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Abstract In this paper, we prove the existence of a large family of non-trivial
bifurcating standing waves for a model system which describes two-way prop-
agation of water waves in a channel of finite depth or in the near shore zone.
In particular, it is shown that, contrary to the classical standing gravity wave
problem on a fluid layer of finite depth, the Lyapunov-Schmidt method applies
to find the bifurcation equation. The bifurcation set is formed with the discrete
union of Whitney’s umbrellas in the three-dimensional space formed with 2 pa-
rameters representing the time-period and the wave length, and the average of
one of the amplitudes.

1 Introduction

There are many models for studying weakly nonlinear dispersive water waves in
a channel or in the near shore zone. For one-way waves, namely when the wave
motion occurs in one-direction, the well known KdV (Korteweg-de Vries) and
BBM (Benjamin-Bona-Mahoney) equation are the most studied. For two-way
waves, a four parameter class of model equations (which are called Boussinesq-
type systems)

Nt + Uy + (un)m + QUggr — bnzzt = 07
Ut + Nz + uuy + Cllexx — duxmt = 07

(1)
was put forward by Bona, Chen and Saut [3] for small-amplitude and long
wavelength gravity waves of an ideal, incompressible liquid. Systems (1) are
first-order approximations to the two-dimensional Euler equation in the small
parameters € = A/hg and ea = h%/L?, where hg is the depth of water in its
quiescent state, A is a typical wave amplitude and L is a typical wavelength. The
dependent variables n(z,t) and u(x,t), scaled by hg and ¢y = v/ghg respectively



with g being the acceleration of gravity, represent the dimensionless deviation of
the water surface from its undisturbed position and the horizontal velocity at the
level of 6hg of the depth of the undisturbed fluid with 0 < 6 < 1, respectively.
The coordinate x which measures distance along the channel is scaled by hg
and time t is scaled by \/hg/g. The dispersive parameters a,b,c and d are
not independently specifiable parameters, but have to satisfy certain physical
relevant conditions [3]. Systems in (1) are not only formally approximations
to Euler’s equation, but also recently further justified by by Bona, Colin and
Lannes (cf. [5]). It was proved that the solution of (2) approximates the solution
of Euler’s equation with the order of accuracy of the equation (cf. [7, 10, 6, 1, 5]),
namely, for any initial value (n9,uo) € H°(R)? with o > s > 0 large enough,
there exists a unique solution (Neyler, Ueuter) of Euler equations, such that

flu — ueulerHL“’(O,t;HS) +ln — UeuleT”L"O(O,t;HS) = O(e?t, egt, €1€at)

for 0 <t <O(ef', e5t).

In this work, attention will be directed to (x,t)— periodic solutions of a
system of partial differential equations (which we refer as BBM system since it
has certain common properties as the BBM equation)

1
Nt + Uy + (nu)m - gnmmt = Oa
, 2)

Ut + Ny + UUz — gumzt = 0;
which is a member of (1) where § = ,/2/3. One of the advantages that (2)
has over alternative Boussinesq-type systems in (1) (see Bona, Chen & Saut
[3]) is the ease with which it may be integrated numerically. Furthermore, it
was proved in [2] and [4] that the initial value problem either for € R or with
boundary conditions (x € [a, b]) for (2) is well posed in certain natural function
classes.

Since we look for periodic solutions in (z,t), let us introduce the scaled
variables 7 = QW—A\/Ex,f = %t, with 7/4/6 and \/v/6 being the time period
and the wave length. One obtains the rescaled BBM system (the tilde is dropped
for simplicity in notation)

N+ Bug — ANy + Bun)y = 0, (3)
Ut + ﬁnm — QUggt + ﬁ(u2/2)z = 0 (4)

where a and (8 are positive parameters defined by
a=(2m)%/\%, B=T/\

The standing waves, we are looking for are solutions (7, u) doubly 27 - periodic
functions of (x,t), with u odd and 7 even in z. This fixes the origin in x, but
leaves the time shift invariance.

