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Abstract

This paper deals with a system of two equations which describes heatless adsorption of a gaseous mixture
with two species. When one of the components is inert, we obtain an existence result of a weak solution
satisfying some entropy condition under some simplifying assumptions. The proposed method makes use
of a Godunov-type scheme. Uniqueness is proved in the class of piec&Wisections.
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Keywords:Boundary conditions; Systems of conservation laws; Godunov scheme

1. Introduction

Heatless adsorption is a cyclic process for the separation of a gaseous mixture, called “Pres-
sure Swing Adsorption” cycle. During this process, each ofitpeciesq > 2) simultaneously
exists under two phases, a gaseous and movable one with concentréation (0 < ¢; < 1), or
a solid (adsorbed) other with concentratigir, x), 1 < i < d. Following Ruthwen (see [12] for
a precise description of the process), we can describe the evolutigregfg; according to the
following system, wher€ = (c1, ..., cg):
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drci + 0y (uc;) = Ai(qi — q;)(C), 1)
atqi + AiQi = Alql*(c)7 t> 0» X € (Oa 1)7 (2)

with suitable initial and boundary data. In (1)—(2) the velocity, x) of the mixture has to be
found in order to achieve a given pressure (or density in this isothermal model)

d
Y ci=p), ®3)
i=1

where p represents the given total density of the mixture. The experimental device is real-
ized so that it is a given function depending only upon time. The funcjjoms defined on

(R4)?, depends upon the assumed model and represents the equilibrium concentrations. Its
precise form is usually unknown but is experimentally obtained. Simple examples of such a
function are for instance the linear isothegth= K;c;, with K; > 0 and the Langmuir isotherm

g7 =(QiKici)/(1+ Z?:l Kcj), with K; >0, Q; > 0 (see, for instance, [2,7,12]).

The right-hand side of (1)—(2) rules the matter exchange between the two phases and quantifies
the attraction of the system to the equilibrium state: it is a pulling back forcedand the
“velocity” of exchange for the speciésA component with concentratian is said to be inert if
Ar =0andg; =0.

A theoretical study of the system (1)—(3) was presented in [1] and a numerical approach was
developed in [2]. Let us point out that one of the mathematical interests of the above model is
its analogies and differences compared to various other classical equations of physics or chemis-
try. First, whend = 1 (and eventually withd; = 0) this model shares a similar structure with
conservation laws under the form

dup+0:(pu(p) =0, duu(p)=F(p),

whereu(p) has an integral dependance upenwhile in scalar conservation laws depends
uponp. In [1] bothBV and L*° theories are developed for this model, but oscillations can prop-
agate thus differing from Burger’s example (see Tartar [15], Lions et al. [10]).

Secondly, when the coefficients tend to infinity (instantaneous equilibrium), we get for-
mally

1
qi —4q; = _A_iatCIi -0
and Eqgs. (1)—(2) reduce to

Bt(ci—l—qi”‘(C))%—E}x(uq):O, i=1...,d. 4)

Joined to (3), the system of conservation laws (4) generalizes the system of chromatography
which has been intensively studied (see [6,11] for the Langmuir isotherm) whereas the system
(1)—(2) enters more in the field of relaxation systems (see, for instance, Jin and Xin [8], Kat-
soulakis and Tzavaras [9]). Actually the system of chromatography corresponds, like in (4), to
instantaneous adsorption, but the fluid speed is a constant) = u. One may consult James

[6] for a numerical analysis and the relationships with thermodynamics, Canon and James [3] in
the case of the Langmuir isotherm. In [7], James studied a system closely related to (1)—(2) in
which the speed is constant and the coefficientare equal to s, wheres is a small parameter.

Using compensated compactness, he proved, under some assumptions on the flux, that the solu-
tion of this system converges, as> 0, to a solution of a system of quasilinear equations similar
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to (4) satisfying a set of entropy inequalities. The extension of his method to (4) with constraint
(3) seems not straightforward and is still an open problem.

In this paper, we deal with the system of equations (4)—(3) with two compongnts2],
one adsorbable with concentrationand one inert with concentratian. Moreover, in (3) we
assume thap = 1, which is not really restrictive from a theoretical point of view. Then, the
corresponding system of transport equations writes:

3 (c1+ g1 (c1. c2)) + By (ucy) =0, 5)

drc2 + 0y (uc2) =0, (6)
with the algebraic constraint

c1+c2=1 (7)

Notice that we seek positive solutiorisy, c2), thus, in view of (7),c1, c2 must satisfy 0<
c1, c2 < 1. Adding (5) and (6), we get, thanks to (7):

9:q7 (c1, ¢c2) + 0,u =0.

Inthe sequel we set:= c; andi(c) = —q7 (c1, c2) = —q7 (1—c, ¢), thus our purpose is to study
the system (5)—(7) under the form:

0;¢ + 0y (uc) =0,

0rh(c) —dyu =0, ®)
supplemented by initial and boundary values:

c(0,x) =co(x) € [0,1], x>0,

c@,0)=cp()€[0,1], t>0, 9)

u(t,0) =up (1), t>0.

We assume in (9) an influx boundary condition, i¥.> 0, u;(¢) > 0. We choosg0, +oo[ in-

stead of|0, 1] as spatial domain for the sake of simplicity. In order to investigate some properties
of the functioni, we look at some commonly used isotherm [16]. For linear isotherm, we have:
qiﬁ := K1c1 with K1 > 0, then

K (c) = % >0 (10)

andh” = 0. For the binary Langmuir isotherm which ig; = (Q1K1c1)/(1+ K1c1 + Kac2),
with K1 >0, 01 > 0, K2 > 0, we have als@’ > 0, andh”(c) := % > 0if K2 < K1 (actually
K> =0 if the second species is inert). For the so-called BET isotherm defined by

_ OKc1

~ (L+Ke1—(c1/c))(L—(c1/cy))’
we have stillz’ > 0 but no longer” > 0. Nevertheless the functidil + ch”, first derivative

of H(c) := 1+ ch’(c) remains nonnegative for a convenient choice of the parameters (but un-

fortunately not in all the physically relevant situations). In this first simplified approach we will
assume (10) and

H'(c) >0 (11)

Single-component adsorption is of course of a poor physical meaning, but must be understood as
a preliminary theoretical study.

q1 0>0 K=>0, ¢, >0,
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The paper is organized as follows. In Section 2, we give some results for smooth solutions.
These results suggest us an entropy condition. In Section 3, we give solutions for the Riemann
problem satisfying such an entropy condition. In Section 4, we use a Godunov scheme to con-
struct an approximate weak solution of problem (8)—(9) and we give some useful bounds. Next,
in Section 5, we obtain an existence theorem for a weak solution of problem (8)—(9). Lastly, in
Section 6, the uniqueness is obtained in the class on piecéWwismctions.

