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Abstract In this paper, we prove the existence of a large family of non-trivial
bifurcating standing waves for a model system which describes two-way prop-
agation of water waves in a channel of finite depth or in the near shore zone.
In particular, it is shown that, contrary to the classical standing gravity wave
problem on a fluid layer of finite depth, the Lyapunov-Schmidt method applies
to find the bifurcation equation. The bifurcation set is formed with the discrete
union of Whitney’s umbrellas in the three-dimensional space formed with 2 pa-
rameters representing the time-period and the wave length, and the average of
one of the amplitudes.

1 Introduction

There are many models for studying weakly nonlinear dispersive water waves in
a channel or in the near shore zone. For one-way waves, namely when the wave
motion occurs in one-direction, the well known KdV (Korteweg-de Vries) and
BBM (Benjamin-Bona-Mahoney) equation are the most studied. For two-way
waves, a four parameter class of model equations (which are called Boussinesq-
type systems)

ηt + ux + (uη)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(1)

was put forward by Bona, Chen and Saut [3] for small-amplitude and long
wavelength gravity waves of an ideal, incompressible liquid. Systems (1) are
first-order approximations to the two-dimensional Euler equation in the small
parameters ǫ1 = A/h0 and ǫ2 = h2

0/L
2, where h0 is the depth of water in its

quiescent state, A is a typical wave amplitude and L is a typical wavelength. The
dependent variables η(x, t) and u(x, t), scaled by h0 and c0 =

√
gh0 respectively
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with g being the acceleration of gravity, represent the dimensionless deviation of
the water surface from its undisturbed position and the horizontal velocity at the
level of θh0 of the depth of the undisturbed fluid with 0 ≤ θ ≤ 1, respectively.
The coordinate x which measures distance along the channel is scaled by h0

and time t is scaled by
√
h0/g. The dispersive parameters a, b, c and d are

not independently specifiable parameters, but have to satisfy certain physical
relevant conditions [3]. Systems in (1) are not only formally approximations
to Euler’s equation, but also recently further justified by by Bona, Colin and
Lannes (cf. [5]). It was proved that the solution of (2) approximates the solution
of Euler’s equation with the order of accuracy of the equation (cf. [7, 10, 6, 1, 5]),
namely, for any initial value (η0, u0) ∈ Hσ(R)2 with σ ≥ s ≥ 0 large enough,
there exists a unique solution (ηeuler , ueuler) of Euler equations, such that

‖u− ueuler‖L∞(0,t;Hs) + ‖η − ηeuler‖L∞(0,t;Hs) = O(ǫ21t, ǫ
2
2t, ǫ1ǫ2t)

for 0 ≤ t ≤ O(ǫ−1
1 , ǫ−1

2 ).
In this work, attention will be directed to (x, t)− periodic solutions of a

system of partial differential equations (which we refer as BBM system since it
has certain common properties as the BBM equation)

ηt + ux + (ηu)x − 1

6
ηxxt = 0,

ut + ηx + uux − 1

6
uxxt = 0,

(2)

which is a member of (1) where θ =
√

2/3. One of the advantages that (2)
has over alternative Boussinesq-type systems in (1) (see Bona, Chen & Saut
[3]) is the ease with which it may be integrated numerically. Furthermore, it
was proved in [2] and [4] that the initial value problem either for x ∈ R or with
boundary conditions (x ∈ [a, b]) for (2) is well posed in certain natural function
classes.

Since we look for periodic solutions in (x, t), let us introduce the scaled

variables x̃ = 2π
√

6
λ

x, t̃ = 2π
√

6
T

t, with T/
√

6 and λ/
√

6 being the time period
and the wave length. One obtains the rescaled BBM system (the tilde is dropped
for simplicity in notation)

ηt + βux − αηxxt + β(uη)x = 0, (3)

ut + βηx − αuxxt + β(u2/2)x = 0 (4)

where α and β are positive parameters defined by

α = (2π)2/λ2, β = T/λ.