Defining the average of n by A, we have now a 3-dimensional parameter
space, where only the quarter @ > 0,3 > 0 is physically relevant. We prove



below (see theorem 4) that, roughly speaking, there is a discrete set of surfaces
(Whitney’s umbrellas) in the space (¢, 3, A), which constitutes the bifurcation
set of standing waves, solutions of the system (3,4). It is worth noting that the
situation here is extremely different from the standing gravity waves problem for
the classical water waves equations solved for the finite depth case by Plotnikov
and Toland [9], and in the infinite depth case by Iooss, Plotnikov and Toland [8].
Indeed, in the present case, we show (see Lemma 3) that there is no small divisor
problem and it is possible to adapt a Lyapunov-Schmidt method to reduce the
bifurcation problem to a one-dimensional bifurcation equation, after using the
O(2) invariance of the system (see below). The precise result is set at Theorem
4.

2 Study of the linearized operator

Let us study the linearized system

Mt + ﬂuz — QMNggt — f:bv (5)
Ut + an — QUgzt = Jux,

with f odd in x and ¢, and g even in x and t. Let us write the Fourier series

n(xz,t) = Z Npq(cos px)e'dt,
p=0,9€Z

u(z,t) = Z Upg(sin pz)e’?”,
p>0,9€Z

flz,t) = Z fpa(sinpz)e’®,
p>0,9€Z

g(z,t) = Z Gpq(cospx)e’t.
p>0,9€Z

Then we get for p >0, g € Z

iQ(l + ap2)77pq + pﬁupq = pqua
pﬂnpq - iQ(l + ap2)upq =  Pdpq;
and forp=0,q€Z
Mg = 0, when ¢#0 and
1700 is arbitrary.
Let us define
A(p,q) = ¢*(1 + ap?)® — p?5° (6)
then if A # 0, we obtain
Mg = —A7Tplig(1 + ap®) foq + pBYpq]
Upg = —A_lp[pﬁqu - iQ(l + ap2)gpq]



and the problem is to give estimates for (7pq, Upqg) in terms of (fpq, gpg) in the
case when there exists a pair (pg, go) satisfying

@ (1+ app)? — pp 8% = 0. (7)
We first observe that
A(p,q) = {q(1 + ap®) — pBHaq(1 + ap®) + pp},

hence for A # 0 we have

p
1+ ap?) —

|77pq|+|upq| < 14l pﬁ|{|qu|+|gpq|}' (8)

We have now the following useful precision on the couples («, §) solving (7):
Lemma 1 Given o and (8 positive real numbers, the subset

S(a,8) = {(0:0) € N?, (1 + ap?) —pf = 0}

of N? is either empty, or at most finite. When there exists (po,qo) € Y(a,8)
then (po,qo) is the only element of ¥4 g if one of the following conditions is
realized:

i) « is irrational

i) « is rational and 1/(apg) is not an integer, and the numbers 3° —404qu are
not squares of rational numbers for q; = 1,2, ...qm, ¢; # 9o, qm = [B/(2V/@)].

Proof: i) If « is irrational, then 3 is irrational, rationally related to « by
B — apogo = qo/po-
Another solution (p, q) € N? of the above equation would imply

a(pogo — pq) + qo/po — q/p =0

which implies that « is rational. Hence there is a unique element in ¥, 3y when
« is irrational.
ii) If « is rational, then (3 is also rational. Set

X =pva, Yq%

then a solution (p,q) € N2 of ¢(1 + ap?) — pB = 0, leads to
Y(1+X?%)~-X=0.
This leads immediately to Y < % which yields

¢ < gm = [8/(2Va)]



where [-] means the integer part. Hence, the only possible values for ¢ are

¢=1,2,...qm

and g is in this set. For each value g; of ¢ we have

+ B 2
— 1+,4/1—4Y;
p; 2qja( v i)

where

Va

7
A necessary condition for pji to be an integer is that 1 — 4Yj2 is the square of a
rational number. This is in particular true for ¢; = go since

