24l0
ε

≤ cε6.

Definition 51. For V ∈ U (N)
M and τ, γ > 0, we define the set of good µ̃ for all K ≤ N , as

G(N)
ε,γ (V ) = ∩K≤NG(K)

ε,γ (V ),

where we notice that G
(K)
ε,γ (V ) = [−ε, ε] for K < Mε, thanks to Lemma 41.

Our aim is now to obtain an estimate for (ΠNLε,µ̃,V (ε,µ̃)ΠN )−1 in K0,s for s > s0. We
may observe that it is not possible to obtain directly such an estimate in K0,s for s > s0,
because the norm ||V ||0,s|| would appear in the estimates for αj in the eigenvalues σj , and
this is far to be controlled.
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8.4 Separation properties (H1) and (H2)

The eigenvalues close to 0 of the unperturbed operator ΠNπ0Q0(A − λ0)Q0π0ΠN are the
negative numbers λ0(|k|2) − λ0 where |k| 6= kc, and 1 ≤ Nk ≤ N . Let ρ > 0. We need to
have good separation properties of the singular set

S(N) =
{
k ∈ Γ;λ0 − λ0(|k|2) < ρ, 1 ≤ Nk ≤ N

}
, (106)

which contains the k’s corresponding to the small denominators, whereas the regular set is

R(N) :=
{
k ∈ Γ;λ0 − λ0(|k|2) ≥ ρ, 1 ≤ Nk ≤ N

}
. (107)

We have a bijection between S(N) and S(N) := {x ∈ Γ(N); λ0 − λ0(|k(x)|2) < ρ} where
k(x) is defined in (6) and

Γ(N) := {x ∈ Zd; 0≤|x| ≤ N, k(x) ∈ Γ}.

We use the fact that for ||k| − kc| ≤ δ1, there exist c1 and c2 > 0 such that

c1(|k|2 − k2
c )

2 ≤ λ0 − λ0(|k|2) ≤ c2(|k|2 − k2
c )

2 (108)

and (8) holds. Then as in [4], we use the results of Bourgain in [5], Craig in [7], and [2], so
that we obtain

Proposition 52. There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then there
exists a decomposition of S(N) =

⋃
α∈AΩα into a union of disjoint clusters Ωα satisfying :

• (H1), for all α ∈ A, Mα ≤ 2mα where Mα = maxx∈Ωα |x| and mα = minx∈Ωα |x|;

• (H2), there exists δ = δ(d) ∈]0, 1[ independent of N such that if α, β ∈ A, α 6= β then

dist(Ωα,Ωβ) := min
x∈Ωα,y∈Ωβ

|x− y| ≥
(Mα +Mβ)δ

2
.

8.5 Estimate of (ΠNL
′
ε,µ̃,V (ε,µ̃)ΠN)−1in ΠNπ0Q0K0,s

We use the proof of [2] (see pages 628 to 636). In fact, we need the selfadjointness in
ΠNπ0Q0K0,s (i.e. EN with the adapted scalar product) of the operator

DN =: ΠNπ0Q0(A− λ0)Q0π0ΠN ,

diagonal (see Appendix E) with respect to Fourier components in ΠNπ0Q0K0,s, for which
we know all eigenvalues. Moreover, we have

ΠNL
′
ε,µ̃,V ΠN = DN + εT (ε, µ̃, V )

where the second part εT is a bounded operator (not diagonal) of order ε having the
properties of a multiplication operator, as it is needed in [2] (see Lemma 3.9 in [2]): (see
the proof in Appendix E)
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Lemma 53. Let A,B ⊂ S(N) ∪ R(N), and let s0 > d/2. Then for any s ≥ s0 > d/2
there exists C(s) > 0 such that the following estimate holds for any V ∈ Q0K0,s such that
||V ||0,s0 ≤ 1, and h ∈ ΠNπ0Q0K0,0

||TAB h||0,0 ≤
C(s)ε(1 + ε3||V ||0,s)||h||0,0

(1 + d(A,B))s−d/2
,

where d(A,B) is the distance in Zd between A and B, and TAB is the operator T acting
in EN restricted to elements with Fourier spectrum with {k(x);x ∈ A}, the action being
projected on elements with Fourier spectrum such that {k(x);x ∈ B}.

This property, with the estimate (105) used for any K ≤ N (replaces the use of eigen-
values of ΠNLε,µ̃,V (ε,µ̃)ΠN as it is done in [2]), are the basic ingredients for the proof of the
following

Proposition 54. Let d = 2(l0 + 1) be the dimension of the Q- vector space spanned by
the wave vectors kj , j = 1, ..., 2q, and τ > d+ 2 + 24l0 as in Lemma 49. Assume moreover

that 0 < γ ≤ γ̃ = c′

c22l0+1 , and (ε, µ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N)
M , with µ̃ ∈ G(N)

ε,γ (V ) , ε1

small enough. There exists s0(d, δ, τ) > d
2 where δ is the number introduced in separation

property (H2), and let s > s0. There exists m(d, δ, τ) such that for all s ∈ [s0, s] there exists
K(s) > 0 such that for any h ∈ ΠNπ0Q0K0,s, we have

||(ΠNL
′
ε,µ̃,V (ε,µ̃)ΠN )−1h||0,s ≤ K(s)

Nm

γ
(||h||0,s + ||V (ε, µ̃)||0,s||h||0,s0), (109)

and the same estimate holds for (ΠNLε,µ̃,V (ε,µ̃)ΠN )−1.

9 Resolution of the range equation

In this section we use [3] for finding v = V (ε, µ̃) in U (N)
M , defined for (ε, µ̃) in [0, ε1]× [−ε, ε],

bounded by O(ε), of class C2 in its arguments, solution of F(ε, µ̃, v) = 0 (see (110) below)
in a suitably large subset of (0, ε1)× [−ε, ε].

All operators (linear and non linear) satisfy good tame estimates in the scale of Sobolev
spaces ΠNπ0Q0K0,s s > d/2 and the projection ΠN plays the role of a smoothing operator
(see [4]):

||ΠNu||0,s+r ≤ (1 +N2)r/2||u||0,s, ∀u ∈ K0,s,

||(I−ΠN )u||0,s ≤ (1 +N2)−r/2||u||0,r+s, ∀u ∈ K0,s+r.

Indeed, we have the good functional setting and the good ”tame” properties of the map
(see Lemmas 26, 35, 54):

F(ε, µ̃, v) = : Lε,µ̃v + g(ε, µ̃)− ε4Q0B(v, v) (110)

(ε, µ̃, v) 7→ F(ε, µ̃, v) : [0, ε1]× [−ε, ε]×Q0K0,s → Q0K0,s for s ≥ s0 > d/2,

with (see (67))

Lε,µ̃ = Q0(A− λ0 + µ̃+ µε)− 2Q0B(uε − ε2h̃(ε, µ̃), ·),
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F(0, 0, 0) = 0 (for ε = 0, we have µ̃ = 0).

The mapping F appears to be C3 with the following estimates for v ∈ Q0K0,s, s ∈
[s0, s], s0 > d/2, and ||v||0,s0 ≤ 1

||Lε,µ̃v||0,s ≤ C(s)||v||0,s,
||ε4Q0B(v, v′)||0,s ≤ ε4C(s)[||v||0,s||v′||0,s0 + ||v′||0,s],

||g(ε, µ̃)||0,s ≤ ε2C(s),

||∂ε,µ̃g(ε, µ̃)||0,s + ||∂2
ε2g(ε, µ̃)||0,s + ||∂2

εµ̃g(ε, µ̃)||0,s + ||∂2
µ̃2g(ε, µ̃)||0,s ≤ C(s),

||∂εLε,µ̃v||0,s ≤ C(s)||v||0,s.