The standing waves, we are looking for are solutions (η, u) doubly 2π - periodic
functions of (x, t), with u odd and η even in x. This fixes the origin in x, but
leaves the time shift invariance.

Defining the average of η by A, we have now a 3-dimensional parameter
space, where only the quarter α > 0, β > 0 is physically relevant. We prove
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below (see theorem 4) that, roughly speaking, there is a discrete set of surfaces
(Whitney’s umbrellas) in the space (α, β,A), which constitutes the bifurcation
set of standing waves, solutions of the system (3,4). It is worth noting that the
situation here is extremely different from the standing gravity waves problem for
the classical water waves equations solved for the finite depth case by Plotnikov
and Toland [9], and in the infinite depth case by Iooss, Plotnikov and Toland [8].
Indeed, in the present case, we show (see Lemma 3) that there is no small divisor
problem and it is possible to adapt a Lyapunov-Schmidt method to reduce the
bifurcation problem to a one-dimensional bifurcation equation, after using the
O(2) invariance of the system (see below). The precise result is set at Theorem
4.

2 Study of the linearized operator

Let us study the linearized system

ηt + βux − αηxxt = fx, (5)

ut + βηx − αuxxt = gx,

with f odd in x and t, and g even in x and t. Let us write the Fourier series

η(x, t) =
∑

p≥0,q∈Z

ηpq(cos px)eiqt,

u(x, t) =
∑

p>0,q∈Z

upq(sin px)e
iqt,

f(x, t) =
∑

p>0,q∈Z

fpq(sin px)e
iqt,

g(x, t) =
∑

p≥0,q∈Z

gpq(cos px)eiqt.

Then we get for p > 0, q ∈ Z

iq(1 + αp2)ηpq + pβupq = pfpq,

pβηpq − iq(1 + αp2)upq = pgpq,

and for p = 0, q ∈ Z

η0q = 0, when q 6= 0 and

η00 is arbitrary.

Let us define
∆(p, q) = q2(1 + αp2)2 − p2β2 (6)

then if ∆ 6= 0, we obtain

ηpq = −∆−1p[iq(1 + αp2)fpq + pβgpq]

upq = −∆−1p[pβfpq − iq(1 + αp2)gpq]
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and the problem is to give estimates for (ηpq, upq) in terms of (fpq, gpq) in the
case when there exists a pair (p0, q0) satisfying

q20(1 + αp2
0)

2 − p2
0β

2 = 0. (7)

We first observe that

∆(p, q) = {q(1 + αp2) − pβ}{q(1 + αp2) + pβ},

hence for ∆ 6= 0 we have

|ηpq| + |upq| ≤
p

||q|(1 + αp2) − pβ| {|fpq| + |gpq|}. (8)

We have now the following useful precision on the couples (α, β) solving (7):

Lemma 1 Given α and β positive real numbers, the subset

Σ(α,β) := {(p, q) ∈ N
2, q(1 + αp2) − pβ = 0}

of N2 is either empty, or at most finite. When there exists (p0, q0) ∈ Σ(α,β),
then (p0, q0) is the only element of Σ(α,β) if one of the following conditions is
realized:

i) α is irrational
ii) α is rational and 1/(αp0) is not an integer, and the numbers β2−4αq2j are

not squares of rational numbers for qj = 1, 2, ...qm, qj 6= q0, qm = [β/(2
√
α)].

Proof : i) If α is irrational, then β is irrational, rationally related to α by

β − αp0q0 = q0/p0.

Another solution (p, q) ∈ N2 of the above equation would imply

α(p0q0 − pq) + q0/p0 − q/p = 0

which implies that α is rational. Hence there is a unique element in Σ(α,β) when
α is irrational.

ii) If α is rational, then β is also rational. Set

X = p
√
α, Y = q

√
α

β

then a solution (p, q) ∈ N2 of q(1 + αp2) − pβ = 0, leads to

Y (1 +X2) −X = 0.