Yj=gq;

2 2
2 (ﬁ - 40‘%‘)

=AYy = —5—
0 32 B

which gives pi = 1/(apo), py = po. For qj # qo the number 1 — 4Yj2 is in
general not the square of a rational, hence pji is not integer.
We then have the following (denote by Ny the set NU {0})

Proposition 2 For all positive parameter values (o, 3) such that there exists
a pair (po,qo) € N? satisfying qo(1 + ap3) — po3 = 0, there is at most a finite
subset Yq.8) = {(pj,¢5);7 =0,1,..N} C N2, satisfying

¢(1+ap]) —p;B=0, j=0,1,..N,

and a constant M > 0 (depending on («,3)) such that for any pair (p,q) €
No x Z, (p,lal) & E(a,p) and (p,q) # (0,0) we have

P+ p?|q|
< M. 9
a0+ o) —pd] = ©)

Proof: Let first consider pairs (p, q) satisfying p|q| > 25/, then

lgl(1+ ap®) — pB > { pf + lal

la| + ap?|ql /2
hence 20y
p+pilq
<1/8+2/c.
Tl +ap) —pa] = /P
Now for p =0, q # 0 we have
0
0,

la[(1 +a02) — 03]



and for g =0,p#0
p+0

0(1 +ap?) —pg|
Now the set of pairs (p,q) such that 1 < plq| < 28/a, is finite, hence a finite
bound exists once the denominator does not cancel. Such a situation would
imply

1/8.

lg|(1 + ap®) — pB =0,

ie (plgl) € Xap)-m
Remark: Let us give a geometric interpretation of Lemma 1. In the (o, §)

plane the equation
¢*(1+ap®)? =p** =0
defines for a fixed (p, q) € N? a couple of straight lines, intersecting at (a, 3) =
(—1/p?,0). Only the line
g1 +ap?) —pB =0

is relevant in the quarter of plane (a, 3) € (RT)2. Lemma 1 shows that if («, 3)
belongs to such a line for (p,q) = (po,qo), then it belongs to at most a finite
number of such lines for (p, ¢) € N?, this number being one in general. Moreover,
in the region 3% — 4a < 0 of (R*)?, there is none of these lines, and in the rest
of the quarter plane, the union of this discrete set of lines is not dense.

Let us now introduce the Sobolev spaces

Hhkh = Hk(R/2”Z>2a Hhkhﬁ ={we Hhkh’w is even in z}

and similarly Hhkh’o ={we Hhkh’ w is odd in x }. We also define the operator g
by

(mg)() = 5- | " gle, t)d,

.
and D! by
D 'cospr = p lsinpx, p#0,
D 'sinpr = —plcospx, D;'1=0.

Notice that the operator D! consists in first suppressing the average and then
take the primitive which has a 0 average. This guarantees the periodicity of
D' f for any periodic f € L*. In particular one has for any f € I

D', f=0,D;' f=(1—mo)f.
We can now show the following

Lemma 3 Assume that (ao,Bo) is such that Y., 5,) has a unique element
(po, qo) (see the above lemma 1), then the linear system

L(n,u) = (f.9) (10)



where
5(777 u) = Dgl(nt + 60’“@ — QNgat, Ut T 50771 - aouzzt)7

has a solution if and only if the compatibility condition

ifpoqo + 9poge = 0
72‘fp0ﬁq0 + 9po,—q0 = 0 (11)
mg = 0

holds. In such a case for (f,g) € Hhk’o X Hhkh’e (means that f is odd in x, and
g is even in x, both doubly pem’odics, or if (f,g) = (Put,V¥ut) with (,7) €
Hhkh’e X Hhkh’O the solutions (n,u) of (10) then lie in Hhkh’e X Hhkh’o. Restricting the
solution (n,u) to the subspace Hévheo X Hévh’o of Hhkb’e X Hévh’o such that mo(n:) = 0,
the kernel of the linear operator L is the 3-dimensional subspace spanned by
& = {1,0} and ¢y and {y where S¢y = (o and

Co = (' cos po, —ie't sin pox).