We may notice that

DvF(ε, µ̃, v)[u] = Lε,µ̃u− 2ε4Q0B(v, u),

D2
vF(ε, µ̃, v)[v1, v2] = −2ε4Q0B(v1, v2),

D3
vF(ε, µ′, v) = 0,

hence

||∂εDvF(ε, µ̃, v)[u]||0,s ≤ C(s)[||u||0,s + ε3||v||0,s||u||0,s0 ],

||∂µ̃DvF(ε, µ̃, v)[u]||0,s ≤ C(s)||u||0,s,

Moreover, Lemma 54 says that for any (ε, µ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N)
M , V ∈ K0,s with

µ̃ ∈ G(N)
ε,γ (V )

||(ΠNDvF(ε, µ̃, V (ε, µ̃))ΠN )−1v||0,s ≤ K(s)
Nm

γ
(||v||0,s + ||V (ε, µ̃)||0,s||v||0,s0),

so that assumptions (F1), (F2), (F3), (F4) and on the invertibility of the linearized operator,
made in [3] are satisfied. We also satisfy additionnal properties (F2)+, (F4)+ required in
Appendix F on higher order derivatives, useful for getting a solution V which is C2 in (ε, µ̃).
Moreover the required property (L) in [3] needs to be satisfied:

Lemma 55. Choose N2 ≥ N1 ≥Mε, and V1 ∈ U (N1)
M , V2 ∈ U (N2)

M . For ε ∈ (0, ε1), consider
the set of µ̃ which are ”good” for V1, but ”bad” for V2 :

µ̃ ∈
(
G(N2)
ε,γ (V2)

)c
∩ G(N1)

ε,γ (V1)

where the apex c denotes the complementary in [−ε, ε]. Assume that ||V2 − V1||0,s0 ≤ N−σ1 ,
with σ > 2d − 6 + 32l0, and τ > d + 2 + 24l0, then for ε1 small enough, in particular for
ε1 ≤ γ4l0 :

meas
{(
G(N2)
ε,γ (V2)

)c
∩ G(N1)

ε,γ (V1)
}
∩ [−ε, ε] ≤ C1γ

ε6

N1
.
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Proof.(
G(N2)
ε,γ (V2)

)c
∩ G(N1)

ε,γ (V1) =
(
∪Mε≤K≤N2B

(K)
ε,γ (V2)

)
∩
(
∩Mε≤K≤N1G

(K)
ε,γ (V1)

)
⊂

(
∪Mε≤K≤N1B

(K)
ε,γ (V2) ∩G(K)

ε,γ (V1)
)
∪
(
∪N1≤K≤N2B

(K)
ε,γ (V2)

)
.

Moreover, according to Lemmas 35 and 36 and a careful study of the form of operator

L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ in (96), we have for K ≤ N1

||L(K,V2)
ε,µ̃ L

(K,V2)∗
ε,µ̃ − L

(K,V1)
ε,µ̃ L

(K,V1)∗
ε,µ̃ ||0,s0 ≤ cε4||V2 − V1||0,s0 ≤

cε4

Nσ
1

.

Let us assume that µ̃ ∈ B
(K)
ε,γ (V2) ∩ G(K)

ε,γ (V1), then there is at least one eigenvalue

(> 0) of L
(K,V2)
ε,µ̃ L

(K,V2)∗
ε,µ̃ which is < ( γ

Kτ )2. Then, by Lidskii theorem (see [13] p.126) the

selfadjoint operator L
(K,V1)
ε,µ̃ L

(K,V1)∗
ε,µ̃ has an eigenvalue < ( γ

Kτ )2 + cε4

Nσ
1
. Since µ̃ ∈ G(K)

ε,γ (V1),

this eigenvalue is > ( γ
Kτ )2. Hence, the bad µ̃ correspond to an interval

[(
γ

Kτ
)2, (

γ

Kτ
)2 +

cε4

Nσ
1

],

containing the above eigenvalue of L
(K,V1)
ε,µ̃ L

(K,V1)∗
ε,µ̃ . The same proof as the one made for

Lemma 44, shows that the measure of corresponding bad set of µ̃ is bounded by

2√
(1− k/2)

√
cε4

Nσ
1

,

Hence,

meas
(
∪Mε≤K≤N1B

(K)
ε,γ (V2) ∩G(K)

ε,γ (V1)
)
≤ 2√

(1− k/2)

√
cε4

Nσ
1

∑
Mε≤K≤N1

bKd ≤ 2b
√
c√

(1− k/2)

ε2

N
σ/2−d−1
1

≤ 2b
√
c√

(1− k/2)

ε2

N1

1

M
σ/2−d−2
ε

≤ c′γ

N1
ε

2+
σ/2−d−3

4l0 ≤ c′γε6

N1
.

Now

meas
(
∪N1≤K≤N2B

(K)
ε,γ (V2)

)
≤

∑
N1≤K≤N2

Cγ

Kτ−d ≤
Cγ(τ − d− 1)

N τ−d−1
1

≤ c′′γ

N1
ε
τ−d−2

4l0 ≤ c′′γε6

N1
.

Finally

meas
(
G(N2)
ε,γ (V2)

)c
∩ G(N1)

ε,γ (V1) ≤ (c′ + c′′)γε6

N1
,

which is the result of the Lemma.
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We may then apply a simple adaptation of theorem 3 of Berti-Bolle-Procesi [3] to solve
equation F(ε, µ̃, V ) = 0, and find the solution V which is C2 in the parameters (ε, µ̃), and

such that V ∈ U (N)
M . Let γ,m, s0 be as in Proposition 54. Moreover, let s > s0 + 4(m +

1) + 8m = s0 + 4 + 12m.

From proposition 54, it follows that if (ε, µ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N)
M , V ∈ K0,s and

µ̃ ∈ G(N)
ε,γ (V ) then (ε, µ̃, V ) ∈ J (N)

γ,m (as defined in (4) of [3], that is (109) holds for s ∈ [s0, s].
In [3] [theorem 3] one considers N ≥ N0 = N0(γ) with N0(γ) sufficiently large and

0 < ε ≤ ε2(γ) with ε2(γ) sufficiently small. We may choose N0 = N0(γ) = Mε3(γ) with a
suitable ε3(γ) ≤ ε2 and we consider in the following 0 < ε ≤ ε3(γ).

Theorem 56. Let s0 and γ̃ be as in Proposition 54. Then for all 0 < γ < γ̃ there exist
ε2(γ) ∈ [0, ε0] and a C2−map V : (0, ε2(γ))×[−ε, ε]→ ΠNπ0Q0K0,s0 , such that V (0, 0) = 0,
||∂µ̃V ||0,s0 ≤M, and if ε ∈ (0, ε2(γ)), µ̃ ∈ ([−ε, ε] \Cε,γ), the function V (ε, µ̃) is solution of
F(ε, µ̃, V ) = 0 (110). Here Cε,γ is a subset of [−ε, ε] which is a Hölder continuous function
of ε, and has Lebesgue-measure less than Cγε6 for some constant C > 0 independent of ε
and γ.

The proof is the same as in [4], except for Hölder continuity which is proved at next

section. In fact Cε,γ is a union of intervals I
(Nn)
ε (see definition 57, with Nn = (N0(γ))2n ,

so that each end of each interval is a fonction of ε which is Hölder continuous in ε with
exponent 1/2.