2. Smooth solutions

Proposition 2.1. For smooth solutions, the systdB) with the initial boundary condition§9)
becomes

dc+o[a(F()]=0, t,x>0, (12)

¢(0,x) =co(x), x>0, (13)

c(t,0)=cp(t), t>0, (14)
with o (1) = uy (1) exp(g(cp (1)) > 0, F(c) = cexp(—g(c)) > 0, where

g = ZL(CC;, H(c)=1+ch'(c) (15)
and necessarily

u(t,x) =alt) eXp(—g(c(t, x))) >0, t,x>0. (16)

Moreover, under assumptidti0)—(11)we haver’ > 0> F”.

Notice thatg and F depend only o/, bute depends also on boundaries valugsc,. The
maximum principle is valid for but not foru: see, for instance, Fig. 6.

Proof. Sincec andu are smooth, we can apply the chain rule formula. So, the second equation
of (8) can be rewritteld, u = 1’ (c)9;c, then, with the first equatiod, u = —1’(c)d, (uc) and we
get(dyu)(1+ ch’'(c)) = —uh'(c)dyc. Finally, with the notations introduced in (15) we have:

et = —uh'(c)(3x¢)/ H (c) = —udy (g(c)). a7

For afixedr > 0, the functionx — u(z, x) is the unique solution of the ordinary linear differential
equation (17) with the “initial” condition:(z, 0) = u;(z) > 0. Explicitly, we have:u(z, x) =
up(t) exp(gcp(t)) —g(e(t, x))), thenu(z, x) is positive for allx. Replacing: in the first equation
of (8), we get (12). Now, a direct computation gives us:
_ expl—g(c)

H2(c)
and thanks to the hypothesis (10) and (11) we h&ve 0 and F” < 0: the flux in the scalar
conservation law (12) is strictly concaver

F'©)=exp(—g(©))/H(©),  F'(c)= (H'(c) + 1 (c)) (18)

Theorem 2.1 (Global smooth solutionAssumé&10)—(11)
If up € CL([0, +00[, 10, +00), if ¢p, co € CL([0, +00l, [0, 1]) satisfy the following compati-
bility conditions at the corner

cp(0) = c0(0), ¢(0) + up(0)cp(0) 4 h' (cp(0)) ¢, (0)co(0) =0
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and ifc; < 0 < ¢}, then the systeif8)—(9) admits one and only one smooth solution
(C7 u) € Cl([oa +Oo[l‘ X [Oa +OO[)C5 [0’ 1]) X Cl([ov +Oo[l X [O’ +OO[X7 ]Oa +OO[)

Moreover Vr > 0, d,c(t,x) <0, u(t,x) >0, d,u(t,x) > 0.
We deduce from this result an entropy condition for shock waves:
(EC) “c increases through a shock.”

For smooth solutions, the active gas desorbs:aimtreases to evacuate gases. Notice that the
same theorem is true for continuous solutions with only one compatibility condition at the corner:
¢»(0) = ¢o(0) and replacing the sign of the derivative of the concentrations on the boundary by
monotonicity conditions. Figure 5 shows a (nonglobal) smooth solution which produces a shock
wave in finite time.

Proof. For a smooth solution we can use the last propositiod; e« (t) F'(c)d,c = 0. Using
the characteristic curve defined by

88—X(s,t,x)=a(s)F/(c(s,X(s,t,x))), X(t, t,x)=x, (29)
s
we get

;—SC(S,X(S,I,X)) =0. (20)

Thus, ¢ is constant along the characteristic curve (19), kés, X (s, 1, x)) = c(¢,x), and X
writes:

N

X(s,t,x)=x~|—F’(c(t,x))/a(z)dz. (21)

t

To construct a solution, we need only to construct all characteristic curves issuing from the
boundary and verify that no characteristic curves cross each other, see [14, pp. 241-244] or [5],
i.e., we need to satisfyd := 9, X (s, #, x) > 0. Differentiating (19) with respect to, we get

%(s, t,x)= oc(s)F”(c(s, X (s, t, x)))axc(s, X(s,t,x)B, Bt t,x)=1

On the other hand, we havgc(s, X (s, t, x)) = 9,c(¢, x), then fors > ¢:
2—'3(s, t,x)= [a(s) X F"(c(t,x)) X 8xc(t,x)]ﬂ(s, t,x), B, t,x)=1
N

Since F”(c) < 0 anda(s) > 0, the sufficient way to keep positive is:V(z, x), dxc(f, x) < 0.
Sincead,c is constant along any characteristic curve, it suffices to satisfy this condition on the
boundary. For characteristic curves issuing frigra: 0}, this last condition becomésc(0, x) =

cp(x) < 0. For characteristic curves issuing frofm = 0}, remark that onx = 0, thanks to

Eqg. (12), we havé;c(t, 0) = —a(t) F'(c(t, 0))dxc(t, 0). SinceF’(c) > 0 andu(r) > 0 we need

to haved;c(r,0) =c, (1) > 0. O
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3. Riemann problem

It is well known (see, for instance, Dafermos [4], Serre [13], Smoller [14]) that in the context
of hyperbolic systems of conservation laws, the life span of smooth solutions is finite even when
the initial/lboundary data are smooth. For the system studied in this paper, it will be the case if
for instance the monotonicity condition§ < 0 < ¢;, are not satisfied, thus we have to deal with
weak solutions. In order to get a general existence result via the construction of a sequence of
approximate solutions, we are going to adapt the Godunov scheme to the system (8): the first
step is the resolution of the Riemann problem.

We are thus looking for a weak solution of the following Riemann problem:

dc+d.(uc) =0,  dh(c)— du=0,
Vx>0, ¢0x)=cy,
Vi>0, c¢(t,00=c_ and u(,0)=u_, (22)

with c_, ¢4 € [0, 1] andu_ > 0. By symmetry, we search a selfsimilar solution, iz, x) =

C(2), u(t,x) = U(z) with z = 7 > 0. Recall that from Theorem 2.1 we proposed the following
(EC) entropy condition for shock wavasincreases through a shock. Therif> ¢, we find a
continuous solution. To have a global smooth solution, we find necessarily a decreasing solution

thanks to Theorem 2.1 anddf. < ¢, we find a shock wave.