Furthermore, the equation (10) has a unique solution (n,u), denoted by Eﬁl(f, 9),
which belongs to Hhkh% X Hhkh’o orthogonal in (Lih)Q to &, Co and Co, and satisfies

[, w)lle < MI[(F, 9| mre- (12)

Moreover, the equation (10) with (f,g) = (¢ut, Yut) where (P, 1) € Hhkb’e X Hhkb’o
leads to a unique solution (n,u) = Eﬁl(d)m,i/)zt) € Hhkh’e0 X Hhkh’o, orthogonal in
(Lgh)Q to &, Co and (o, which satisfies

[(n, w)l[ e < MI|(d,90)] e (13)

Proof: Notice that equations (3) and (5) imply that mo(n;) = 0. This jus-
tifies our restriction to the solutions such that such a condition is realized. We
then notice that the system (5) for (o, 8) = (ao,00) and with the condition
mo(ne) = 0, is equivalent to

L(n,u) = (f,9)
where § = g — mog satisfies m9g = 0. Then we have §pq = gpq for p # 0, hence
for (p, lq]) # (Po.q0) and p > 0

1
= ——— plig(1 + agp® + g
TIpq Ao(p,q)p[ Q( op )qu pﬂogpq]
1
u = —— —iq(1 + app?)§
Pq Ao(p, q)p[pﬂoqu Q( op )gpq]
where
Ao(p,q) = ¢ (1 + aop®)? — p* 35
and

Nog = 0, for ¢ #0, (by construction)

Noo arbitrary,



and if and only if (11) is satisfied

if, . @ fpo,— .
Npoqo = _% +a, Mpo,—q0 = % —1b
Upoqo = J;;DE;O +a, Upo,—qo = fP§ﬂ7_—()q0 +b

where a and b are arbitrary. Orthogonality in (L§,)* to &, (o and (o leads to

oo = 0,
_ ifpoqo _ ifpm*‘]o
Mlpogo = — 250 ) Mlpo,—q0 = 250
" _ fpoqo U _ fpo,*qo
Poqo ’ Po,—qo — .
200 200

The estimate obtained in (8)-(9) leads to (n,u) € HhkheO x Hhkh’o satisfying (12) or

(13) assoon as (f,g) € Héch’oxHévh’e or (¢,9) € Hfb’efob’o, and the compatibility

condition (11) is satisfied. This gives the precise range of £. The result on the
kernel is a direct consequence of the above formulas. m

3 Bifurcation problem

Let us introduce the two symmetry linear operators 7, and S, for any real 7

{Tr(n,u)}(z,t) = (n(x,t+7)ulz,t+7))

{S(Ua u)}(‘ra t) = (77(.1‘, _t)7 _u(ma _t))'
These operators commute with the system (3,4) and we have 7,8 = S7 _,. It
results that the nonlinear system (3,4) possesses a O(2) symmetry associated

with the above operators. Let us consider (3,4) for parameter values (a, 8) =
(ag + v, Bo + ), where (g, Bp) is as in the above lemma

N + Botz — QoNzzt + ((60 + M)UU + pu — Vnmt)x = 0,
Ug + 6077x — QoUggt + ((50 + /L)’LL2/2 + Hun — Vu:nt)ac =0
with (v, 1) close to 0, and let us look for non trivial doubly periodic solutions
in Hhkhe0 X H;Ch’o. We observe that for & > 2
k,o k,e
(un,u?/2) € Hy° x Hy,
hence, defining (f, g) by
fo= —(Bo+ pun — pu+ vie
g = —(Bo+mu?/2 — pn+ vug

the right hand side of (5) has the properties required in lemma 3, once the
compatibility condition is satisfied. We can then apply the Lyapunov-Schmidt
method for finding the bifurcation equation.