10 Resolution of the bifurcation equation

Let V be the function obtained in Theorem 56. It is C2 in (ε, µ̃). Replacing V (ε, µ̃) in the
bifurcation equation (66), and replacing µ̃ by ε3µ′, we can solve with respect to µ′ and find
a function h̃(ε) which is C1 in (ε), such that

µ′ = εµ4 + εh̃(ε), (H), h̃(ε) = O(ε) (111)

for ε ∈ (0, ε2(γ)) provided that ε2 is small enough, and µ′ ∈ [−1, 1].
For obtaining solutions valid for our system, the condition µ4 6= 0 is not required (see

(62) for µ4). Indeed, in case µ4 = 0, the curve (H) in the (ε, µ′) plane is just more flat near
ε = 0. This coefficient µ4 has not been computed yet, but it can be computed in principle,
depending a priori on q only.

Let us show that in the plane (ε, µ′) the bad set is located into ”bad strips”. Then we
shall need a transversality condition to insure that these bad strips intersect transversally
the ”curve” (H), such that any point of this curve, which does not belong to bad strips,
gives indeed an eligible solution of our problem.

10.1 Transversality condition for ”bad strips”

In the plane (ε, µ′), the bad strips are bounded by the curves given by the solutions µ̃± (ε)
(where µ̃ = ε3µ′) of

σj(ε, µ̃) = µ̃2 + fj(ε, µ̃) = η2,

where η = γ/N τ , not forgetting that σj depends on N .
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Definition 57. For N and V fixed, a set of ”bad strips” is defined by

BSN (V ) = {(ε, µ′) ∈ [0, ε2(γ)]× [−1, 1]; ε3µ′ ∈ I(N)
ε },

where I
(N)
ε is one of the intervals (µ̃−j (ε), µ̃+

j (ε)), or with one of the bounds replaced by ε3

(right bound), or by −ε3 (left bound), as defined at section 8.3 .

Let us show that the limiting curves µ̃−j (ε), µ̃+
j (ε) are Hölder continuous with exponent

1/2. We have for ε2 > ε1, along a limiting curve

σj(ε2, µ̃2)− σj(ε1, µ̃1) = 0, µ̃j = µ̃(εj),

σj(ε2, µ̃2)− σj(ε1, µ̃1) = µ̃2
2 − µ̃2

1 + fj(ε2, µ̃2)− fj(ε1, µ̃1)

and thanks to (99)), assuming µ̃2 > µ̃1,

µ̃2
2 − µ̃2

1 ≤ c(δ′0 + ε)(|ε2 − ε1|+ µ̃2 − µ̃1)

hence
[µ̃2 −

c

2
(δ′0 + ε)]2 − [µ̃1 −

c

2
(δ′0 + ε)]2 ≤ c′(δ′0 + ε)(ε2 − ε1),

and since the two quantities in brackets have the same sign when |µ̃2− µ̃1| is small enough,
then if

[µ̃2 −
c

2
(δ′0 + ε)]2 − [µ̃1 −

c

2
(δ′0 + ε)]2 > 0,

we may use the argument that when 0 < a2− b2 < η2, with ab ≥ 0, then |a− b| ≤ |η|, which
leads to

µ̃2 − µ̃1 ≤
√
c′(δ′0 + ε)(ε2 − ε1),

which is the Hölder continuity. If, on the contrary

[µ̃2 −
c

2
(δ′0 + ε)]2 − [µ̃1 −

c

2
(δ′0 + ε)]2 < 0,

we need to use Condition 47, as in Section 8.3. For |µ̃2− µ̃1| small enough, we may assume
that either µ̃m(ε1) < µ̃1 < µ̃2 (upper limit curve), or µ̃1 < µ̃2 < µ̃m(ε2) (lower limit curve).
In the first case, we obtain

σj(ε1, µ̃2)− σj(ε1, µ̃1) ≥ (1− k/2)[(µ̃2 − µ̃m(ε1))2 − (µ̃1 − µ̃m(ε1))2] ≥ (1− k/2)(µ̃2 − µ̃1)2.

In the second case, we obtain

|σj(ε2, µ̃2)− σj(ε2, µ̃1)| ≥ (1− k/2)[(µ̃m(ε2)− µ̃1)2− (µ̃m(ε2)− µ̃2)2] ≥ (1− k/2)|µ̃2− µ̃1|2.

On the other hand, we have

|σj(ε1, µ̃2)− σj(ε1, µ̃1)| = |σj(ε1, µ̃2)− σj(ε2, µ̃2)| ≤ c′(δ′0 + ε)|ε2 − ε1|
|σj(ε2, µ̃2)− σj(ε2, µ̃1)| = |σj(ε2, µ̃1)− σj(ε1, µ̃1)| ≤ c′(δ′0 + ε)|ε2 − ε1|.

Hence, in all cases
|µ̃2 − µ̃1|2 ≤ (1− k/2)−1c′(δ′0 + ε)|ε2 − ε1|,
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which is Hölder continuity.
In the case when µ̃ is not exceptional, i.e. if the eigenvalue σj is not multiple, the slope

of the tangent to the curves µ̃−j (ε), µ̃+
j (ε) is

t(ε) = −
∂εσj(ε, µ̃

+
j )

∂µ̃σj(ε, µ̃
+
j )
, (112)

given here for µ̃+
j (ε) (analogous formulae holding for the other curve). Now in a more

precise way, for (ε, µ̃) not exceptional, and taking into account of the form (96), we obtain
by standard arguments for simple eigenvalues:

∂µ̃σj(ε, µ̃
+) = 2〈(A− λ0)ζj(ε, µ̃

+), ζj(ε, µ̃
+)〉+ 2µ̃+ +O(ε) = O(δ′0 + ε),

∂εσj(ε, µ̃
+) = −4〈B(u1, (A− λ0)ζj(ε, µ̃

+), ζj(ε, µ̃
+)〉+O(ε) = O(δ′0 + ε),

where ζj(ε, µ̃
+) is the eigenvector with norm 1 belonging to the eigenvalue σj(ε, µ̃

+) of

the operator L
(N,V )
ε,µ̃ L

(N,V )∗
ε,µ̃ . Even though the operator (A − λ0) is definite negative in the

subspace where ζj lives, we may notice that (A − λ0)ζj(ε, µ̃
+) may be very small, so the

term O(ε) above might be the dominant order in ∂µ̃σj and ∂εσj . It is then difficult to be
more precise for any transversallity condition of the strips BSN (V ) with respect to the
curve (H) defined by (111).

Now, let us consider for (N, ε) fixed, the bad set of µ̃ which we know is of measure
bounded by c3γε

6/N (see Proposition 49 and Lemma 55). In case of intersection of a
bad strip with (H), we need to measure the corresponding set of ”bad ε”. The proof of
Theorem 56 via Nash-Moser process considers a sequence Nn = (N0(γ))2n and successive
approximates Vn of the solution V. For estimating the intersections of the bad strips with
the curve (H) we are led to make a transversality conjecture.

Conjecture 58. Let µ̃±(Nn)(ε) be any one of the limiting curves of the bad strips of
BSNn(Vn−1), n ∈ N. Then we assume that for any of these curves, there exists c > 0
independent of Nn, such that for h ∈ R in a neighborhood of 0, the following inequality
holds:

|µ̃(ε+ h)− µ̃(ε)| ≥ cε2|h|.

