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Abstract

This paper deals with a system of two equations which describes heatless adsorption of a gaseou
with two species. When one of the components is inert, we obtain an existence result of a weak
satisfying some entropy condition under some simplifying assumptions. The proposed method ma
of a Godunov-type scheme. Uniqueness is proved in the class of piecewiseC1 functions.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Heatless adsorption is a cyclic process for the separation of a gaseous mixture, called
sure Swing Adsorption” cycle. During this process, each of thed species (d � 2) simultaneously
exists under two phases, a gaseous and movable one with concentrationci(t, x) (0 � ci � 1), or
a solid (adsorbed) other with concentrationqi(t, x), 1� i � d . Following Ruthwen (see [12] fo
a precise description of the process), we can describe the evolution ofu, ci , qi according to the
following system, whereC = (c1, . . . , cd):
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0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved.
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∂t ci + ∂x(uci) = Ai(qi − q∗
i )(C), (1)

∂tqi + Aiqi = Aiq
∗
i (C), t � 0, x ∈ (0,1), (2)

with suitable initial and boundary data. In (1)–(2) the velocityu(t, x) of the mixture has to b
found in order to achieve a given pressure (or density in this isothermal model)

d∑
i=1

ci = ρ(t), (3)

where ρ represents the given total density of the mixture. The experimental device is
ized so that it is a given function depending only upon time. The functionq∗

i is defined on
(R+)d , depends upon the assumed model and represents the equilibrium concentrati
precise form is usually unknown but is experimentally obtained. Simple examples of s
function are for instance the linear isothermq∗

i = Kici , with Ki � 0 and the Langmuir isotherm

q∗
i = (QiKici)/(1+ ∑d

j=1 Kjcj ), with Ki � 0, Qi > 0 (see, for instance, [2,7,12]).
The right-hand side of (1)–(2) rules the matter exchange between the two phases and qu

the attraction of the system to the equilibrium state: it is a pulling back force andAi is the
“velocity” of exchange for the speciesi. A component with concentrationck is said to be inert if
Ak = 0 andqk = 0.

A theoretical study of the system (1)–(3) was presented in [1] and a numerical approa
developed in [2]. Let us point out that one of the mathematical interests of the above m
its analogies and differences compared to various other classical equations of physics or
try. First, whend = 1 (and eventually withAi = 0) this model shares a similar structure w
conservation laws under the form

∂tρ + ∂x

(
ρu(ρ)

) = 0, ∂xu(ρ) = F(ρ),

whereu(ρ) has an integral dependance uponρ, while in scalar conservation lawsu depends
uponρ. In [1] bothBV andL∞ theories are developed for this model, but oscillations can p
agate thus differing from Burger’s example (see Tartar [15], Lions et al. [10]).

Secondly, when the coefficientsAi tend to infinity (instantaneous equilibrium), we get f
mally

qi − q∗
i = − 1

Ai

∂tqi → 0

and Eqs. (1)–(2) reduce to

∂t

(
ci + q∗

i (C)
) + ∂x(uci) = 0, i = 1, . . . , d. (4)

Joined to (3), the system of conservation laws (4) generalizes the system of chromato
which has been intensively studied (see [6,11] for the Langmuir isotherm) whereas the
(1)–(2) enters more in the field of relaxation systems (see, for instance, Jin and Xin [8]
soulakis and Tzavaras [9]). Actually the system of chromatography corresponds, like in
instantaneous adsorption, but the fluid speed is a constantu(t, x) = u. One may consult Jame
[6] for a numerical analysis and the relationships with thermodynamics, Canon and Jame
the case of the Langmuir isotherm. In [7], James studied a system closely related to (1)
which the speed is constant and the coefficientsAi are equal to 1/ε, whereε is a small paramete
Using compensated compactness, he proved, under some assumptions on the flux, that
tion of this system converges, asε → 0, to a solution of a system of quasilinear equations sim



C. Bourdarias et al. / J. Math. Anal. Appl. 313 (2006) 551–571 553

traint

the

y

erties
ave:

t un-
will

tood as
to (4) satisfying a set of entropy inequalities. The extension of his method to (4) with cons
(3) seems not straightforward and is still an open problem.