Let us define U = (n,u) € Hhkh’e0 x Hhkh’o and write our system as

LU+ pJU —vUyg + (Bo + w)N(U,U) =0 (14)
with
JU = (u,(1—mo)n),
NU,U) = (un,(1—mo)u?/2).

We observe that (14) is equivariant under the O(2) symmetry defined above:

T.L = LT, T,J=JT. TN =NoT, (15)
SL = —LS, ST =-J8, SN =—-NoS8. (16)

Let us now decompose U as follows (we are looking for real solutions)
U=0+7
with

© = A&+ Bl + B
(T;CO) = (T;E) = (T;EO) =0

where the scalar product is the one of (LEE)Q’ A € R and B € C are constants.
We notice, as a consequence of the above decomposition, that A is just the
average of n(z, t).

Let us define F' = (f,g) € Hhkh’o X Hhkh’e, we also need a projection Qq ex-
pressing the first two conditions in the compatibility condition (11) (since the
third one is already satisfied by construction)

QF=F - (Fa)a - - (FE)G

472 47

where we define

¢ = (e"tsin pox, ie' " cos pox)

and we notice that the conditions (F,¢;) = (F,{;) = 0 are required for F to
belong to the range of £. We observe that

(Co)at = —1p0goCi, (C1)zt = iPogoo, JCo = —iC1, J& =0,

hence

QOrt =0, (Tar, (1) = (Tar, 1) =0, QoTO = 0.
It results that (14) may be written as the system

LY + pQoJ (T) = vYar + (Bo + 1)QN (O +T,0+T) = 0  (17)



Therefore, by considering (17) we get

Y+ L7HuQoT () — v u + (Bo + 1)QuN(© + Y,0 + 1)} =0

which is of the form -
F(Y,A B,B,p,v) =0 (20)

and thanks to the boundedness properties of the operator £~1 shown at lemma
3, F is analytic:
{(Hhkhy,% X Hhkhyo) N {€Oa COaC_O}L}XR X (CQXRQ - {(Hhkhy,% X Héchﬁo) N {€Oa CO)E}L}
and satisfies
F(0,4,0,0,p,v) =0
and because of the fact that
8¢ = o, Trlo = €7
850 = 507 7;'50 = 505
the equivariance properties (15,16) of our system leads to
Z“F(TaAvaﬁvﬂa V) = f(Tf'TaAvequTBve_quTﬁvl’L?V)
Sf(T’A7 B7§7M’ l/) = 7‘F(8T’A7§7 B?M, l/)'
The above equation (20) is solvable with respect to T € H, fh% x H, évh’o by the an-

alytic implicit function theorem, for A, B, p, v close enough to 0 in R x C x R?.
We then obtain .
T =Y(A,B,B,u,v)

where T is analytic in its arguments and its principal part is given by
T = —B L' QuN(8,0) + O{(lul + [W))II8]]* + [18]]*}, (21)

and, because of the uniqueness of ) (comes from the implicit function theorem),
we have for any real T

y(A,E’ B’M? V) = Sy(A7 B’§7 /’[/, V)
V(A "B, e "B uv) = T.Y(A, B,B,u,v).

In addition, we notice that, because of the existence of the family of trivial
solutions U = (4, 0) = A& of (14), we have for any (A, u, v) close enough to 0

y(AaOa(LMaV) =0.
By simple calculation, we have

N(©,0) = (—isinpyr(ABe'! — ABe"0t) — (BQeQiq“t—EQefmq“t) sin 2po,

i
2
1 2 2iqot | P2,—2iqot Lo
Zcos2p0z(B e“'t 4 BTem M0 )f§|B| oS 2pox)

10



and

—_

QuN(0,0) = —(—isinpz(ABe't — ABe™"10%) — %(BQeQiq“t—EQefmq“t) sin 2po,

[\

1 . — . 1 ; - i
75 COSpol'(ABequt + ABe*’qut) 4 Z coS 2p0$(B262’Lq0t + B2€721q0t>
1
—§|B|2 cos 2pox).
The principal part of Y is then given by
—BoL'QuN(0,0) = (y1,2)
with
1 it o AR.—igoty 1 Lip2
Y1 = Zcospox(ABe 9 4 ABe™"0%) + §|B| cos 2pox +