This leads immediately to Y ≤ 1
2 which yields

q ≤ qm = [β/(2
√
α)]
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where [·] means the integer part. Hence, the only possible values for q are

q = 1, 2, ...qm

and q0 is in this set. For each value qj of q we have

p±j =
β

2qjα
(1 ±

√
1 − 4Y 2

j )

where

Yj = qj

√
α

β
.

A necessary condition for p±j to be an integer is that 1− 4Y 2
j is the square of a

rational number. This is in particular true for qj = q0 since

1 − 4Y 2
j =

(β2 − 4αq2j )

β2

1 − 4Y 2
0 =

(β2 − 4αq20)

β2
=
q20(1 − αp2

0)
2

p2
0β

2
,

which gives p+
0 = 1/(αp0), p−0 = p0. For qj 6= q0 the number 1 − 4Y 2

j is in

general not the square of a rational, hence p±j is not integer.
We then have the following (denote by N0 the set N ∪ {0})

Proposition 2 For all positive parameter values (α, β) such that there exists
a pair (p0, q0) ∈ N2 satisfying q0(1 + αp2

0) − p0β = 0, there is at most a finite
subset Σ(α,β) = {(pj , qj); j = 0, 1, ...N} ⊂ N2, satisfying

qj(1 + αp2
j ) − pjβ = 0, j = 0, 1, ...N,

and a constant M > 0 (depending on (α, β)) such that for any pair (p, q) ∈
N0 × Z, (p, |q|) /∈ Σ(α,β) and (p, q) 6= (0, 0) we have

p+ p2|q|
||q|(1 + αp2) − pβ| ≤M. (9)

Proof: Let first consider pairs (p, q) satisfying p|q| ≥ 2β/α, then

|q|(1 + αp2) − pβ ≥
{

pβ + |q|
|q| + αp2|q|/2

hence
p+ p2|q|

||q|(1 + αp2) − pβ| ≤ 1/β + 2/α.

Now for p = 0, q 6= 0 we have

0

||q|(1 + α02) − 0β| = 0,

5



and for q = 0, p 6= 0
p+ 0

|0(1 + αp2) − pβ| = 1/β.

Now the set of pairs (p, q) such that 1 ≤ p|q| < 2β/α, is finite, hence a finite
bound exists once the denominator does not cancel. Such a situation would
imply

|q|(1 + αp2) − pβ = 0,

i.e (p, |q|) ∈ Σ(α,β).
Remark: Let us give a geometric interpretation of Lemma 1. In the (α, β)

plane the equation
q2(1 + αp2)2 − p2β2 = 0

defines for a fixed (p, q) ∈ N2 a couple of straight lines, intersecting at (α, β) =
(−1/p2, 0). Only the line

q(1 + αp2) − pβ = 0

is relevant in the quarter of plane (α, β) ∈ (R+)2. Lemma 1 shows that if (α, β)
belongs to such a line for (p, q) = (p0, q0), then it belongs to at most a finite
number of such lines for (p, q) ∈ N2, this number being one in general. Moreover,
in the region β2 − 4α < 0 of (R+)2, there is none of these lines, and in the rest
of the quarter plane, the union of this discrete set of lines is not dense.

Let us now introduce the Sobolev spaces

Hk
♮♮ = Hk(R/2πZ)2, Hk,e

♮♮ = {w ∈ Hk
♮♮, w is even in x}

and similarly Hk,o
♮♮ = {w ∈ Hk

♮♮, w is odd in x }. We also define the operator π0

by

(π0g)(t) =
1

2π

∫ π

−π

g(x, t)dx,

and D−1
x by

D−1
x cos px = p−1 sin px, p 6= 0,

D−1
x sin px = −p−1 cos px, D−1

x 1 = 0.

Notice that the operator D−1
x consists in first suppressing the average and then

take the primitive which has a 0 average. This guarantees the periodicity of
D−1

x f for any periodic f ∈ L2. In particular one has for any f ∈ H1
♮

D−1
x ∂xf = ∂xD

−1
x f = (1 − π0)f.