In this paper, we deal with the system of equations (4)–(3) with two components (d = 2),
one adsorbable with concentrationc1 and one inert with concentrationc2. Moreover, in (3) we
assume thatρ ≡ 1, which is not really restrictive from a theoretical point of view. Then,
corresponding system of transport equations writes:

∂t

(
c1 + q∗

1(c1, c2)
) + ∂x(uc1) = 0, (5)

∂t c2 + ∂x(uc2) = 0, (6)

with the algebraic constraint

c1 + c2 = 1. (7)

Notice that we seek positive solutions(c1, c2), thus, in view of (7),c1, c2 must satisfy 0�
c1, c2 � 1. Adding (5) and (6), we get, thanks to (7):

∂tq
∗
1(c1, c2) + ∂xu = 0.

In the sequel we setc := c2 andh(c) = −q∗
1(c1, c2) = −q∗

1(1−c, c), thus our purpose is to stud
the system (5)–(7) under the form:{

∂t c + ∂x(uc) = 0,

∂th(c) − ∂xu = 0,
(8)

supplemented by initial and boundary values:


c(0, x) = c0(x) ∈ [0,1], x > 0,

c(t,0) = cb(t) ∈ [0,1], t > 0,

u(t,0) = ub(t), t > 0.

(9)

We assume in (9) an influx boundary condition, i.e.,∀t > 0, ub(t) > 0. We choose]0,+∞[ in-
stead of]0,1[ as spatial domain for the sake of simplicity. In order to investigate some prop
of the functionh, we look at some commonly used isotherm [16]. For linear isotherm, we h
q∗

1 := K1c1 with K1 > 0, then

h′(c) := dh

dc
> 0 (10)

andh′′ = 0. For the binary Langmuir isotherm which is:q∗
1 = (Q1K1c1)/(1+ K1c1 + K2c2),

with K1 > 0, Q1 > 0, K2 � 0, we have alsoh′ > 0, andh′′(c) := d2h

dc2 � 0 if K2 < K1 (actually
K2 = 0 if the second species is inert). For the so-called BET isotherm defined by

q∗
1 = QKc1

(1+ Kc1 − (c1/cs))(1− (c1/cs))
, Q > 0, K > 0, cs > 0,

we have stillh′ > 0 but no longerh′′ � 0. Nevertheless the functionh′ + ch′′, first derivative
of H(c) := 1 + ch′(c) remains nonnegative for a convenient choice of the parameters (bu
fortunately not in all the physically relevant situations). In this first simplified approach we
assume (10) and

H ′(c) � 0. (11)

Single-component adsorption is of course of a poor physical meaning, but must be unders
a preliminary theoretical study.
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The paper is organized as follows. In Section 2, we give some results for smooth sol
These results suggest us an entropy condition. In Section 3, we give solutions for the R
problem satisfying such an entropy condition. In Section 4, we use a Godunov scheme
struct an approximate weak solution of problem (8)–(9) and we give some useful bounds
in Section 5, we obtain an existence theorem for a weak solution of problem (8)–(9). Las
Section 6, the uniqueness is obtained in the class on piecewiseC1 functions.

2. Smooth solutions

Proposition 2.1. For smooth solutions, the system(8) with the initial boundary conditions(9)
becomes:

∂t c + ∂x

[
α(t)F (c)

] = 0, t, x > 0, (12)

c(0, x) = c0(x), x > 0, (13)

c(t,0) = cb(t), t > 0, (14)

with α(t) = ub(t)exp(g(cb(t))) > 0, F(c) = c exp(−g(c)) > 0, where

g′(c) = h′(c)
H(c)

, H(c) = 1+ ch′(c) (15)

and necessarily

u(t, x) = α(t)exp
(−g

(
c(t, x)

))
> 0, t, x > 0. (16)

Moreover, under assumption(10)–(11)we haveF ′ > 0> F ′′.

Notice thatg andF depend only onh′, butα depends also on boundaries valuesub, cb. The
maximum principle is valid forc but not foru: see, for instance, Fig. 6.