Proposition 3.1 (Rarefaction wave)Assumé&10)—(11) If c_ > ¢4, the only smooth selfsimilar
solution of (22) is such that

C@@)=c-, O0<z<z_,
i—f=—@, - <z<2zy, (23)
C(z) =cy, 4+ <2,
where
H _
G(e) © - oo (24)

= —-— 0, =
W)+ H @) ST HE
z4 is defined by the equatiafi(z+) = ¢4, uy = z4+ H(c4+), andU is given by

U)=u_, O<z<z-,
U(z) =zH(C(2)), z- <Z2<Z4, (25)
U(Z) =Uy, i+ <Z.

So, along a rarefaction wave,decreases; increasesz_ < u_, andz; < uy. Notice that
the computations of . andu need the resolution of an ODE. Figure 2 shows a desorption step
corresponding to a rarefaction wave arising from a discontinuity &t0, x = 0).

Proof. SettingC’(z) = 4€ andU’(z) = 4Y, we get from (8)

=4z =z
—zC'+(UC)' =0, (26)
U'=—zh'(0)C'. (27)
Using Eq. (27), we geUC’ = zH(C)C’, so, whereC’ # O:
U(z) =zH(C(2)). (28)
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We are looking for a simple wave, s # 0 on (z_, z+). From (28),z_ is defined byz_ =
u_/H(c_) and we have to find, andu,..

From (28) and (26) we ge% =-1 Letgp(C) = [ G657 ds. Thanks to the hypothesis
(10)—(11) we have; > 0 and, forC < c¢_, we havep (C) < 0. But d%(b(C(z)) =¢'(C)C'(z2) =
g((é; = —%. Thene(C(z)) = In(%) because (c-) = 0. Finally, ¢ (C(z1)) = In(i—;) andz, =
7z exp(—¢(c+)). Now, using again (28), we get.. O

Proposition 3.2 (Shock wave)Assumég10)—(11) If c_ < ¢, the only weak selfsimilar solution
of (22)is

c. if0<z<s, u_ if0<z<s,
Cla)= , U(z) = , (29)
cp ifs <z, up ifs<z,
whereu is defined by
[c] +c_[h]
Uy =u_————, 30
T el + et lh] (30)
and where the speedof the shock satisfies
0< _lul_ Tuel Le] Lc] <Up <u_ (31)

= —— =U_ =Uu
[h] ~ lc] [el+cslh]l — el +c_[h]
with the classical notations for the jumps.

Thanks to the Rankine—Hugoniot condition, this is the only weak monotonic solution with
only one jump, i.e.¢c andu are monotonic functions. So, through a shock wavacreases,
u decreases but remains positive. The speed of the shock is proportianalaiod lower than
the fluid velocityu. Notice the difference with a strictly hyperbolic22 system. Here we have
three datac_, ¢4, u— and two unknownsz ., s. In the hyperbolic case for two shocks, we have
four data:c_, ¢y, u_, uy and four unknownsco, ug, s1, s2. Figure 3 shows an adsorption step
corresponding to a shock wave arising from a discontinuity at0, x = 0). See also Fig. 4 for
the junction of two shocks.

Proof. We cannot find a smooth solution sin€e> 0 andc should decrease, by (23). Let be
v = (v, vy) @ normal vector to the shock line. The Rankine—Hugoniot conditions wyité +
veluel =0, vi[u] = v [h(c)]. We have[c] # 0 thus[i(c)] # 0 andv, # 0. Then the slope of
the shock line satisfies= [uc]/[c] = —[u]/[h]. Then from[u][c] + [uc][k] = O we get

uy  le]l+ce[h] (32)
u_  [cl+cylh]

and all results follow. O

Remark 3.1. For the Riemann problem notice thasatisfies the maximum principle. It is very
important since- must be in[0, 1]. Notice also that for alt > 0 the functions:(¢, -) andu(z, -)
are monotonic thanks to (10)—(11).

Lemma 3.1. Assum&10)—(11) For the solution of the Riemann problg2R) given in Proposi-
tions3.1and 3.2we have the following estimate

[IN(uy) = IN(_)| < yleg — |,
wherey is a true constant depending only on théunction.
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Proof. Ifthe solution of the Riemann problem (22) is a rarefaction wave then, by Proposition 3.1,

we have: O< “ = % < £, sincec_ > ¢4 andc — H(c) is an increasing function. Let

be B = minpg.<1G(c) > 0 and D the upper solution% = —g, 7-<z2<24, D(z2) =c_,
C(z) < D(z) on (z—, z4). Let bezg determined byD(z0) = ¢+: necessarily;+ < zo. We can
compute explicityD andzo: D(z) =c— — BIn(z/z-), zo = z— exp(lc+ — c-|/B). Then, it suf-
fices to taken = % = MO If the solution of the Riemann problem (22) is a shock wave
then, by Proposition 3.2 and equality (32), we have:

up  lel+c-[n]
0< P T R S(c—,c4), c_<cy.
The functionsS is smooth and positive of? = {(c_, c+), 0< c— < ¢4 < 1}. On the diagonal we
havec_ = ¢, andsS = 1, therefore we verify that [§) is a smooth function o2, vanishing on
the diagonal. Then, there exigtssuch thatin(u) —In(u_)| < y2|cy+ —c—|. Finally Lemma 3.1
holds withy = max(y1, y2). O

4. Godunov scheme

We adapt the classical Godunov scheme for hyperbolic systems to the system of adsorp-
tion (8). Let beT > 0, X > O fixed. For a fixed integeN we setAx = %5 and Ar = 5,
whereM is an integer depending upavi and will be chosen later to satisfy a CFL-type con-
dition. We are going to build an approximate soluti@t , «") of (8) on (0, T) x (0, X). For
i=0,...,Nandj=0,..., M we denote byB; ; the boxB; ; = [t;, tj41[ x [x;, x;31[, where
x; =iAx, t; = jAt. We use also middle mesv; 12 = x; + Ax/2,tj112 =t; + At/2). We
discretize the initial boundary values as follows:

Xi+1
N (0,x) =N (0, xi41/2) = Az co(x)dx, x; <x <Xxiy1,
X 4
Lj+1
V(2,00 =cN(tj41/2,0) :=% / cp(t)dt, tj<t<tjy1,
lj
Ti+1

1
uN(t, 0= uN(tj+1/2, 0) := A7 / up(t)ydr, tj<t<tjqa,

Zj
where 0< i < N and 0< j < M. For the Godunov scheme we need a CFL condition: solv-
ing a Riemann problem on the bax = [0, At[ x [0, Ax[ with the initial valuec™ and the
boundary values—, u~ (on {x = 0}), we want that the wave leaves the bBxby its upper
side{Ar} x [0, Ax[, i.e., z+ At < Ax for a rarefaction wave andAr < Ax for a shock. Since
Z4 <max(u_,uy) Or s < maxu_, uy), this is clearly satisfied under the following (CFL) con-
dition:
sup  u=maxu_,uy) < ﬂ (33)
[0, At[x[0, Ax| At
If this CFL condition is always satisfied, we can comput&, ™) row by row (i.e., for each
fixed j) solving the Riemann problem on each x;,i =0, ..., N, according to the following
procedure.
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(1) if ¢~ < ¢* (shock) we compute andu™ according to (31) and (30). Thanks to the CFL

(2) if ¢~ > ¢T (rarefaction wave) we compute by (24). Then,z™ is computed as the
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X —Xj
=
t—t
zZ=5s It z=1z" z=z%
- - ! tj+1 ~ ,’ %
c // c h ‘
|/ ull
/ Bij ‘. Bjj
J 4
ct ct
X X
X; Xin1 X; Xin1
c>ct

+
Fig. 1. Riemann problem in a bag;;

Assume that, for a giveh we have given:N(tj,x) =cton[x, xiq1l, N, x) =c¢ and

ul (t,x;) =u~ on[t;, tj11[, then:
condition and (29) we get" (#, x;11) = ¢, u™ (¢, x;i41) = u™ on[t;,¢;41[ and we define
CN(tj+1, x) on[x;, x;+1[ as the mean value of the solution of the Riemann problem, that is:
At

Ax

CN(fj+l, X) = cN(tj+1, Xit1/2) :=Asc” +(1— rs)eT  witha = —;

unique solution ofC(z*) = ¢+ with C defined through (23)U is defined by (25) with

ut =zTH(z1). As in the preceding case we hawv®(r, x;+1) = ¢, u™ (¢, xi11) = u™ on
[tj,t;41[ and we define:N(tj+1,x) on [x;, x;+1[ as the mean value of the solution of the

-4t
77 +z >c+.

Riemann problem. Using for instance the trapezoid rule we get:
7 +zt
- 1-A
> c + ( >

N (tj41,x) = N (i1, Xig1/2) ==X
Notice that we could proceed as well by columns before rowsefore j). To ensure the CFL

condition (33), we need to control supTherefore, by Lemma 3.1, we have to control the total

variation in space of for all time. Recall that, for any function defined on(a, b):
:neN, Cl<ZO<"'<Zn+1<b}

TV(v, (a,b)) =su Z|U(Zk+1) —v(z)
k=0

b
i 9eCl(a.b), |p < 1}

= Sup{ / v(2)¢'(z)dz
a
In the following lemmas, we prove that this scheme is well defined and we give some useful

andv € BV(a, b) if and only if TV(v, (a, b)) < +o0.

bounds.
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Lemma 4.1. Let bey the constant defined in LemrBdl If the CFL condition is fulfilled, then,
forall t € (0, T):

TV[In(u(, ), (0, X)] < yTV[c(, ), (0, X)].
Proof. This is a direct application of Lemma 3.1, the algorithm of Godunov scheme and the
monotonicity ofc andu on each box (see Remark 3.1)a
Let us define the total variation of initial-boundary concentration by

TV(cp, co) :=TV(cp, (0, T)) + TV(co. (0, X)) + sup X|cb(t)—co(x)|. (34)

O<t<T,0<x<

Lemma4.2. If the CFL condition is fulfilled, then, for alv > 0:

sup TV[c"(z,.), (0, X)] < TV(cp, co).
O<t<T

Proof. By monotonicity of the solution of the Riemann problem under the CFL condition (see
Remark 3.1) we have, for alle (¢;, ;1) and allr € (¢}, #+1):

V[N (2, ), iy xiv) ] = [N (tjaaj2, x0) — N (1412, xi40)|-
Therefore, we have:

N

TV[CN(fj+1/2, ), 0, X)]= Z\CN (tjt12, Xit1) — ¢V (tj41/2, xi)|.
i=0

In particular, in the lower row, we obtain:
TV[c" (12, ). (0, X)] = |c" (1272, 0) — ¢V (0, x1/2)|

N
+ Z|CN(0, xi—1/2) — ¢V (0, xi41/2)|
i=1

< [N (t1y2. 0) — ¢V (0, x1/2) | + TV(co(). (0, X)).
By induction, we get easily
TV[eN (151172, ). (0, X)] < [N (t711/2,0) — eV (1, x1/2)| + TV[cN (tj-1/2. ). (0, X)].
Sincec™ (t;, x1/2) is betweerc" (t;_1/2, 0) andc™ (;_1, x1/2) we have
|eN (172,00 = N (1), x12) | < N (14172, 0) — N (tj-1/2, 0)|
+ N (tj-1/2,0) — N (tj-1, x12) .

Then, we get

TV[cN(tj+1/2, ), (0, X)]

J
<Y | (teray2. 0) — N (te-12. 0| + TV[eV (A1/2,), (0. X)]
k=1
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J
< Z|CN (tk+1/2, 0) — N (te—12, 0)| + | N (112, 0) — " (0, x1/2) |
k=1

+ TV(co(.), (0, X))
< TV(er(). (0, 2j41)) + |V (t1/2, 0) — <N (0, x1/2) | + TV(co (), (0, X))
< TV(cep, co).- O

Lemma 4.3. Let bei = |luplloo X €XP(y TV(cyp, co)) > 0. If LAt < Ax, then the CFL condition
is fulfilled.