Remark 59. This is indeed a very weak assumption for the slopes defined by (112), since
this means that the slopes t(ε) have a lower bound |t(ε)| > cε2. This insures transversality
with the bifurcation curve (H) , the slope of which is O(ε3). However we have no means to
check its validity. Moreover, if, unluckily, a curve µ̃(ε) belonging to one of the bad strips
of BSNn(Vn−1) intersects (H) at an exceptional point (ε, µ̃(ε), where an eigenvalue σj is
multiple, then we cannot a priori define the ”slope” of the corresponding limiting curve of
the bad strip. This is why we took the above formulation for the Transversality conjecture
even though we might just eliminate the corresponding exceptional values of ε (we have no
bound for their measure).

Remark 60. In taking µε in (63) at a higher order than ε3, we should find µ̃ of higher
order than ε4 which flattens the slope of the bifurcation curve (H). Then we could weaken
the transversality condition and replace ε2 by a an order in ε larger than 2, which still
guarantees the transversality with (H).
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Let us denote by δµ̃ the measure of the bad µ̃, and by δε the corresponding measure for
bad ε. Then we have, (see the right side of Figure 6):

δε <
δµ̃

|t|
<
δµ̃

cε2
.

Let us define for ε fixed, the set BεSN (V ) which is the section of BSN (V ) for some ε. In
summing the measure of the bad set for ε after all iterations, we obtain a measure of the bad
set for ε, bounded by the measure of Cε,γ = ∪n≥1BεSNn(Vn−1) divided by cε2, i.e. a bad
set bounded by Cγε4 (see Theorem 56). The complementary subset in (0, ε3), constitutes

the good set of ε, which is of asymptotic full measure since ε−Cγε4
ε → 1 as ε→ 0.

Remark 61. In the case when we need to weaken the transversality condition 58, as in-
dicated in the Remark above, we can also increase the order (here ε6) for the size of bad
µ̃ in Theorem 56, just in increasing τ in Proposition 54, so that we can keep an order of
smallness ε4 for the bad ε’s.

Remark 62. If we consider µ̃ in an interval independent of ε, we can look at the situation
for ε = 0, as in Remark 39. We see that the eigenvalues σj(0, µ̃) have the form:

σj(0, µ̃) = (µ̃+ λ0(|k|2)− λ0)2, Nk ≤ N

This leads to bad intervals for µ̃ of the form

[λ0 − λ0(|k|2)− γ

N τ
, λ0 − λ0(|k|2) +

γ

N τ
], with k such that Nk ≤ N. (113)

We notice that λ0 − λ0(|k|2) ∼ c(|k|2 − k2
c ) with c 6= 0 because of Assumption 32. Hence

λ0 − λ0(|k|2) >
c′

N4l0
,

which gives intervals (113) ”far” from 0 for τ large enough (which is one of our assumptions
in Proposition 54).

10.2 Final result

If the Transversality Conjecture 58 is verified, then there is a good set for ε, with asymptotic
full measure as ε→ 0, such that there exists a couple (ε, µ̃(ε)) on the curve (H) which lies
in the good set (see Figure 6). Then this gives the existence of a solution (ε, µ′(ε)) of (111),
as ε tends towards 0.

Now we observe that we can write µ′ = εµ, with µ centered in µ4. This defines the good
1-dimensional set Λε of all good µε.

Finally with (63), we obtain a solution of (35) under the form

u = εu1 + ε2u2 + ε3u3 + ε4u4 + ε4(V (ε, ε4µε)− h(ε, εµε))

λ = λ0 − µ2ε
2 − µ3ε

3 − ε4µε.

This ends the proof of Theorem 1, with little adaptation of notations. Notice that the
solution (λ, u)(ε) is C1, restricted to the ”good” values of ε. (see Figure 2).

46

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



0

(H)

ε

ε3
μ
~

(H)

bad strip

δε
slope t

slope ε3

μ
~

ε

δμ~
δμ~
|t|

Figure 6: Sketch of the bad set in the plane (ε, µ̃). (H) is the ”curve” given by (111)
approximated by ε4µ4 (µ4 > 0 is assumed here). The drawing on the right side explains
the bound for the measure of δε.

A Inverse of L

In this appendix we compute and estimate the inverse of the operator L. By construction,
solving the equation

LU = G = (F, g) ∈ K0,s, with U ∈ Ds(L), (114)

means that we have

∆V −∇q = F, ∇ · V = 0,

∆θ = g,

i.e.

(D2 − k2)v
(z)
k −Dqk = f

(z)
k , (115)

(D2 − k2)V
(H)
k − ikqk = F

(H)
k , (116)

(D2 − k2)θk = gk, (117)

Dv
(z)
k + ik · V (H)

k = 0, (118)

where k = |k|, and with the boundary conditions :

θ = v
(z)
k = 0 in z = 0, 1,

V
(H)
k |z=0,1 = 0, or V

(H)
k |z=0 = DV

(H)
k |z=1 = 0, or V

(H)
k |z=1 = DV

(H)
k |z=0 = 0.

The above system is a classical one (Stokes operator and Laplace operator), already obtained
in the periodic case. The only thing to check concerns the estimates with respect to k ∈ Γ.

The scalar product of (115) with v
(z)
k plus the scalar product of (116) with V

(H)
k and

integration by parts, taking into account of Dv
(z)
k + ik · V (H)

k = 0 and of the boundary
values, leads to

||DVk||20 + k2||Vk||20 = −
∫ 1

0
Fk · V kdz ≤ ||Fk||0||Vk||0 ≤

k2

2
||Vk||20 +

1

2k2
||Fk||20. (119)
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Moreover, thanks to the boundary conditions, we have also the Poincaré estimate (see (27))

||Vk||0 ≤
1√
2
||DVk||0.

It results that there exists c > 0 such that for any k ∈ Γ we have

(1 + k2)||DVk||20 + (1 + k2)2||Vk||20 ≤ c||Fk||20. (120)

The same (simpler) is valid for θ :

(1 + k2)||Dθk||20 + (1 + k2)2||θk||20 ≤ c||gk||20. (121)

Now (117) leads to
||D2θk||0 ≤ k2||θk||0 + ||gk||0 ≤ c′||gk||0,

hence, using (121),
||θk||2 ≤ c1||gk||0. (122)

Let us show that the same type of estimate holds for Vk = (V
(H)
k , v

(z)
k ). We observe that

the divergence free condition on F leads to

Df
(z)
k + ik · F (H)

k = 0

which implies

(D2 − k2)qk = 0, (123)

(D2 − k2)2v
(z)
k = (D2 − k2)f

(z)
k , (124)

with boundary conditions on v
(z)
k as v

(z)
k |z=0,1 = 0, Dv

(z)
k |z=0,1 = 0 orDv

(z)
k |z=0 = 0, D2v

(z)
k |z=1 =

0, or Dv
(z)
k |z=1 = 0, D2v

(z)
k |z=0 = 0. Now taking the scalar product of (124) with v

(z)
k in

L2(0, 1), and integrations by parts, lead to

||D2v
(z)
k ||

2 + 2k2||Dv(z)
k ||

2 + k4||v(z)
k ||

2 =

∫ 1

0
ik · F (H)

k Dv
(z)
k dz − k2

∫ 1

0
f

(z)
k v

(z)
k dz

≤ k||Dv(z)
k ||0||F

(H)
k ||0 + k2||v(z)

k ||0||f
(z)
k ||0.