We can now show the following

Lemma 3 Assume that (α0, β0) is such that Σ(α0,β0) has a unique element
(p0, q0) (see the above lemma 1), then the linear system

L(η, u) = (f, g) (10)
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where
L(η, u) = D−1

x (ηt + β0ux − α0ηxxt, ut + β0ηx − α0uxxt),

has a solution if and only if the compatibility condition

ifp0q0
+ gp0q0

= 0

−ifp0,−q0
+ gp0,−q0

= 0 (11)

π0g = 0

holds. In such a case for (f, g) ∈ Hk,o
♮♮ ×Hk,e

♮♮ (means that f is odd in x, and
g is even in x, both doubly periodic), or if (f, g) = (φxt, ψxt) with (φ, ψ) ∈
Hk,e

♮♮ ×Hk,o
♮♮ the solutions (η, u) of (10) then lie in Hk,e

♮♮ ×Hk,o
♮♮ . Restricting the

solution (η, u) to the subspace Hk,e
♮♮,0 ×Hk,o

♮♮ of Hk,e
♮♮ ×Hk,o

♮♮ such that π0(ηt) = 0,
the kernel of the linear operator L is the 3-dimensional subspace spanned by
ξ0 = {1, 0} and ζ0 and ζ0 where Sζ0 = ζ0 and

ζ0 = (eiq0t cos p0x,−ieiq0t sin p0x).

Furthermore, the equation (10) has a unique solution (η, u), denoted by L̃−1(f, g),

which belongs to Hk,e
♮♮,0×H

k,o
♮♮ orthogonal in (L2

♮♮)
2 to ξ0, ζ0 and ζ0, and satisfies

||(η, u)||Hk ≤M ||(f, g)||Hk . (12)

Moreover, the equation (10) with (f, g) = (φxt, ψxt) where (φ, ψ) ∈ Hk,e
♮♮ ×Hk,o

♮♮

leads to a unique solution (η, u) = L̃−1(φxt, ψxt) ∈ Hk,e
♮♮,0 ×Hk,o

♮♮ , orthogonal in

(L2
♮♮)

2 to ξ0, ζ0 and ζ0, which satisfies

||(η, u)||Hk ≤M ||(φ, ψ)||Hk . (13)

Proof: Notice that equations (3) and (5) imply that π0(ηt) = 0. This jus-
tifies our restriction to the solutions such that such a condition is realized. We
then notice that the system (5) for (α, β) = (α0, β0) and with the condition
π0(ηt) = 0, is equivalent to

L(η, u) = (f, g̃)

where g̃ = g − π0g satisfies π0g̃ = 0. Then we have g̃pq = gpq for p 6= 0, hence
for (p, |q|) 6= (p0, q0) and p > 0

ηpq = − 1

∆0(p, q)
p[iq(1 + α0p

2)fpq + pβ0g̃pq]

upq = − 1

∆0(p, q)
p[pβ0fpq − iq(1 + α0p

2)g̃pq]

where
∆0(p, q) = q2(1 + α0p

2)2 − p2β2
0

and

ηoq = 0, for q 6= 0, (by construction)

η00 arbitrary,
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and if and only if (11) is satisfied

ηp0q0
= − ifp0q0

2β0
+ ia, ηp0,−q0

=
ifp0,−q0

2β0
− ib

up0q0
=
fp0q0

2β0
+ a, up0,−q0

=
fp0,−q0

2β0
+ b

where a and b are arbitrary. Orthogonality in (L2
♮♮)

2 to ξ0, ζ0 and ζ0 leads to

η00 = 0,

ηp0q0
= − ifp0q0

2β0
, ηp0,−q0

=
ifp0,−q0

2β0

up0q0
=
fp0q0

2β0
, up0,−q0

=
fp0,−q0

2β0
.

The estimate obtained in (8)-(9) leads to (η, u) ∈ Hk,e
♮♮,0×H

k,o
♮♮ satisfying (12) or

(13) as soon as (f, g) ∈ Hk,o
♮♮ ×Hk,e

♮♮ or (φ, ψ) ∈ Hk,e
♮♮ ×Hk,o

♮♮ , and the compatibility
condition (11) is satisfied. This gives the precise range of L. The result on the
kernel is a direct consequence of the above formulas.