Proof. We proceed by induction. LetH; ;) the following hypothesis: omR; ; = (0, ;1) x
(0, x;+1) we have

O<u< sup (up()exp(yTV[c(,.), (0, xit1)])). (35)

O<r<tjiq

Sincel > ||luplloo, (Ho,;) is satisfied for allj. We have to show that fof from 0 toM, if (H; ;)
is true and < N then (H; 11, ;) is also true. To this purpose we need only to prove dtsstisfies
inequality (35) onB; 41 ;.

If (H;, ;) is true, the CFL condition is fulfilled on rectangk ;, then

u_=u(tjy1/2,xi11) < sup (up(2)exp(y TV[c(t, ), (0, xi41)])).

O<t<tjy1

Solving the Riemann problem @1 ;, we getu <u_ exp(y |cy —c_|) thanks to Lemma 3.1.
Then,

supu < sSup (ub(t) exp(yTV[c(t, ), (0, x,-+1)])) X exp(y|cJr - c_|)

Bit1,; O<t<tjig

< sup (up(®)exp(y TV[c(r,.), (0, xi42)]))-

O<t<tji1

Therefore, {1, ;) is true. Finally, we haver < A = [luplloc €XP(y TV(cp, c0)) and the CFL
condition holds. O

Denote byceil(x) the lowest integer bigger than We can fixM as follows:

AT . T
M=1+ CEI|(E) =1+ ceH(kE(N + l)) (36)

and the CFL condition is then satisfied. Notice thaf\x ~ AT andﬁ—f — AL asN — oo.

Lemma44. Letbel >0, f € BV(0, L), f =1 (£ f(x)dx, or f = LOELD) then
L
/lf(x)—ﬂdx <L xTV(£.(0,L)).
0

We skip the proof of this rather classical lemma.
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Lemma4.5. Let ber1 = Supycy % < 00, then forany0 < s <t < T the sequencé&) satis-
fies
X
N N
/|c (t,x) — " (s, x)| dx < 201 TV(cp, co) (|t — s| + 2At). (37)
0

Proof. We recall that CFL condition is fulfilled. First, we work @) ;, t; < s1 < s2 <tj41. By
monotonicity with respect to time @ on each box, we have

Xi+1 Xi+1
|cN(sz,x) - cN(sl,x)|dx < / |cN(tj+1,x -0 — cN(tj,x)|dx
Xi Xi

< AxleN (1, x) — N (W, xig1y2)|
= AxTV(cV (tj11/2, ), (xi, xi41)).-
SinceAx < A1At, after summation with respect tpwe get
X
/|CN(52, x) — N (s1, x)| dx < AxTV(cN(thrl/z, ), (0, X)) < A1 ATV (cp, co).-
0
Otherwise, o =t;, there is a jump, but by Lemma 4.4:

Xit1 Xi+1
/ |cN(tj,x) - cN(tj - O,x)| dx = / |cN(tj,x1/2) — cN(tj — O,x)|dx
Xi Xi

< AXTV(cN (t 4172, ), (i, Xip)).

Summing ovel, we get
X
f|cN (tj,x) — N (t; — 0,x)|dx < AXxTV(cN (14172, ), (0, X)) < A AtTV(cp, c0).
0

Forany O<s <t < T, letbej :=min{i,s <}, k:=maxXl,tj 4 <1}, ands <t; <tjy1 <
-+ <tjyx <t. By conventiorr_1 =0, so we havet; ;1 —t;j—1] < |t — 5| + 2Ar and

X PR ¢
/|CN(Z,)C) — cN(s,x)|dx < Z /‘|CN(I.,‘+1+1,X) - cN(tH_l, x)| dx
0

l=—10
< 20TV (c¢p, co)(|t —s|+ 2At). O

Lemma 4.6. Assume that the CFL condition is fulfilled, that € L>°(0, T), infoc; <7 up(t) >

0 and that cg and ¢, have bounded variations. Then the sequexec®) is bounded in
L*((0,T) x (0, X)) and in L*°(0, T; BV(0, X)). Furthermore infy info,7)x 0,x) uV > 0and
supy 1™ lloo < [lup lloo XY TV(ch, c0)).
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Proof. Solving the Riemann problem,,; > 0 follows fromx_ > 0 and we have:” > 0 on
(0, 7) x (0, X). If up € L0, T) and if info; <7 up () > 0 then Iu,) € L. Thanks to Lem-
mas 4.1 and 4.2, fp andc;, have bounded variations, we have gu@gup,_, TV, (n@N @, .)) <
400 and Lemma 4.6 holds. O

5. Convergence towar ds a weak solution

Theorem 5.1 (Global large weak solution)let beX > 0, T > 0. Assumg10)—(11)and that
co € BV(0, X), ¢, e BV(0, T), up € L*°(0, T), satisfying0d < co, ¢, < 1andinfo.; 7 up(t) > 0.
Then the syster{8)—(9) admits a weak solution given by Godunov scheme. Furthermaeued
u satisfy

ce L%((0,T) x (0, X)) N L*=((0, T); BV(0, X)), (38)
celip(0,7; LY(0, X)), 39)
c€BV((0,T) x (0, X)), (40)
ueL>((0,T) x (0, X)) N L*®((0, T); BV(0, X)), (41)

with the following bounds

X X t

/ c(t.x)dx < / co() dx + s oo / es(s) ds, (42)

0 0 0

0 < min(inf ¢, inf cg) < ¢ < Max(supcey, supco) < 1, (43)

llcllLoo0.7).Bv(0,x)) < TV(cp, o), (44)

llell oo (0,7)x (0, %)) < Nl lloo €XP(¥ TV(ch, €0)), (45)
inf u>0. (46)

[0,T]x[0,X]

(y is the constant defined in Lemma& and depending only on thefunction)

Proof. Let be (cV,u)y the sequence constructed in Section 4. We are going to prove that a
subsequence aiV, ")y converges towards a weak solutian ) of (8)—(9), satisfying the
estimates (38) to (46).

First step Convergence ofV, u™, u™ ¢V up to a subsequence.

By Lemma 4.2, the sequenge”) is bounded inL>((0, T); BV(0, X)). Furthermore, by
Lemma 4.5, we obtain a classical compactness argumegt'‘on(see [14]). Then, up to a sub-
sequence(cV) converges te in L1((0, T) x (0, X)) and a.e. Then satisfies the same bounds,
i.e., (38), (39), (43) and (44) hold, in particularerifies the maximum principle.