Taking into account of (120), we obtain immediately

||v(z)
k ||2 ≤ c2||Fk||0. (125)

Now, in using (115) we can say that

||Dqk|| ≤ c3||Fk||0, (126)

where c3 is independent of k ∈ Γ. Now (123) gives

qk = αke
kz + βke

−kz,
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and
Dqk = kαke

kz − kβke−kz

should satisfy (126). It is easy to check that this implies that

kα2
ke

2k + kβ2
k − 4k2αkβk

is bounded by 2c2
3||Fk||20 for large k. Now since

|4k2αkβk| ≤ 8k3α2
k +

k

2
β2
k,

and since, for large k, 8k3 << ke2k, we conclude that for large k the quantity kα2
ke

2k + kβ2
k

is bounded by c4||Fk||20. Now computing ||kqk||2, we see the same behavior in kα2
ke

2k + kβ2
k

for large k. It follows that we have

||kqk|| ≤ c5||Fk||0,

and (116) allows to conclude that

||V (H)
k ||2 ≤ c6||Fk||0.

Collecting all the above estimates gives for a certain constant c > 0

||Uk||2 ≤ c||Gk||0,

which is the desired estimate for L−1 now bounded from K0,s to Ds(L) ⊂ K2,s.

A.1 Extension of the inverse of L

Let us consider now the same equation (114) but with a less regular right hand side. Now
we take G ∈ (D1/2,s)

∗ which is the dual of D1/2,s defined in (24). This means that for any
V ∈ D1/2,s, we have the following bound for the semi-linear form 〈G,V 〉0,s :

|〈G,V 〉0,s| ≤ ||G||(D1/2,s)
∗ ||V ||1̃,s.

We are now looking for U ∈ D1/2,s defined by a variational formulation (also classical for
the Stokes linear operator, as well as for the Laplace operator (see [28]), both written in
Fourier components)

〈U, V 〉1̃,s = −〈G,V 〉0,s for any V ∈ D1/2,s,

where the definition of 〈U, V 〉1̃,s comes from (28). For the type of discussion which follows,

we may also refer to [16] p.223-224, adapted to each Fourier component here.
It is easy to check, in looking at the first equality in (119) and its analogue for θk, that

〈LU, V 〉0,s = 〈G,V 〉0,s for any V ∈ D1/2,s,

holds, where the brackets are dual products. This proves that the unique solution U ∈
D1/2,s, hence by definition (−L)1/2U ∈ K0,s and

||U ||1̃,s ≤ ||G||(D1/2,s)
∗ , (127)

which means that the operator L which is bounded from D1/2,s to (D1/2,s)
∗, has its inverse

bounded from (D1/2,s)
∗ to D1/2,s.
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B Proof of Lemmas 16

Let u be a scalar function in H(1)
1,s , which means that

u(x, z) =
∑
k∈Γ

uk(z)eik·x,

with ∑
k∈Γ

(1 +N2
k)s||uk||21 <∞, ||uk||21 =

∫ 1

0

(
|Duk|2 + (1 + |k|2)|uk|2

)
dz.

Assume now that u and v are scalar functions in H(1)
1,s , then

||uv||2H1,s
=

∫ 1

0

∑
k∈Γ

(1 +N2
k)s
(
|D(uv)k|2 + (1 + |k|2)|(uv)k|2

)
dz

and using (a+ b)2 ≤ 2a2 + 2b2

≤
∫ 1

0

∑
k∈Γ

(1 +N2
k)s
(
2|(vDu)k|2 + 2|(uDv)k|2 + (1 + |k|2)|(uv)k|2

)
.

From Lemma 10 we have∑
k∈Γ

(1 +N2
k)s|(uDv)k(z)|2 ≤ 2C(s, s0)2(

∑
l∈Γ

(1 +N2
l )s|ul(z)|2)(

∑
m∈Γ

(1 +N2
m)s0 |Dvm(z)|2) +

+2C(s, s0)2(
∑
l∈Γ

(1 +N2
l )s0 |ul(z)|2)(

∑
m∈Γ

(1 +N2
m)s|Dvm(z)|2),

and the analogue holds for vDu.
Now, introduce u′ and ũ defined by

ũk = |uk| u′k =
√

1 + k2ũk,

then, in using (1 + |l + m|2) ≤ 2((1 + |l|2) + 2(1 + |m|2)√
1 + k2|(uv)k| ≤

√
1 + k2

∑
k=l+m

u′lv
′
m√

1 + l2
√

1 + m2

≤
√

2
∑

k=l+m

ũlv
′
m + u′lṽm =

√
2[(ũv′)k + (u′ṽ)k].

Hence
(1 + k2)|(uv)k|2 ≤ 4(|(ũv′)k|2 + |(u′ṽ)k|2),

and using again Lemma 10 we obtain
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∑
k∈Γ

(1 +N2
k)s(1 + |k|2)|(uv)k|2 ≤ 8C(s, s0)2

(∑
l∈Γ

(1 +N2
l )s(1 + |l|2)|ul|2

)(∑
m∈Γ

(1 +N2
m)s0 |vm|2

)
+

+8C(s, s0)2

(∑
l∈Γ

(1 +N2
l )s|ul|2

)(∑
m∈Γ

(1 +N2
m)s0(1 + |m|2)|vm|2

)
+

+8C(s, s0)2

(∑
l∈Γ

(1 +N2
l )s0(1 + |l|2)|ul|2

)(∑
m∈Γ

(1 +N2
m)s|vm|2

)
+

+8C(s, s0)2

(∑
l∈Γ

(1 +N2
l )s0 |ul|2

)(∑
m∈Γ

(1 +N2
m)s(1 + |m|2)|vm|2

)
.

Now we can use ∫ 1

0
|Dul|2|vm|2dz ≤ c||ul||2H1 ||vm||2H1∫ 1

0
(1 + |l|2)|ul|2|vm|2dz ≤ c(1 + |l|2)||ul||2L2 ||vm||2H1

and the similar symmetric estimates to show that there is a constant c2(s, s0) = 10cC2(s, s0)
such that finally

||uv||21,s ≤ c2(s, s0)(||u||21,s||v||21,s0 + ||u||21,s0 ||v||
2
1,s),

Lemma 16 is proved.

Assume now that u and v are scalar functions, respectively in H(1)
1,s and H(1)

0,s with
s ≥ s0 > d/2. Then

||uv||2
0,s

=

∫ 1

0

∑
k∈Γ

(1 +N2
k)s|(uv)k|2dz

which gives, by Lemma 10∑
k∈Γ

(1 +N2
k)s|(uv)k|2 ≤ 2C(s, s0)2(

∑
l∈Γ

(1 +N2
l )s|ul|2)(

∑
m∈Γ

(1 +N2
m)s0 |vm|2) +

+2C(s, s0)2(
∑
l∈Γ

(1 +N2
l )s0 |ul|2)(

∑
m∈Γ

(1 +N2
m)s|vm|2).

Now we use ∫ 1

0
|ul|2|vm|2dz ≤ c||ul||2H1 ||vm||2L2 ,

which leads to
||uv||2

0,s
≤ 2cC(s, s0)2(||u||21,s||v||20,s0 + ||u||21,s0 ||v||

2
0,s)

which gives Lemma 17.
Now by Lemma 9 we have for all z ∈ (0, 1) the two inequalities∑

k∈Γ

|(uv)k|2 ≤ 2cs(
∑
l∈Γ

(1 +N2
l )s|ul|2)(

∑
m∈Γ

|vm|2), (128)
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and ∑
k∈Γ

|(uv)k|2 ≤ 2cs(
∑
l∈Γ

|ul|2)(
∑
m∈Γ

(1 +N2
m)s|vm|2). (129)

We also have for some c > 0 :∫ 1

0
|ul|2|vm|2dz ≤ cmin{||ul||2H1 ||vm||2L2 , ||ul||2L2 ||vm||2H1}.

Then summing (128) on (0, 1) and using the last inequality leads to Lemma 18, while
summing (129) and using the last inequality leads to Lemma 19.