+-ay; cos 2pox(B2e? 0t + EQe*%qot)

i . . . P
Yo = 1 sinpoz(ABe“]"t - ABe_qut) + i1 sin 2p0x(B262“1°t — B26_2“1°t)

with
0, — Pt 3cop)) _ (1+aopp)(1+ 3aopp)
4aopoqo(2 + Saopd) 4aopd(2 + 5aop?)
g = M+ 2a0p5) _ —(1+ aopg) (1 + 200p5)
4aopoqo(2 + Saopd) 4aopd(2 + 5aop?)

Now, substituting Y = )(A, B, B, u,v) into (18) we obtain an equation in C of
the form
h(A,B,B,p,v) =0

while (19) gives its complex conjugate. Now, let us use the equivariance of our
system. We then obtain the properties
h(A, BT, Be™ "7 p,v) = e"©Th(A, B, B, i, v)
hA,B,B,u,v) = —h(A,B,B,p,v)

as it can be seen below. We have thanks to (15)

h(A, Bel®T ‘Be~0T 1y 1)
= (IT-(©+Y) —vTO0u + (Bo + WN(T: (0 + ), T-(© +)), (1)
= (TA{nT(©+Y) = 1Oz + (Bo + WN(© +P,0 + V)}, (1)
(T (O +TY) = 1O + (Bo + N (O + 1,0+ 1), T_(1)
T (uT (O + 1) — VO + (B + WN (O + 1,0+ 1), (1)
= €Th(A, B, B, p,v),

11



and thanks to (16)

h(A,B, B, p,v)
= (ISO©+Y)—=vSO4 + (Bo+ NSO +Y),8(0 +V)),01)
= —(S{uIO+Y) = vOu + (Bo +WN(O©+V, 0+ W)}, G)
= (I (O+Y) = 1vOu + (Bo+ N (O +Y,0+Y),0)
= —h(A,B,B, ).

It results from its analyticity, that h takes the form
h(A, B, B,p,v) = iBH(A,|BJ, 1,v) (22)

with a analytic function H taking only real values, and the complex equation
h = 0 reduces to either B = 0 or the real equation H = 0. Now noticing that

(ezta Cl) == —’L'47T2p0qoB
(N(©,0),4) = —i2n’AB
(J0,¢G) = —idm?’B

the bifurcation equation (18) reads
iBH(A, B2, i, v) = 0
where
- 1
—(4m*) T H (A, B, p,v) = p=pogov+5 B0 A—Ba| B+ O(1BI"+(|ul+{v|+ A (| A+ BI*))
(23)

and the term which is the most important to compute is the coefficient 43723,
n (22). For this we need to introduce the symmetric bilinear operator A/ by

2N(U1, Ug) = (u1772 + u2m1, (1 — 7TQ)U1U2).
Since we have
— —2
Y= (y1’92) = ABy;Do,QO + ABy:Dm—QO + |B|2y2po,0 + 329210072110 + B Y2po,—2q0

we then obtain

B2 = 42?%(QJV(Z/Q@U,O, Co) + 2N (¥2p0,2q0 C0), C1)
therefore,
a1 B aa 3fBol(aopd — 1) — 2]
P2 = 50(8 T3 4 )= 1600pd (2 + Saopd)

We can in addition give the exact term H (A, 0, u,v) independent of B. For this,
let us look for all terms of degree one in B, and degree 0 in B in the expression
h(A, B, B, u,v). Due to the form of Y(A, B, B, i, v), these terms come from

(T (BGo +YB) — vBout + (6o + 1) {2N (Ao, Bo) + 2N (A&, YB)}, ¢1) (24)

12



where Yp is the term in Y(A, B, B, i, v) of degree one in B, and degree 0 in B.
Now, Yg is the solution of the affine equation

LYp + pQoJ (Yp) — vYp .t + (Bo + 1) Qo{2N (Ao, Blo) + 2N (A&, Yp)} = 0,
(25)
and a careful examination shows that we can look for Yp under the form

Y = By(A)(e'" cos pox, ie’ 1" sin pox).