By Lemma 4.6, the sequenae”) is bounded inL*>, then, up to a subsequenaa,")
converges weakly ta in L>® weak. By the same lemma, the sequer@eu”) is bounded
L®M?Y, dual from L1CO, then there existy € LM} such that(d,u") converges weakly
to v in LM} weakx. But the weak limit is unique thed,u = v andu € L®BV,. Fur-
thermore we havéu| .~ <liminfy u® |~ < 400, |uxpy, < liminfy ”“”ZWBVX < 400,
infu >infyu™ > 0 and (41), (45), (46) hold. Now, we can pass to the limit in the nonlinear term
uN N because the sequenge’) converges weakly ta in L> weakx and the sequende’)
converges strongly toin L*.
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Second step/Ne show thatc, u), obtained in the previous step is a weak solution of (8)—(9).
Recall that(c, u) is a weak solution of (8)—(9) o0, T) x (0, X) if and only if, for any smooth
functionse, ¥ € C°((—o0, T) x (—00, X)):

T X X
//(catqb—i-(cu)axqb)(t,x)dxdt+/co(x)¢(0,x) dx 47
00 0
T
+/ub(t)c;,(t)¢(t,0)dt=0, (48)
T X X
// h(c)Btl/f—uaxw)(t x)dxdt—l—/h co(x) (0, x)dx (49)
00 0
T
—/ub(t)l/f(t,O)dt=0. (50)

0

We are going to prove thdt, u) satisfies (47). A similar proof works to obtain (49). By con-
struction,(¢V, u™) is a weak solution of (8) on each bdx ; and, thanks to the fulfilled CFL
condition, is also a weak solution on each row; ¢;1) x (0, X). The problem is only on line
t=t;,0< j < M andt =0, x = 0 for the discretisation of the initial boundary value (9). So, for
any¢, we have

X

X
//(CNE)[QS +cNulNacg)(t, x)dx dt + f N (0, x)¢(0, x)dx
00 0
T
+/MN(I,0)CN(I,O)¢(t,O)dt=—]N,
0
whereJy = Zyzl fOX(cN(tj, x +0) —cN(tj, x —0)p(t;, x)dx. In order to prove thatc, u)
satisfies (47), thanks to the results of the first step, we have just to shovipthat0. We can
. M N
rewrite Jy under the form/y = ijl Y icoJi,j Where
Ax
Jij= /(CN(fj,xiJrl/z) — N, xi + )@ (i, xi + y)dy,
0

and
Ax

1 N

E C (t],xl-i-y)dy
0

cN(tj, xig12) =

Since f5 (€N (17, xit1/2) — N (1, xi + ) (¢, x1) dy = 0, we writeg (¢, x; + y) = (1, x;) +
(@(tj, xi +y) — (L), xi)).

We havelg (1), x; +y) — ¢ (¢, x;)| < [|9x¢llco Ax because & y < Ax. Thanks to Lemma 4.4,
we have also
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Ax
/(CN(tj,XiJrl/z) — Ny, xi + ) (@, xi +y) =t x))dy
0

[Jijl =

Ax
< ||ax¢||ooAx/|cN(r,,-,x,~+1/z) —Nxi 4 )| dy
0

< 0xlloo (AX)*TV(c(t}, ), (xi, x; + Ax)).
Therefore,
M
IINT <D 1106 lloo (AX)?TV(cN (2., (0, X)) < 05 lloo TV(ch, cO)M Ax x Ax
=1

~

thus, if M < L, we havelJy| < T35 ¢lloc TV(ch, cO) 5> x Ax.
Since% — A whenN — oo, Jy converges towards 0. Lastly we get easily (42) by integrat-
ing (8) over[0, ¢] x [0, X] and using the positivity af andc.
Last stepBV regularity ofc.
Since(c, u) is a weak solution of (8) we havku = 3;h(c) and, thanks to the estimate dyu,
we getd,h(c) € L®((0, T); M1(0, X)). We havei’ > 0, thenc = h~1(h(c)) and the chain rule
formula inBV givesd,c = (h~1)'d;h(c) € L°M}. Thend,c andd,c lie in M1((0, T) x (0, X))
and finallyc € BV((0, T) x (0, X)), which is (40). O

We have now strong trace results.
Proposition 5.1. The functiong andu satisfy initial boundary condition®) strongly.

Proof. The functionc belongs tadBV((0, T') x (0, X)), then admits a strong trace ¢ém= 0} and

{x = 0}. But ¢ is a weak solution of (8), (9), then admits also a weak trace on the boundary.
By uniqueness of traces, satisfies the initial boundary conditions (9) strongly. On the other
hand,u belongs toL>°((0, T) x (0, X)) N L*((0, T); BV(0, X)), then admits a strong trace
v(?) in {x = 0} defined for a.et € (0, T). We haveu(t, x) — v(¢) for a.e.t whenx — 0" and

v e L0, T) with [[v]lzee < [lullzee, thus, thanks to the Lebesgue’s theorenmadmitsv as

strong trace ofx = 0} in L1(0, 7): lim,_, o+ fOT liu(t, x) —v(t)|dt =0, whereu is defined for
a.e.r € [0, T] and allx € [0, X] as the mean valug(t, x) = MW. 0

6. Uniqueness

We study the uniqueness problem for weak entropic solutions in some class of piecewise
smooth functions. More precisely we denoted}[0, 7] x [0, X], R?) (C3 in brief) the set of
functions(c, u): [0, T] x [0, X] — R? such that there exists a finite number of continuous and
piecewiseC! curves outside of whiclic, #) is C* and across whiclic, «) has a jump disconti-
nuity. In the sequel, we consider weak solutignsu) € Cll7 of (8)—(9) in(0, T) x (0, X), with
piecewise smooth initial and boundary data, satisfying the entropy condition (EC) and our usual
assumptions (10)—(11) on
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We restrict ourselves to the piecewise smooth case since we do not have a weak formulation
for the entropy condition (EC). Formally we can expect to obtain such a condition as for hyper-
bolic PDEs, but it is still an open problem. Nevertheless, this case is relevant in most practical
cases and involve global solutions with shock waves and contact discontinuities.

Theorem 6.1. Let beT, X > 0. Let beu,, : [0, T] — R4, ¢, 1[0, T] — [0, 1], ¢o: [0, X] — [O, 1]
some piecewis€! functions. Assumief|o 7 u,(t) > 0 and (10), (11). Then there exists at most
one WeakC[% solution (c, u) of the systen{8)—(9) satisfying the entropy conditio(EC), the
maximum principl€43) and (46).