C Proofs of the bounds for the quadratic term

For U ∈ K2,s, we have all components of ∇V and ∇θ which are in H(1)
1,s . Moreover, for

U ∈ K2,s and U ′ ∈ K2,s Lemma 16 says that the components of

V · ∇V ′, V · ∇θ′, V ′ · ∇V, V ′ · ∇θ

satisfy estimates given by this Lemma in H1,s. The projection P does not change the
estimates, hence

||B(U,U ′)||1,s ≤ c(s, s0)(||U ||2,s||U ′||2,s0 + ||U ||2,s0 ||U ′||2,s),

which is (20).

For proving (21) we have U ∈ K1,s, hence components of ∇V and ∇θ ∈ H(1)
0,s and Lemma

17 shows that the components of V · ∇V ′, and V · ∇θ′ lie in H(1)
0,s . To obtain B(U,U ′) we

just need to apply the projection P to V · ∇V ′ and to V ′ · ∇V. Then estimate (21) results
immediately from estimate of Lemma 17.

For proving (33) we need to prove that for (U, V ) ∈ K1,s ×K1,0 then

||B(U, V )||0,0 ≤ c′||U ||1,s||V ||1,0.

Indeed, components of ∇U and ∇V belong respectively to H0,s and H0,0 and we need to
consider products of functions of the forms H0,s ×H1,0 and H1,s ×H0,0. Then Lemmas 18
and 19 and projecting by P (as above) allow to prove that B(U, V ) ∈ K0,0 with the required
estimate (33).

D Study of the nondegeneracy condition leading to (44)

Let us come back to the homogeneous system associated with (41), which gives for every
fixed k ∈ Γ the discrete set of eigenvalues λj(|k|), j = 0, 1, 2, ... (below, for the sake of
simplicity, we omit to consider λ0 as a function of |k|2). Below, we only consider k in R+

since we know that only its modulus matters. We are interested in the concavity of the
graph of λ0(k) in the neighborhood of k = kc > 0, where dλ0

dk (kc) = 0.
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By construction, we have

λ0(D2 − k2)v
(z)
k + θk −Dqk = 0,

λ0(D2 − k2)V
(H)
k − ike1qk = 0, (130)

λ0(D2 − k2)θk + v
(z)
k = 0,

Dv
(z)
k + ike1 · V (H)

k = 0,

where D = d/dz, e1 is the unit vector along the x axis, and where

v
(z)
k |z=0,1 = θk|z=0,1 = 0,

and either

V
(H)
k |z=0,1 = 0, or V

(H)
k |z=0 = DV

(H)
k |z=1 = 0, or V

(H)
k |z=1 = DV

(H)
k |z=0 = 0.

For k = kc > 0 the eigenvalue λ0(k) reaches λ0 > 0 where dλ0
dk (kc) = 0, as this results

from the analyticity of the function λ0(k) with λ0 → 0 as k → 0 and as k → ∞ (see [25],

[26]). Our purpose is to compute d2λ0
dk2

(kc). We need d2λ0
dk2

(kc) 6= 0 for establishing (44) since
the denominator in (44) corresponds, up to a factor, to λ(k) − λ0 in a neighborhood of kc
(notice that the function λ(k) is even in k). In fact it is only known numerically that there
is only one maximum and that the graph is concave at this point, so we intend to just give
a formula for λ′′0 = d2λ0

dk2
(kc).

More precisely let us differentiate (130) with respect to k :

λ′0(D2 − k2)v
(z)
k − 2λ0kv

(z)
k + λ0(D2 − k2)v

′(z)
k + θ′k −Dq′k = 0,

λ′0(D2 − k2)V
(H)
k − 2λ0kV

(H)
k − ie1qk + λ0(D2 − k2)V

′(H)
k − ike1q

′
k = 0, (131)

λ′0(D2 − k2)θk − 2λ0kθk + λ0(D2 − k2)θ′k + v
′(z)
k = 0,

Dv
′(z)
k + ike1 · V ′(H)

k + ie1 · V (H)
k = 0,

which, for k = kc gives

−2λ0kcv
(z)
k + λ0(D2 − k2

c )v
′(z)
k + θ′k −Dq′k = 0,

−2λ0kcV
(H)
k − ie1qk + λ0(D2 − k2

c )V
′(H)
k − ikce1q

′
k = 0, (132)

−2λ0kcθk + λ0(D2 − k2
c )θ
′
k + v

′(z)
k = 0,

Dv
′(z)
k + ikce1 · V ′(H)

k + ie1 · V (H)
k = 0,

with the same boundary conditions for (V
′(H)
k , v

′(z)
k , θ′k) as for the eigenvector Uk = (V

(H)
k , v

(z)
k , θk).

Before going further we need to determine the derivative with respect to k of the eigen-
vector Uk in k = kc. We observe that the last equation in (132) is not exactly as in (130),
so we need to make a little change of notation, for being able to use the pseudo-inverse of
λ0Lkc +Akc in kc = kce1.

Let us define

Ũ ′k = (Ṽ
′(H)
k , v

′(z)
k , θ′k), with Ṽ

′(H)
k = V

′(H)
k +

1

kc
V

(H)
k ,
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then (132) becomes

λ0(D2 − k2
c )v
′(z)
k + θ′k −Dq′k = 2λ0kcv

(z)
k ,

λ0(D2 − k2
c )Ṽ

′(H)
k − ikce1q

′
k = 2λ0kcV

(H)
k +

2λ0

kc
(D2 − k2

c )V
(H)
k , (133)

λ0(D2 − k2
c )θ
′
k + v

′(z)
k = 2λ0kcθk,

Dv
′(z)
k + ikce1 · Ṽ ′(H)

k = 0.

The system (133) holds because of the property λ′0 = 0, which implies that the compatibility
condition is realized for the right hand side (cancelling the scalar product of the 3 first lines

resp. with (v
(z)
k , V

(H)
k , θk)):

2λ0kc||Uk||20 +
2λ0

kc

∫ 1

0
(D2 − k2

c )V
(H)
k · V (H)

k dz = 0,

i.e. after integrating by parts

k2
c (||v

(z)
k ||

2
0 + ||θk||20)− ||DV (H)

k ||20 = 0. (134)

Notice that for k = ke1, the functions v
(z)
k , θk, v

′(z)
k , θ′k are real valued, while V

(H)
k and V

′(H)
k

are pure imaginary.

Remark 63. We can also give a formula for any k in using (131):

λ′0(k)||Uk||21̃ =
2λ0

k

[
||DV (H)

k ||20 − k2(||v(z)
k ||

2
0 + ||θk||20)

]
, (135)

where
||Uk||21̃ = ||DUk||20 + |k|2||Uk||2, (136)

which corresponds to the norm of the k-component in the definition (28) of norm || · ||1̃,s.

From (133) we can now write

Ũ ′k = ˜(λ0Lkc +Akc)
−1
[
2λ0kcUk + Pk(

2λ0

kc
(D2 − k2

c )V
(H)
k , 0, 0)

]
,

where ˜(λ0Lkc +Akc)
−1

is the pseudo-inverse of (λ0Lkc+Akc) taking values in the orthogonal
of its kernel (selfadjoint operator) and Pk is the k-component of the projection P defined
in section 4.1. Hence

U ′k = ˜(λ0Lkc +Akc)
−1
[
2λ0kcUk + Pk(

2λ0

kc
(D2 − k2

c )V
(H)
k , 0, 0)t

]
− (

1

kc
V

(H)
k , 0, 0)t. (137)

Differentiating (135) with respect to k in k = kc then gives

λ′′0||Uk||21̃ = 2λ0
d

dk

(
1

k
||DV (H)

k ||20 − k(||v(z)
k ||

2
0 + ||θk||20)

)
|k=kc , (138)

which is the desired formula, where all terms are now known.
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E Proof of Lemma 53

We refer extensively to [2], pages 628-636, here adapted to an operator in an infinite-
dimension space (since we do not consider the projection Π′).