3 Bifurcation problem

Let us introduce the two symmetry linear operators Tτ and S, for any real τ

{Tτ (η, u)}(x, t) = (η(x, t + τ), u(x, t+ τ))

{S(η, u)}(x, t) = (η(x,−t),−u(x,−t)).

These operators commute with the system (3,4) and we have TτS = ST −τ . It
results that the nonlinear system (3,4) possesses a O(2) symmetry associated
with the above operators. Let us consider (3,4) for parameter values (α, β) =
(α0 + ν, β0 + µ), where (α0, β0) is as in the above lemma

ηt + β0ux − α0ηxxt + ((β0 + µ)uη + µu− νηxt)x = 0,

ut + β0ηx − α0uxxt + ((β0 + µ)u2/2 + µη − νuxt)x = 0

with (ν, µ) close to 0, and let us look for non trivial doubly periodic solutions

in Hk,e
♮♮,0 ×Hk,o

♮♮ . We observe that for k ≥ 2

(uη, u2/2) ∈ Hk,o
♮♮ ×Hk,e

♮♮

hence, defining (f, g) by

f = −(β0 + µ)uη − µu+ νηxt

g = −(β0 + µ)u2/2 − µη + νuxt

the right hand side of (5) has the properties required in lemma 3, once the
compatibility condition is satisfied. We can then apply the Lyapunov-Schmidt
method for finding the bifurcation equation.
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Let us define U = (η, u) ∈ Hk,e
♮♮,0 ×Hk,o

♮♮ and write our system as

LU + µJU − νUxt + (β0 + µ)N (U,U) = 0 (14)

with

JU = (u, (1 − π0)η),

N (U,U) = (uη, (1 − π0)u
2/2).

We observe that (14) is equivariant under the O(2) symmetry defined above:

TτL = LT τ , TτJ = J T τ , TτN = N ◦ Tτ , (15)

SL = −LS, SJ = −JS, SN = −N ◦ S. (16)

Let us now decompose U as follows (we are looking for real solutions)

U = Θ + Υ

with

Θ = Aξ0 +Bζ0 +Bζ0

(Υ, ζ0) = (Υ, ζ0) = (Υ, ξ0) = 0

where the scalar product is the one of (L2
♮♮)

2, A ∈ R and B ∈ C are constants.
We notice, as a consequence of the above decomposition, that A is just the
average of η(x, t).

Let us define F = (f, g) ∈ Hk,o
♮♮ × Hk,e

♮♮ , we also need a projection Q0 ex-
pressing the first two conditions in the compatibility condition (11) (since the
third one is already satisfied by construction)

Q0F = F − 1

4π2
(F, ζ1)ζ1 −

1

4π2
(F, ζ1)ζ1

where we define
ζ1 = (eiq0t sin p0x, ie

iq0t cos p0x)

and we notice that the conditions (F, ζ1) = (F, ζ1) = 0 are required for F to
belong to the range of L. We observe that

(ζ0)xt = −ip0q0ζ1, (ζ1)xt = ip0q0ζ0, J ζ0 = −iζ1, J ξ0 = 0,

hence
Q0Θxt = 0, (Υxt, ζ1) = (Υxt, ζ1) = 0, Q0JΘ = 0.

It results that (14) may be written as the system

LΥ + µQ0J (Υ) − νΥxt + (β0 + µ)Q0N (Θ + Υ,Θ + Υ) = 0 (17)

(µJ (Θ + Υ) − νΘxt + (β0 + µ)N (Θ + Υ,Θ + Υ), ζ1) = 0 (18)

(µJ (Θ + Υ) − νΘxt + (β0 + µ)N (Θ + Υ,Θ + Υ), ζ1) = 0. (19)
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Therefore, by considering (17) we get

Υ + L̃−1{µQ0J (Υ) − νΥxt + (β0 + µ)Q0N (Θ + Υ,Θ + Υ)} = 0

which is of the form
F(Υ, A,B,B, µ, ν) = 0 (20)

and thanks to the boundedness properties of the operator L̃−1 shown at lemma
3, F is analytic:
{
(Hk,e