Lemma 6.1. Any shock curve across whichhas a nonzero jump admits a parametrization
t— x(1).

Proof. Let bev = (v, v,) a normal of the shock line. Since, «) is a weak solution, it satisfies
the Rankine—Hugoniot condition and we ggt 0 and Lemma 6.1 holds.O

Remark. In the case whergc] = 0 and[u] # 0, the solution admits a contact discontinuity.
We can easily obtain such a solution by considering for instance the following set of initial
boundary dataco = a, ¢p = a, up =ug for 0 <t < ¢* andu, = up for t* <t < T. We have

an obvious weak solution defined byt, x) = a, u(t, x) =u1 on (0,t*) x (0, X) andu(t, x) =

up on (t*, T) x (0, X): the boundary discontinuity aof is linearly propagated. Figure 6 shows
an example of such a situation. We define now a “determination zéhe {(z,x), 10 <t <

1, x1(1) < x < x2()} where 0< 19 < 11 < T, x1(¢) andx2(¢) are shock curves. We assume that
(c,u) € CL().

Lemma 6.2. The characteristics curves lying i2 satisfy

dXx u
— =——<u. 1
0< 15 (s, t,x) © u (51)

Proof. Since(c,u) € C1(£2), we haved,c + a(t) F'(c)dyc = 0, u(t, x) = a(r) exp(—g(c(t, x))),
wherea (1) = (uexp(g(c)))(t, x1(t) + 0) = (uexp(g(c)))(t, x2(t) — 0) > 0. Recall that the char-
acteristics lines satisf% (s,1,x) =a(s)F'(c(s, X (s, t,x))). Thanks to (16) and (18) we getim-
mediately‘% (s,t,x)= % Sinceh’ > 0, we haveH (¢) = 1+ ch’(c) > 1 and (51) holds. O
Lemma 6.3. The forward characteristic lines enter the discontiniynd the backward charac-
teristic lines never enter a discontinujty

Proof. This proof relies on the entropy condition (EC). Letdbe Iz, 1] ands — x(s) a shock
curve. As usually we define; = c(s, x(s) + 0), c— = c(s,x(s) — 0), uy = u(s,x(s) + 0)
andu_ = u(s,x(s) — 0). It follows from (19) that Lemma 6.3 reduces to the inequalities
a(s)F'(cy) < x'(s) < a(s)F'(c—). Consider for instance the fist one: thanks to (31) and (51)
it is equivalent tox’(s) = [c]llf:ic[f][h] > % Now we haveu, > 0,c; >c_ >0, H(cy) =

1+ cyh'(cy) > 0 and the assumption (10), thus an easy computation leads to

a(s)F'(cy) <x'(s) = cih'(c)c]l—c_[h]>0 = ¢(c_)>0,
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whereg is defined byp (y) = c1h'(cy)(cy — y) — y(h(ct) — h(y)). We have

¢'(v) = —(cyh'(cr) — yh'(v)) — (h(cy) — h(¥))
= —(H(c) — H) — (h(es) — h(y).

Thanks to (10) and (11) we hawg(y) < 0 for y < ¢4, moreoverg(c4+) = 0. Thus we get
¢(c_) > 0and Lemma 6.3 holds.O

Lemma 6.4. From each poin{zg, xo) € [0, T[ x [0, X[ emerges at most one shock curve.

Proof. Let be (19, xg) € [0, T[ x [0, X[ and assume that there exists two shock cum&s)
and x»(s) issuing from(zg, xg) such that we have for instanag(s) < x2(s) locally in time
(to < s < 1) and(c, u) smooth inZ :={(s,&); 10 <s <11, x1(5) < & < x2(s)}. Then we show
easily that a backward characteristic line drawn from any peint) € Z enter one of the two
shock curves which contradicts Lemma 6.32

We prove now the local uniqueness for rarefaction waves.

Lemma 6.5. Let be (1g, xg) a point of discontinuity for(z, x), ¢+ = c(to, x0 + 0) and c_ =
c(tg, xo — 0). If c— > ¢4, then there exists an open gétcontaining(zo, xo), there exists; > ro
such that(8)—(9) admits an unique smooth solution(ig, #1[x10, X[) N .

Proof. We assume thatg > 0 (the casexg = 0 is similar). According to (EC) there is no
shock curve passing through, xo), thus the solution is smooth in an open ¥et |1, 11 x

1xo — 28, xg + 8[ and has no discontinuity point iffo} x Jxg — 268, xo[ and in{z} x ]xo + 5[.

Let be X+ the “limiting characteristics” defined far > 1, following (21), by X+ (s) = xo +
F'(ct) ft;oe(r)dt. We define as above the open set= {(s,&); fo<s <11, X_(s) <& <

X1 (s)}. Letbe(r,x) e ZNV and X (s, t,x), to <s < t, the associated backward characteristic
line. We have lim_, 10 X (s, ¢, x) = xo because the characteristic lines cannot cross each other,
thusxg =x — F'(c(t, x))A(t) with A(t) = ft;a(s)ds. Since F' is strictly decreasing (Propo-
sition 2.1) we gete(z, x) = (F’)‘l("A_(f)o) and conversely this last formula defines a smooth
solution inZ. Along (s, X+ (s)) we havec = ¢+ andu = u-. Lastly the solution is defined in an
unique way, using the characteristics linesyim {X (s, tg, xo — 8) <x < X_(s) orx > X (s)}

and Lemma 6.5 follows. O

We prove now the local unigueness for the shock waves.

Lemma 6.6. Let be(to, xo) € [0, T[ x [0, X[, cx = c(f0, x0 = 0) and M = SURq 7}x[0.x] %
Under the assumption_ < ¢, there exists; > g, there exist$ > 0 such that the solution is
unique onD = {(¢,x); fo<t <t1,x0— 8+ M({t —to) <x <xo+ 8 — M(t — tp)} and presents
an unique admissible shock curve issuing fregmxo).