The operator (A−λ0) is diagonal (all k-th Fourier components are uncoupled for opera-
tors ∆,P, L,A) as well as for orthogonal projections π0 and ΠN . The projection Q0 = I−P0

is also diagonal, since it just modifies each Fourier component eikj ·x, j = 1, 2, .., 2q. More-
over, notice that kj belongs to the singular set S(N) for any N since |kj | = kc. However 0

is not an eigenvalue because of the z dependency of coefficients of eikj ·x, the corresponding
eigenvalues being λj(k

2
c )− λ0 < −δ0 < 0, j = 1, 2, ....

Eigenvalues of DN = ΠNπ0Q0(A − λ0)Q0π0ΠN are λj(|k|2) − λ0, j = 0, 1, ... with
||k| − kc| ≤ δ1, and Nk ≤ N, the eigenvalues close to 0 corresponding to j = 0, with the
estimate (108) (notice that the operator Q0 eliminates the eigenvalue 0). Then, the required
estimates on (DN )−1 restricted to the subspace corresponding to parts of ΩN = R(N) +S(N)

are valid. For example, since we have for k ∈ R(N), λ0−λ0(|k|2) ≥ ρ, and since the operator
is self adjoint in K0,s,

||DRh||0,s ≥ ρ||h||0,s for any h ∈ EN ,

where DR is the operator DN restricted to Fourier modes with k ∈ R(N).
Let us now show the ”multiplication property” of operator εT, where Lemma 36 gives,

for (ε, µ̃, V ) ∈ [0, ε1]× [−ε, ε]×Q0K0,s, ||V ||0,s0 ≤ 1

εT (ε, µ̃, V ) =: ΠN (µ̃+ Bε + ε2µ̃Cε,µ̃ + Rε,µ̃,V )ΠN , (139)

with estimates (84).
First for U ∈ K1,s , s ≥ s0 > d/2 and H ∈ K1,0 we see with the definition 21 of B(U,H),

that for U = (V, θ) and H = (VH , θH), there are functions occurring in components of

V · ∇VH , VH · ∇V, V · ∇θH , VH · ∇θ

each one denoted by T1H lies in H0,0 (see Lemmas 18, 19), satifying a bound such that, for
A,B ⊂ Ω(N) (see definition of TAB at Lemma 53)

||[T1]ABH||0,0 ≤ c(s)
||U ||1,s

(1 + d(A,B))s−d/2
||H||1,0,

as it is obtained by the same proof as Lemma 3.9 in [2]. We observe that the projection
P is diagonal in Fourier components, so that the above estimate stays valid for B(U,H) in
K0,0. Now the operator (−L)−1/2 is also diagonal, and bounded from K0,s to K1,s for all
s ≥ 0. It then results from the definition of B that we have the following generalization of
(26) for any V ∈ K0,s , s ≥ s0 > d/2 and h ∈ K0,0 :

||[B(V, ·)]ABh||0,0 ≤ c(s)
||V ||0,s

(1 + d(A,B))s−d/2
||h||0,0. (140)

We then look at the operator appearing in (73):

µ̃+ µε − 2Q0B(uε, ·)− 2ε4Q0B1(V, ·).
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The operator Q0 is diagonal, hence the above estimate (140) leads to a bound in K0,0 as

c(s)
(ε+ ε4||V ||0,s)

(1 + d(A,B))s−d/2
||h||0,0. (141)

Now we need to track the estimate for the transformed operator after the splitting by

π0 (see section 7.5). For its computation we need first to look at operator Q
(1,1)
ε,µ̃,V acting

in (I − π0)Q0K0,0. It is obtained via a Neumann series of powers of operators satisfying
estimates as (141) provided that ||V ||0,s0 ≤ 1, and proofs of Lemmas 3.10, 3.11 of [2] apply
analogously, leading to

||[Q(1,1)
ε,µ̃,V ]ABh||0,0 ≤ c(s)

(1 + ε4||V ||0,s)
(1 + d(A,B))s−d/2

||h||0,0.

The composition of two operators satisfying estimates as above, satisfies also the same
estimate, with modified constants, so that finally for (139) and for any V ∈ K0,s , ||V ||0,s0 ≤
1, s ≥ s0 > d/2 and h ∈ K0,0

||εT (ε, µ̃, V )]ABh||0,0 ≤ c(s)
ε(1 + ε3||V ||0,s)

(1 + d(A,B))s−d/2
||h||0,0.

F A C2 property for the Nash-Moser theorem in [3]

Starting point is the Nash-Moser theorem 3 in Berti-Bolle-Procesi [3] . We want to extend
this theorem from the C1-case to the C2-case. We assume the conditions of that theorem
with ν = 0 and moreover that F (ε, λ, u) is C3 in (ε, λ, u) on [0, ε0)× Λ×Xs0 and that the
following conditions are fulfilled for z := (ε, λ) ∈ [0, ε0) × Λ and u ∈ Xs, s ∈ [s0, S), with
||u||s0 ≤ 1:

(F2)+ ||∂2
λF (z, u)||s ≤ C(s)(||u||s + 1)

(F3)+ ||D3
uF (z, u)[v1, v2, v3]||s ≤ C(s)(||u||s||v1||s0 ||v2||s0 ||v3||s0

+||v1||s||v2||s0 ||v3||s0 + ||v2||s||v1||s0 ||v3||s0 ||+ ||v3||s||v1||s0 ||v2||s0)

(F4)+ ||∂2
λDuF (z, u)[v]|s ≤ C(s)(||u||s||v||s0 + ||v||s),

||∂λD2
uF (z, u)[v1, v2]||s ≤ C(s)(||u||s||v1||s0 ||v2||s0 +

||v1||s||v2||s0 + ||v2||s||v1||s0).

Then Theorem 1 of [3] holds with ν = 0 and ∂2
λu exists and belongs to C([0, ε2)× Λ, Xs0).

To prove this we show that
The sequence (∂2

λun)n≥0 converges in C([0, ε2)×Λ, Xs0), where un is as in [3]. Moreover,
given η ∈ (0, 1) we may choose N0(γ) large enough such that for ∂2

λun : [0, ε2)×Λ→ En+1,
the properties (Pj)n, j = 1, 2, 3, 4 are supplemented by

(P1)+
n 1 + ||∂2

λun||s0 ≤ C(γ)Nσ
0 , (142)

(P2)+
n ||∂2

λ(un+1 − un)||s0 ≤ N
−1+η
n+1 , (143)
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(P4)+
n B′′n = 1 + ||∂2

λun||s ≤ 2N
σ/2+2µ+3η
n+1 . (144)

Finally in (P4)n we have Bn ≤ 2Nµ+η
n+1 , B

′
n ≤ 2N

σ/4+µ+2η
n+1 .