Proof. Sincec andu are smooth, we can apply the chain rule formula. So, the second eq
of (8) can be rewritten∂xu = h′(c)∂t c, then, with the first equation,∂xu = −h′(c)∂x(uc) and we
get(∂xu)(1+ ch′(c)) = −uh′(c)∂xc. Finally, with the notations introduced in (15) we have:

∂xu = −uh′(c)(∂xc)/H(c) = −u∂x

(
g(c)

)
. (17)

For a fixedt > 0, the functionx �→ u(t, x) is the unique solution of the ordinary linear different
equation (17) with the “initial” conditionu(t,0) = ub(t) > 0. Explicitly, we have:u(t, x) =
ub(t)exp(g(cb(t))−g(c(t, x))), thenu(t, x) is positive for allx. Replacingu in the first equation
of (8), we get (12). Now, a direct computation gives us:

F ′(c) = exp
(−g(c)

)
/H(c), F ′′(c) = −exp(−g(c))

H 2(c)

(
H ′(c) + h′(c)

)
(18)

and thanks to the hypothesis (10) and (11) we haveF ′ > 0 andF ′′ < 0: the flux in the scala
conservation law (12) is strictly concave.�
Theorem 2.1 (Global smooth solution). Assume(10)–(11).

If ub ∈ C1([0,+∞[, ]0,+∞[), if cb, c0 ∈ C1([0,+∞[, [0,1]) satisfy the following compat
bility conditions at the corner:

cb(0) = c0(0), c′
b(0) + ub(0)c′

0(0) + h′(cb(0)
)
c′
b(0)c0(0) = 0
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b, then the system(8)–(9)admits one and only one smooth solution:

(c, u) ∈ C1([0,+∞[t × [0,+∞[x, [0,1]) × C1([0,+∞[t × [0,+∞[x, ]0,+∞[).
Moreover: ∀t > 0, ∂xc(t, x) � 0, u(t, x) > 0, ∂xu(t, x) � 0.

We deduce from this result an entropy condition for shock waves:

(EC) “c increases through a shock.”

For smooth solutions, the active gas desorbs andu increases to evacuate gases. Notice that
same theorem is true for continuous solutions with only one compatibility condition at the c
cb(0) = c0(0) and replacing the sign of the derivative of the concentrations on the bounda
monotonicity conditions. Figure 5 shows a (nonglobal) smooth solution which produces a
wave in finite time.

Proof. For a smooth solution we can use the last proposition, so∂t c + α(t)F ′(c)∂xc = 0. Using
the characteristic curve defined by

∂X

∂s
(s, t, x) = α(s)F ′(c(s,X(s, t, x)

))
, X(t, t, x) = x, (19)

we get

∂

∂s
c
(
s,X(s, t, x)

) = 0. (20)

Thus, c is constant along the characteristic curve (19), i.e.,c(s,X(s, t, x)) = c(t, x), and X

writes:

X(s, t, x) = x + F ′(c(t, x)
) s∫

t

α(z) dz. (21)

To construct a solution, we need only to construct all characteristic curves issuing fro
boundary and verify that no characteristic curves cross each other, see [14, pp. 241–244
i.e., we need to satisfy:β := ∂xX(s, t, x) > 0. Differentiating (19) with respect tox, we get

∂β

∂s
(s, t, x) = α(s)F ′′(c(s,X(s, t, x)

))
∂xc

(
s,X(s, t, x)β, β(t, t, x) = 1.

On the other hand, we have∂xc(s,X(s, t, x)) = ∂xc(t, x), then fors > t :

∂β

∂s
(s, t, x) = [

α(s) × F ′′(c(t, x)
) × ∂xc(t, x)

]
β(s, t, x), β(t, t, x) = 1.