♮♮,0 ×Hk,o
♮♮ ) ∩ {ξ0, ζ0, ζ0}⊥

}
×R × C

2×R
2 →

{
(Hk,e

♮♮,0 ×Hk,o
♮♮ ) ∩ {ξ0, ζ0, ζ0}⊥

}

and satisfies
F(0, A, 0, 0, µ, ν) = 0

and because of the fact that

Sζ0 = ζ0, Tτζ0 = eiq0τζ0

Sξ0 = ξ0, Tτξ0 = ξ0,

the equivariance properties (15,16) of our system leads to

TτF(Υ, A,B,B, µ, ν) = F(TτΥ, A, eiq0τB, e−iq0τB,µ, ν)

SF(Υ, A,B,B, µ, ν) = −F(SΥ, A,B,B, µ, ν).

The above equation (20) is solvable with respect to Υ ∈ Hk,e
♮♮,0×Hk,o

♮♮ by the an-

alytic implicit function theorem, for A, B, µ, ν close enough to 0 in R × C × R
2.

We then obtain
Υ = Y(A,B,B, µ, ν)

where Υ is analytic in its arguments and its principal part is given by

Υ = −β0L̃−1Q0N (Θ,Θ) +O{(|µ| + |ν|)||Θ||2 + ||Θ||3}, (21)

and, because of the uniqueness of Y (comes from the implicit function theorem),
we have for any real τ

Y(A,B,B, µ, ν) = SY(A,B,B, µ, ν)

Y(A, eiq0τB, e−iq0τB,µ, ν) = TτY(A,B,B, µ, ν).

In addition, we notice that, because of the existence of the family of trivial
solutions U = (A, 0) = Aξ0 of (14), we have for any (A, µ, ν) close enough to 0

Y(A, 0, 0, µ, ν) = 0.

By simple calculation, we have

N (Θ,Θ) = (−i sin p0x(ABe
iq0t −ABe−iq0t) − i

2
(B2e2iq0t−B2

e−2iq0t) sin 2p0x,

1

4
cos 2p0x(B

2e2iq0t +B
2
e−2iq0t) − 1

2
|B|2 cos 2p0x)
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and

Q0N (Θ,Θ) =
1

2
(−i sin p0x(ABe

iq0t −ABe−iq0t) − i

2
(B2e2iq0t−B2

e−2iq0t) sin 2p0x,

−1

2
cos p0x(ABe

iq0t +ABe−iq0t) +
1

4
cos 2p0x(B

2e2iq0t +B
2
e−2iq0t)

−1

2
|B|2 cos 2p0x).

The principal part of Y is then given by

−β0L̃−1Q0N (Θ,Θ) := (y1, y2)

with

y1 =
1

4
cos p0x(ABe

iq0t +ABe−iq0t) +
1

2
|B|2 cos 2p0x+

+α1 cos 2p0x(B
2e2iq0t +B

2
e−2iq0t)

y2 =
i

4
sin p0x(ABe

iq0t −ABe−iq0t) + iβ1 sin 2p0x(B
2e2iq0t −B

2
e−2iq0t)

with

α1 =
β0(1 + 3α0p

2
0)

4α0p0q0(2 + 5α0p2
0)

=
(1 + α0p

2
0)(1 + 3α0p

2
0)

4α0p2
0(2 + 5α0p2

0)

β1 =
−β0(1 + 2α0p

2
0)

4α0p0q0(2 + 5α0p2
0)

=
−(1 + α0p

2
0)(1 + 2α0p

2
0)

4α0p2
0(2 + 5α0p2

0)
.