We denote formula numbers from [3] in the following by adding a zero in front of that
number. So (041) corresponds to (41) in [3]. First we remark that corresponding to (034)

and (038) we also have for z ∈ N (An+1, 2γN
−σ/2
n+1 ):

||h̃n+1||s ≤ N2µ+2η
n+1 , (145)

||∂zh̃n+1||s0 ≤ N
−3σ/4−1+2η
n+1 , (146)

||∂zh̃n+1||s ≤ N
σ/2+2µ+3η
n+1 . (147)

and ||hn+1||s ≤ N2µ+2η
n+1 with a proof quite similar to that in [3]. Similarly it follows from

this that [3,Theorem 1] holds in case ν = 0.
To prove the C2 property in λ we will follow the induction process in [3]. First functions
ũ0 and h̃n are constructed. Then u0 := ψ0ũ0, hn := ψnh̃n, un+1 := un + hn+1, where the
cut-off function ψn is defined in (050), but now with the extra property that it is C2 and

|∂zψn| ≤ Cγ−1Nσ/2
n , |∂2

zψn| ≤ C2γ−2Nσ
n . (148)

From the implicit function theorem it follows that h̃n is C2 in λ and then the same
follows for hn and un.

Next we have to estimate the norms of these functions in order to show that the sequence
∂2
λun ∈ C([0, ε2)× Λ, En) converges in C([0, ε2)× Λ, Xs0).

By (032) we have Πn+1F (z, u) = 0 if u = un + h̃n+1 =: u+
n and z ∈ N (An+1, 2γN

−σ/2
n ).

This also holds for n = −1 with u−1 = 0, u+
−1 = ũ0 = h̃0. Applying ∂2

λ to this equation leads
to

L+
n+1∂

2
λh̃n+1 +Mn+1 = 0

where L+
n+1(z) := Πn+1DuF (z, u+

n ) which is invertible by [3, Lemma 2.3] and

Mn+1 := Πn+1[∂2
λ(F (z, u+

n ))+2∂λDu(F (z, u+
n )[∂λu

+
n ]+D2

u(F (z, u+
n ))[∂λu

+
n , ∂λu

+
n ]+Du(F (z, u+

n ))[∂2
λun]

for z as above.
First let n = −1. Then ||M0||s may be estimated using (F2)+, (F3) and F (4). Thus

||M0||s ≤ C(s)[||ũ0||s(1 + 2||∂λũ0||s0 + ||∂λũ0||2s0) + 2||∂λũ0||s(1 + ||∂λũ0||s0) + 1].

From [3, p. 385] we have

||ũ0||s0 ≤ ρ0 = C0γ
−1Nµ

0 ε, ||∂λũ0||s0 ≤ Kγ−1Nµ
0 , ||ũ0||s ≤ K(γ)Nµ

0 ε, ||∂λũ0||s ≤ K(γ)Nµ
0 .

Then we get
||M0||s ≤ C1(γ)N2µ

0

for both s = s0 and s = s. Then we apply (015) and (016) to ∂2
λũ0 = −(L+

0 )−1M0 and

obtain ||∂2
λũ0||s ≤ C(γ)N3µ

0 for both values of s.
From u0 := ψ0ũ0 and (148) we deduce (P1)0 and (P4)0 for η > 0 and N0 sufficiently

large.
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For n ≥ 0 we write Mn+1 = Πn+1
∑6

j=0Aj with

A0 = ∂2
λF (z, un) + 2∂λDuF (z, un)[∂λun] +D2

uF (z, un)[∂λun, ∂λun] +DuF (z, un)[∂2
λun]

A1 = ∂2
λ(F (z, u+

n )− F (z, un)) =

∫ 1

0
∂2
λDu(F (z, un + θh̃n+1))dθ[h̃n+1]

A2 = 2∂λDu(F (z, u+
n )− F (z, un))[∂λu

+
n ] = 2

∫ 1

0
∂λD

2
u(F (z, un + θh̃n+1))dθ[h̃n+1, ∂λu

+
n ]

A3 = 2∂λDuF (z, un))[∂λh̃n+1]

A4 = D2
u(F (z, u+

n )− F (z, un))[∂λu
+
n , ∂λu

+
n ] =

∫ 1

0
D3
u(F (z, un + θh̃n+1))dθ[h̃n+1, ∂λu

+
n , ∂λu

+
n ]

A5 = D2
uF (z, un)([∂λu

+
n , ∂λu

+
n ]− [∂λun, ∂λun]),

A6 = Du(F (z, u+
n )− F (z, un))[∂2

λun] =

∫ 1

0
D2
u(F (z, un + θh̃n+1))dθ[h̃n+1, ∂

2
λun]

Similarly as in [3] using (S1), (F4), (F4)+, (F3)+ and the estimates for ||h̃n+1||s, ||∂zh̃n+1||s, ||un||s
we obtain that there are constants C1(s, γ) independent of n such that

||Πn+1(A1 +A2 +A4)||s0 ≤ C1(s0, γ)N−σ−1
n+1 (149)

||Πn+1(A1 +A2 +A4)||s ≤ C1(s, γ)N
2(µ+η)
n+1 . (150)

Furthermore using (F4) it follows that there exist positive constants K independent of n,
which may be different in different places such that

||Πn+1A3||s0 ≤ KN
−3σ/4−1+2η
n+1 , ||Πn+1A3||s ≤ KNσ/2+2µ+3η

n+1 . (151)

In A5 we may replace [∂λu
+
n , ∂λu

+
n ] − [∂λun, ∂λun] by [∂λh̃n+1, ∂λ(2un + h̃n+1)] and then

with (F3),(142), (145), (146) and (P4)n we obtain

||Πn+1A5||s0 ≤ KN
−3σ/4−1+2η
n+1 , (152)

||Πn+1A5||s ≤ KNσ/2+2µ+3η
n+1 . (153)

and also using (144)
||Πn+1A6||s0 ≤ KN−σ−1

n+1 , (154)

||Πn+1A6||s ≤ KN2(µ+η)
n+1 . (155)

Finally using (F2)+, (F3), (F4), (F6), (P4)n and (P4)+
n we get

||Πn+1A0||s ≤ KNσ/2+2µ+3η
n+1 .

With [3,(S2)] it follows as in (047) that

||Πn+1A0||s0 = ||Πn+1(I −Πn)A0||s0 ≤ KN−s+s0n ||Πn+1A0||s ≤ K ′N−σ/2−2+3η
n+1 .
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Combining the estimates for Aj , j = 0, ...6 it follows that

||Mn+1||s0 ≤ KN
−σ/2−2+3η
n+1

and
||Mn+1||s ≤ KNσ/2+2µ+3η

n+1 .

From (P4)+
n and [3, Lemma 2.3] we obtain

||∂2
λh̃n+1||s0 ≤ KN

−σ/2+µ−2+3η
n+1 , ||∂2

λh̃n+1||s ≤ KNσ/2+3(µ+η)
n+1 (156)

With hn+1 = ψn+1h̃n+1 and (148) it follows that

||∂2
λhn+1||s ≤ ||∂2

λh̃n+1||s + 2|∂λψn+1|||∂λh̃n+1||s + |∂2
λψn+1|||h̃n+1||s (157)

and from the corresponding estimates for h̃n+1 in (145),(146),(147) and (156) we get that

||∂2
λhn+1||s0 ≤ N

−1+η
n+1 , ||∂2

λhn+1||s ≤ Nσ+2µ+4η
n+1 . (158)

From this and un+1 = un+hn+1 we deduce (P2)+
n+1 and (P1)+

n+1. Furthermore with (P4)+
n

it follows that

B′′n+1 ≤ B′′n + ||∂2
λhn+1||s ≤ 2N

σ/2+2µ+3η
n+1 +Nσ+2µ+4η

n+1 ≤ 2Nσ+2µ+4η
n+1 = 2N

σ/2+µ+2η
n+2

and so (P4)n+1 holds and the induction step is proven. Finally this implies as in [3, section
2.4] the statement on the convergence of the maps ∂2

λun in C([0, ε2)× Λ, Xs0) to ∂2
λu.
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