SinceF ′′(c) < 0 andα(s) > 0, the sufficient way to keepβ positive is:∀(t, x), ∂xc(t, x) � 0.
Since∂xc is constant along any characteristic curve, it suffices to satisfy this condition o
boundary. For characteristic curves issuing from{t = 0}, this last condition becomes∂xc(0, x) =
c′

0(x) � 0. For characteristic curves issuing from{x = 0}, remark that onx = 0, thanks to
Eq. (12), we have∂t c(t,0) = −α(t)F ′(c(t,0))∂xc(t,0). SinceF ′(c) > 0 andα(t) > 0 we need
to have∂t c(t,0) = c′

b(t) > 0. �



556 C. Bourdarias et al. / J. Math. Anal. Appl. 313 (2006) 551–571

ntext
when

case if
ith
ence of
the first

ing

olution

r

step
3. Riemann problem

It is well known (see, for instance, Dafermos [4], Serre [13], Smoller [14]) that in the co
of hyperbolic systems of conservation laws, the life span of smooth solutions is finite even
the initial/boundary data are smooth. For the system studied in this paper, it will be the
for instance the monotonicity conditionsc′

0 � 0 � c′
b are not satisfied, thus we have to deal w

weak solutions. In order to get a general existence result via the construction of a sequ
approximate solutions, we are going to adapt the Godunov scheme to the system (8):
step is the resolution of the Riemann problem.

We are thus looking for a weak solution of the following Riemann problem:

∂t c + ∂x(uc) = 0, ∂th(c) − ∂xu = 0,

∀x > 0, c(0, x) = c+,

∀t > 0, c(t,0) = c− and u(t,0) = u−, (22)

with c−, c+ ∈ [0,1] andu− > 0. By symmetry, we search a selfsimilar solution, i.e.:c(t, x) =
C(z), u(t, x) = U(z) with z = x

t
> 0. Recall that from Theorem 2.1 we proposed the follow

(EC) entropy condition for shock waves:c increases through a shock. Then, ifc− > c+, we find a
continuous solution. To have a global smooth solution, we find necessarily a decreasing s
thanks to Theorem 2.1 and ifc− < c+, we find a shock wave.

Proposition 3.1 (Rarefaction wave). Assume(10)–(11). If c− > c+, the only smooth selfsimila
solution of (22) is such that


C(z) = c−, 0< z < z−,
dC
dz

= −G(C)
z

, z− < z < z+,

C(z) = c+, z+ < z,

(23)

where

G(c) = H(c)

h′(c) + H ′(c)
> 0, z− = u−

H(c−)
> 0, (24)

z+ is defined by the equationC(z+) = c+, u+ = z+H(c+), andU is given by


U(z) = u−, 0< z < z−,

U(z) = zH(C(z)), z− < z < z+,

U(z) = u+, z+ < z.

(25)

So, along a rarefaction wave,c decreases,u increases,z− < u−, andz+ < u+. Notice that
the computations ofz+ andu+ need the resolution of an ODE. Figure 2 shows a desorption
corresponding to a rarefaction wave arising from a discontinuity at(t = 0, x = 0).

Proof. SettingC′(z) = dC
dz

andU ′(z) = dU
dz

, we get from (8)

−zC′ + (UC)′ = 0, (26)

U ′ = −zh′(C)C′. (27)

Using Eq. (27), we getUC′ = zH(C)C′, so, whereC′ 	= 0:

U(z) = zH
(
C(z)

)
. (28)
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We are looking for a simple wave, soC′ 	= 0 on (z−, z+). From (28),z− is defined byz− =
u−/H(c−) and we have to findz+ andu+.

From (28) and (26) we getC
′(z)

G(C)
= −1

z
. Let φ(C) = ∫ C

c−
1

G(s)
ds. Thanks to the hypothes

(10)–(11) we haveG > 0 and, forC < c−, we haveφ(C) < 0. But d
dz

φ(C(z)) = φ′(C)C′(z) =
C′(z)
G(C)

= −1
z
. Thenφ(C(z)) = ln(

z−
z

) becauseφ(c−) = 0. Finally,φ(C(z+)) = ln(
z−
z+ ) andz+ =

z− exp(−φ(c+)). Now, using again (28), we getu+. �
Proposition 3.2 (Shock wave). Assume(10)–(11). If c− < c+, the only weak selfsimilar solutio
of (22) is

C(z) =
{

c− if 0< z < s,

c+ if s < z,
U(z) =

{
u− if 0< z < s,

u+ if s < z,
(29)

whereu+ is defined by

u+ = u−
[c] + c−[h]
[c] + c+[h] , (30)

and where the speeds of the shock satisfies

0< s = −[u]
[h] = [uc]

[c] = u−
[c]

[c] + c+[h] = u+
[c]

[c] + c−[h] < u+ < u− (31)

with the classical notations for the jumps.