Now, substituting Υ = Y(A,B,B, µ, ν) into (18) we obtain an equation in C of
the form

h(A,B,B, µ, ν) = 0

while (19) gives its complex conjugate. Now, let us use the equivariance of our
system. We then obtain the properties

h(A,Beiq0τ , Be−iq0τ , µ, ν) = eiq0τh(A,B,B, µ, ν)

h(A,B,B, µ, ν) = −h(A,B,B, µ, ν)

as it can be seen below. We have thanks to (15)

h(A,Beiq0τ , Be−iq0τ , µ, ν)

= (µJ T τ (Θ + Y) − νTτΘxt + (β0 + µ)N (Tτ (Θ + Y), Tτ (Θ + Y)), ζ1)

= (Tτ{µJ (Θ + Y) − νΘxt + (β0 + µ)N (Θ + Y,Θ + Y)}, ζ1)
= (µJ (Θ + Υ) − νΘxt + (β0 + µ)N (Θ + Υ,Θ + Υ), T−τ ζ1)

= eiq0τ (µJ (Θ + Υ) − νΘxt + (β0 + µ)N (Θ + Υ,Θ + Υ), ζ1)

= eiq0τh(A,B,B, µ, ν),
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and thanks to (16)

h(A,B,B, µ, ν)

= (µJ S(Θ + Y) − νSΘxt + (β0 + µ)N (S(Θ + Y),S(Θ + Y)), ζ1)

= −(S{µJ (Θ + Y) − νΘxt + (β0 + µ)N (Θ + Y,Θ + Y)}, ζ1)
= −(µJ (Θ + Y) − νΘxt + (β0 + µ)N (Θ + Y,Θ + Y), ζ1)

= −h(A,B,B, µ, ν).

It results from its analyticity, that h takes the form

h(A,B,B, µ, ν) = iBH(A, |B|2, µ, ν) (22)

with a analytic function H taking only real values, and the complex equation
h = 0 reduces to either B = 0 or the real equation H = 0. Now noticing that

(Θxt, ζ1) = −i4π2p0q0B

(N (Θ,Θ), ζ1) = −i2π2AB

(JΘ, ζ1) = −i4π2B

the bifurcation equation (18) reads

iBH(A, |B|2, µ, ν) = 0

where

−(4π2)−1H(A, |B|2, µ, ν) = µ−p0q0ν+
1

2
β0A−β2|B|2+O(|B|4+(|µ|+|ν|+|A|)(|A|+|B|2))

(23)
and the term which is the most important to compute is the coefficient 4iπ2β2

in (22). For this we need to introduce the symmetric bilinear operator N by

2N (U1, U2) = (u1η2 + u2η1, (1 − π0)u1u2).

Since we have

y := (y1, y2) := AByp0,q0
+AByp0,−q0

+ |B|2y2p0,0 +B2y2p0,2q0
+B

2
y2p0,−2q0

we then obtain

β2 =
β0

4iπ2
(2N (y2p0,0, ζ0) + 2N (y2p0,2q0

, ζ0), ζ1),

therefore,

β2 = β0(
1

8
+
β1

2
− α1

4
) =

3β0[(α0p
2
0 − 1)2 − 2]

16α0p2
0(2 + 5α0p2

0)
.

We can in addition give the exact term H(A, 0, µ, ν) independent of B. For this,
let us look for all terms of degree one in B, and degree 0 in B in the expression
h(A,B,B, µ, ν). Due to the form of Y(A,B,B, µ, ν), these terms come from

(µJ (Bζ0 + YB) − νBζ0,xt + (β0 + µ){2N (Aξ0, Bζ0) + 2N (Aξ0, YB)}, ζ1) (24)
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where YB is the term in Y(A,B,B, µ, ν) of degree one in B, and degree 0 in B.
Now, YB is the solution of the affine equation

LYB + µQ0J (YB) − νYB,xt + (β0 + µ)Q0{2N (Aξ0, Bζ0) + 2N (Aξ0, YB)} = 0,
(25)

and a careful examination shows that we can look for YB under the form

YB = Bγ(A)(eiq0t cos p0x, ie
iq0t sin p0x).