A direct identification in (25) leads to

(26 -+ p + poaow )7 (4) — 3 (B0 + WA{L = 4(4)} =0,

which gives v(A):

B (Bo +p)A
WA = S E it poaor) T (o + A )
5A

2(26 — pn+ poqov) + BA’

which is coherent (taking the limit p, v, A tending towards 0) with the coefficient
Ypo,qo0f AB in (y1,y2). We then observe that

(j(YB)a Cl) =0
which leads for the coefficient (24) to the following expression
) 1
—4in® B{p — poqov + 5(50 + A1 =70 (A)}

Now, from the form of 7, ,(A), and from the identity

! (o — qo(1 + ap})

U — PpoqoV = —
DPo

we obtain

1 2{p3B°(1+ A) — g5 (1 + apj)®}
= poqov + 5 (Bo + 1) Al — up(A)) = :
3 (A= (A = s uB + a1+ 0p) + poIA}
We then obtain, in addition to the trivial family of solutions of (22) cor-
responding to B = 0 (already seen), another bifurcating family given by the

solutions of H(A,|B|?, u,v) = 0 ie. thanks to the analyticity of H and the
above computation, the solutions of the following improved form for (23)

2{piA*(1+ A) — 5 (1 + apj)?}
Po{2(poB + qo(1 + ap})) + poSA}

= Ba| B+ O(IB[* + (|l +|v|+|AD(IBI*)) = 0.
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This provides standing waves, determined up to a phase shift in ¢, equivalent
to an arbitrary choice of the phase of B. Moreover, for 3 # 0, we can solve, via
the implicit function theorem, with respect to |B|?, and

pis* (L +A) — g5 (1 + apf)’
217(2)5052
for arbitrary A, u, v close to 0, while the bifurcation only takes place either for

p3B2(1+ A) — 2(1+ ap?)? > 0 or for p2BF%(1+ A) — ¢3(1 + ap?)? < 0. We sum
up our result in the following

|BI* = {1+ O(Al + |pl + Iv)}

Theorem 4 Consider any positive («g, By) such that

S (a0.60) = 1> )|(p, @) € N* and q(1 + agp®) — pBo = 0}

has a unique element (po,qo). Then, for u,v, A close enough to 0, where a =
oo+ v, =00+ p, Ais the average of n(x,t), and for

{(3B*(1+ A) — 3 (1 + apd)*}eopd — (1 +V2)) > 0,

there is a three parameter («, 3, A) family of bifurcating standing waves U =
(n,u), solution of the system (3,4) in Hhkh’e0 X Hhkh’o : T.Up, T €R, and

Us(,8) = (4,0) + 2B (cos aot cos po, sin aot cospoz) + O(BI(1A] + | B]))
2 122 2 2\2
p§B°(1+A) —q5(1+ap
B = DT ZwUF ARy o141 1 () 4 ).
255052

Remark: If we consider the linearization of the system (3)(4) at a point
(n,u) = (A,0) instead of the origin, we obtain for the inverse operator, a new
denominator replacing A in (6) which is

(1 +ap*)® — p°B*(1 + A).

This is the quantity appearing in the expression of the amplitude of the bifur-
cating standing waves, as it is usual. Now, the set of («, 3, A) in the three-
parameter space, where bifurcation takes place is when the above expression
cancels, which is for fixed (p, q) a right conoid (axis: a = —1/p?, 8 = 0) called
a Whitney’s umbrella. The intersection of this surface with the plane A =0 is
the couple of straight lines already mentioned in the remark of section 2. The
above theorem shows that the bifurcation of standing waves takes place along
a discrete set of such Whitney’s umbrellas (don’t forget that (p, q) is arbitrary
in N?).
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