Proof. Letbeé > 0 such thatg is the only discontinuity point fae(z, x) in {0} x]xo— 38, xo+ [,
and XL defined as in the proof of Lemma 6.5 (notice that < X_). Let#; > ¢g be such that the
solution of the ODE

Cfi—f(s,to,x) = a(s)F'(c(s, X (s, 10, x))), X(to, t0, x) =x (52)
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exists and is unique o, #1[ for x € Jxo — 8, xo + 3[\{0}. Moreover, we can assume that
Sup{c(to, xX); xo—8<x< xo} < inf{c(to, X); Xxg<x <xo0-+ 5} (53)

and thatr; — ro is small enough to ensure that the characteristic lines issuing respectively from
{0} x ]xo — 8, xo[ and{0} x ]xo, xo + 8[ meet each other before timg This last point is easily
justified using (21), (53), ind, 7 u»(¢) > 0 and thatF” is continuous and strictly decreasing. It
follows that the solution cannot be smoothdn= {(s,&); 10 <s <1, X4+(s) <& < X_(s)}.
Using the characteristic lines given by (52), we define @dunctionsC_ and C, respec-
tively on the open set®_ = {(s,&); to<s <11, xo— 8+ M(s —tp) <x < X_(s)} and
Dy ={(s,8); to<s<t1, Xy <x <xp+8— M(s — to)} which both containsZ. Thanks
to (16), we associate them twid functionsU_ andU... Then the ODE

T = F(C(5£6). Co(5£0). o) =10
whereF(C_,Cy) = h(CUJf):g‘a is C1, admits locally (orlr, 1[, restrictingr; if necessary) an
unique solution which determines the shock curve. The entropic solution is uniquely defined for
(s,€) eD,x <&(s) orx > &(s) by C_ or C, respectively. O

Remark 6.1. If (70, x0) is a point of discontinuity for but not forc, the entropy condition (EC)
implies that there is no shock curve passing through this point. The characteristic lines, locally
defined aroundo, xo) by X = ”}‘8,)] are piecewis€! and we get the local uniqueness of the
solution forz > 1.

Corollary 6.1. There exists > 0 such that the solution is unique @@, ) x (0, X).

Proof. It follows from Lemmas 6.5 and 6.6 that for a} € (0, X) there exist$ > 0, there exists
7 > 0 such that the solution is unique @@, t) x (xg — 8, xg + 8). Then we conclude using a
mere compact argument.

Proof of Theorem 6.1. Let
T* =sup|{r € [0, T]; the solution is unique oD, 7) x (0, X)}

and assume thaf* < T. The solution is unique o0, 7*) x (0, X). By Corollary 6.1 there
existst > 0 such that we have uniqueness(@rt, T* + ) x (0, X). Then we have uniqueness on
(0, T* + 1) x (0, X), contradicting the assumption. Finalli¥ = 7' and Theorem 6.1 holds.O

Remark 6.2. In Section 2 we showed that, in the case of smooth solutiorsthe solution of

the scalar conservation law (12). Thus, it is a natural question to wonder if the weak entropic
solutions of (12) (in the usual sense) are the same as those of the system (8)—(9) with the en-
tropy condition (EC) (at least in the case of uniqueness). Actually the answer is positive if and
only if the functionh is linear and increasing, i.e., if and only if the isotherm function is linear
(g*(c1, c2) = acy with a > 0 or equivalentlyi(c) = ac — a). Let us briefly justify this claim. For

a shock wave connecting_, u_) and(c4, uy), let beo the speed of the shock given by the
Rankine-Hugoniot condition for (12} = a(#) ) and let bes the corresponding speed for
(8)—(9), given by (31). Writinge(r) = u_e%-), we get

_ —(gle4+—g(c-))) _
C Cc_ cype Cc_
s—o = + O+

et —c— +cp(h(ey) —h(cn)) cy —c_



C. Bourdarias et al. / J. Math. Anal. Appl. 313 (2006) 551-571 569

Settingc— = 0, ¢+ = x and using (15) we get, after differentiation with respeckiq(x) =
In(1 + xh'(x)). Differentiating again, we get finalli” = 0 as a necessary condition. It is very
easily shown that this condition is also sufficient. Finalli () = ac + b we haveg’(c) = acil

and, up to an additive constarit(c) = ;.55 the (EC) condition ¢ increases through a shock)

coincides with the Oleinik condition if and only i is concave, i.eq > 0.

7. Figures

The following results have been obtained with a Langmuir isotherm, using the Godunov
scheme presented in Section 4. The values of the various parameters, adapted from those in
[16] are not important: our purpose is to illustrate the phenomena pointed out along the previ-
ous study. The bed profiles in the cases of adsorption or desorption steps (Figs. 2 and 3) for the
Langmuir or the linear isotherm are the same as in [16], but, as pointed out in the introduction,
the case of the so-called BET isotherm is out of our reach under the assumptions (10)—(11).
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Fig. 2. Desorption step. The initial concentratioregs= 0.1, the boundary data arg = 1.0 andu;, = 0.4. The discon-
tinuity at ( = 0, x = 0) gives a rarefaction wave which evolves towards the steadystate0.
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Fig. 3. Adsorption step. The initial concentratiorcis= 1.0, the boundary data arg = 0.5 andu; = 2.0. The discon-
tinuity at (r = 0, x = 0) gives a shock wave which propagates to the right. The concent@bbthe inert gas evolves
towards the steady state= 0.5.
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Fig. 4. Double shock. The initial concentrationcig= 0.2 for x < 0.5 andcg = 0.5 for x > 0.5, the boundary data are
¢p = 0.1 andu;, = 0.5. Both discontinuities at = 0, x = 0) and(s = 0, x = 0.5) give a shock wave which propagates to
the right. The “small shock” catches the other and merge into a single one. The concentidtibe inert gas evolves
towards the steady state= 0.1.
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Fig. 5. Development of a shock. The initial concentration is continuous and increasing, there is no discontinuity at
(t =0, x =0). Boundary data are, = 0.2 andu; = 0.5.



C. Bourdarias et al. / J. Math. Anal. Appl. 313 (2006) 551-571 571

concentration at point X = 0.5 m velocity at point X = 0.5 m
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Fig. 6. Contact discontinuity. We start with a rarefaction wave arising from a discontinuity=e, x = 0) with ¢g = 0.2
andc;, = 0.5. The velocityu, is 0.2 for 1 < 20 and 08 for ¢ > 20. ¢ remains continuous while the discontinuity of the
velocity u “propagates at infinite speed.” We show the evolutiorc @nd « at the positionx = 0.5. Notice that the
maximum principle is not valid fon.
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