A direct identification in (25) leads to

(2β0 + µ+ p0q0ν)γ(A) − 1

2
(β0 + µ)A{1 − γ(A)} = 0,

which gives γ(A):

γµ,ν(A) =
(β0 + µ)A

2(2β0 + µ+ p0q0ν) + (β0 + µ)A
(26)

=
βA

2(2β − µ+ p0q0ν) + βA
,

which is coherent (taking the limit µ, ν,A tending towards 0) with the coefficient
yp0,q0

of AB in (y1, y2). We then observe that

(J (YB), ζ1) = 0

which leads for the coefficient (24) to the following expression

−4iπ2B{µ− p0q0ν +
1

2
(β0 + µ)A(1 − γµ,ν(A))}.

Now, from the form of γµ,ν(A), and from the identity

µ− p0q0ν =
1

p0
(p0β − q0(1 + αp2

0)

we obtain

µ− p0q0ν +
1

2
(β0 + µ)A(1 − γµ,ν(A)) =

2{p2
0β

2(1 +A) − q20(1 + αp2
0)

2}
p0{2(p0β + q0(1 + αp2

0)) + p0βA}
.

We then obtain, in addition to the trivial family of solutions of (22) cor-
responding to B = 0 (already seen), another bifurcating family given by the
solutions of H(A, |B|2, µ, ν) = 0 i.e. thanks to the analyticity of H and the
above computation, the solutions of the following improved form for (23)

2{p2
0β

2(1 +A) − q20(1 + αp2
0)

2}
p0{2(p0β + q0(1 + αp2

0)) + p0βA}
−β2|B|2+O(|B|4+(|µ|+|ν|+|A|)(|B|2)) = 0.
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This provides standing waves, determined up to a phase shift in t, equivalent
to an arbitrary choice of the phase of B. Moreover, for β2 6= 0, we can solve, via
the implicit function theorem, with respect to |B|2, and

|B|2 =
p2
0β

2(1 +A) − q20(1 + αp2
0)

2

2p2
0β0β2

{1 +O(|A| + |µ| + |ν|)}

for arbitrary A, µ, ν close to 0, while the bifurcation only takes place either for
p2
0β

2(1 +A)− q20(1 + αp2
0)

2 > 0 or for p2
0β

2(1 +A)− q20(1 + αp2
0)

2 < 0. We sum
up our result in the following

Theorem 4 Consider any positive (α0, β0) such that

Σ(α0,β0) = {(p, q)|(p, q) ∈ N
2 and q(1 + α0p

2) − pβ0 = 0}

has a unique element (p0, q0). Then, for µ, ν,A close enough to 0, where α =
α0 + ν, β = β0 + µ, A is the average of η(x, t), and for

{(p2
0β

2(1 +A) − q20(1 + αp2
0)

2}(α0p
2
0 − (1 +

√
2)) > 0,

there is a three parameter (α, β,A) family of bifurcating standing waves U =

(η, u), solution of the system (3,4) in Hk,e
♮♮,0 ×Hk,o

♮♮ : TτU0, τ ∈ R, and

U0(x, t) = (A, 0) + 2|B|(cos q0t cos p0x, sin q0t cos p0x) +O(|B|(|A| + |B|))

|B|2 =
p2
0β

2(1 +A) − q20(1 + αp2
0)

2

2p2
0β0β2

{1 +O(|A| + |µ| + |ν|)}.

Remark: If we consider the linearization of the system (3)(4) at a point
(η, u) = (A, 0) instead of the origin, we obtain for the inverse operator, a new
denominator replacing ∆ in (6) which is

q2(1 + αp2)2 − p2β2(1 +A).

This is the quantity appearing in the expression of the amplitude of the bifur-
cating standing waves, as it is usual. Now, the set of (α, β,A) in the three-
parameter space, where bifurcation takes place is when the above expression
cancels, which is for fixed (p, q) a right conoid (axis: α = −1/p2, β = 0) called
a Whitney’s umbrella. The intersection of this surface with the plane A = 0 is
the couple of straight lines already mentioned in the remark of section 2. The
above theorem shows that the bifurcation of standing waves takes place along
a discrete set of such Whitney’s umbrellas (don’t forget that (p, q) is arbitrary
in N2).
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