Thanks to the Rankine–Hugoniot condition, this is the only weak monotonic solution
only one jump, i.e.,c andu are monotonic functions. So, through a shock wave,c increases
u decreases but remains positive. The speed of the shock is proportional tou− and lower than
the fluid velocityu. Notice the difference with a strictly hyperbolic 2× 2 system. Here we hav
three data:c−, c+, u− and two unknowns:u+, s. In the hyperbolic case for two shocks, we ha
four data:c−, c+, u−, u+ and four unknowns:c0, u0, s1, s2. Figure 3 shows an adsorption st
corresponding to a shock wave arising from a discontinuity at(t = 0, x = 0). See also Fig. 4 fo
the junction of two shocks.

Proof. We cannot find a smooth solution sinceG > 0 andc should decrease, by (23). Let b
ν = (νt , νx) a normal vector to the shock line. The Rankine–Hugoniot conditions writeνt [c] +
νx[uc] = 0, νx[u] = νt [h(c)]. We have[c] 	= 0 thus[h(c)] 	= 0 andνx 	= 0. Then the slopes of
the shock line satisfiess = [uc]/[c] = −[u]/[h]. Then from[u][c] + [uc][h] = 0 we get

u+
u−

= [c] + c−[h]
[c] + c+[h] (32)

and all results follow. �
Remark 3.1. For the Riemann problem notice thatc satisfies the maximum principle. It is ve
important sincec must be in[0,1]. Notice also that for allt > 0 the functionsc(t, ·) andu(t, ·)
are monotonic thanks to (10)–(11).

Lemma 3.1. Assume(10)–(11). For the solution of the Riemann problem(22) given in Proposi-
tions3.1and3.2we have the following estimate:∣∣ln(u+) − ln(u−)

∣∣ � γ |c+ − c−|,
whereγ is a true constant depending only on theh function.
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Proof. If the solution of the Riemann problem (22) is a rarefaction wave then, by Propositio
we have: 0< u+

u− = z+H(c+)
z−H(c−)

<
z+
z− , sincec− > c+ andc �→ H(c) is an increasing function. Le

be β = min0�c�1 G(c) > 0 andD the upper solution:dD
dz

= −β
z
, z− � z < z+, D(z−) = c−,

C(z) � D(z) on (z−, z+). Let bez0 determined byD(z0) = c+: necessarilyz+ � z0. We can
compute explicitlyD andz0: D(z) = c− − β ln(z/z−), z0 = z− exp(|c+ − c−|/β). Then, it suf-
fices to takeγ1 = 1

β
= 1

minc∈[0,1] G(c)
. If the solution of the Riemann problem (22) is a shock w

then, by Proposition 3.2 and equality (32), we have:

0<
u+
u−

= [c] + c−[h]
[c] + c+[h] = S(c−, c+), c− < c+.

The functionS is smooth and positive onΩ = {(c−, c+), 0� c− < c+ � 1}. On the diagonal we
havec− = c+ andS ≡ 1, therefore we verify that ln(S) is a smooth function onΩ , vanishing on
the diagonal. Then, there existsγ2 such that|ln(u+)− ln(u−)| � γ2|c+ −c−|. Finally Lemma 3.1
holds withγ = max(γ1, γ2). �
4. Godunov scheme

We adapt the classical Godunov scheme for hyperbolic systems to the system of a
tion (8). Let beT > 0, X > 0 fixed. For a fixed integerN we set∆x = X

N+1 and∆t = T
M+1,

whereM is an integer depending uponN and will be chosen later to satisfy a CFL-type co
dition. We are going to build an approximate solution(cN ,uN) of (8) on (0, T ) × (0,X). For
i = 0, . . . ,N andj = 0, . . . ,M we denote byBi,j the boxBi,j = [tj , tj+1[ × [xi, xi+1[, where
xi = i∆x, tj = j∆t . We use also middle mesh(xi+1/2 = xi + ∆x/2, tj+1/2 = tj + ∆t/2). We
discretize the initial boundary values as follows:

cN(0, x) = cN(0, xi+1/2) := 1

∆x

xi+1∫
xi

c0(x) dx, xi < x < xi+1,

cN(t,0) = cN(tj+1/2,0) := 1

∆t

tj+1∫
tj

cb(t) dt, tj < t < tj+1,

uN(t,0) = uN(tj+1/2,0) := 1

∆t

tj+1∫
tj

ub(t) dt, tj < t < tj+1,

where 0� i � N and 0� j � M . For the Godunov scheme we need a CFL condition: s
ing a Riemann problem on the boxB = [0,∆t[ × [0,∆x[ with the initial valuec+ and the
boundary valuesc−, u− (on {x = 0}), we want that the wave leaves the boxB by its upper
side{∆t} × [0,∆x[, i.e., z+∆t < ∆x for a rarefaction wave ands∆t < ∆x for a shock. Since
z+ < max(u−, u+) or s < max(u−, u+), this is clearly satisfied under the following (CFL) co
dition:

sup
[0,∆t[×[0,∆x[

u = max(u−, u+) <
∆x

∆t
. (33)

If this CFL condition is always satisfied, we can compute(cN ,uN) row by row (i.e., for each
fixedj ) solving the Riemann problem on each boxBi,j , i = 0, . . . ,N , according to the following
procedure.
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Fig. 1. Riemann problem in a boxBij .

Assume that, for a giveni, we have givencN(tj , x) = c+ on [xi, xi+1[, cN(t, xi) = c− and
uN(t, xi) = u− on [tj , tj+1[, then:

(1) if c− < c+ (shock) we computes andu+ according to (31) and (30). Thanks to the C
condition and (29) we getcN(t, xi+1) = c+, uN(t, xi+1) = u+ on [tj , tj+1[ and we define
cN(tj+1, x) on [xi, xi+1[ as the mean value of the solution of the Riemann problem, tha

cN(tj+1, x) = cN(tj+1, xi+1/2) := λsc− + (1− λs)c+ with λ = ∆t

∆x
;

(2) if c− > c+ (rarefaction wave) we computez− by (24). Then,z+ is computed as th
unique solution ofC(z+) = c+ with C defined through (23).U is defined by (25) with
u+ = z+H(z+). As in the preceding case we havecN(t, xi+1) = c+, uN(t, xi+1) = u+ on
[tj , tj+1[ and we definecN(tj+1, x) on [xi, xi+1[ as the mean value of the solution of t
Riemann problem. Using for instance the trapezoid rule we get:

cN(tj+1, x) = cN(tj+1, xi+1/2) := λ
z− + z+

2
c− +

(
1− λ

z− + z+

2

)
c+.

Notice that we could proceed as well by columns before rows (i beforej ). To ensure the CFL
condition (33), we need to control supu. Therefore, by Lemma 3.1, we have to control the to
variation in space ofc for all time. Recall that, for any functionv defined on(a, b):

TV
(
v, (a, b)

) = sup

{
n∑

k=0

∣∣v(zk+1) − v(zk)
∣∣; n ∈ N, a < z0 < · · · < zn+1 < b

}

= sup

{∣∣∣∣∣
b∫

a

v(z)φ′(z) dz

∣∣∣∣∣; φ ∈ C∞
c (a, b), |φ| � 1

}

andv ∈ BV(a, b) if and only if TV(v, (a, b)) < +∞.

In the following lemmas, we prove that this scheme is well defined and we give some
bounds.
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,

d the

(see
Lemma 4.1. Let beγ the constant defined in Lemma3.1. If the CFL condition is fulfilled, then
for all t ∈ (0, T ):

TV
[
ln

(
u(t, .)

)
, (0,X)

]
� γ TV

[
c(t, .), (0,X)

]
.

Proof. This is a direct application of Lemma 3.1, the algorithm of Godunov scheme an
monotonicity ofc andu on each box (see Remark 3.1).�

Let us define the total variation of initial-boundary concentration by

TV(cb, c0) := TV
(
cb, (0, T )

) + TV
(
c0, (0,X)

) + sup
0<t<T,0<x<X

∣∣cb(t) − c0(x)
∣∣. (34)

Lemma 4.2. If the CFL condition is fulfilled, then, for allN � 0:

sup
0<t<T

TV
[
cN(t, .), (0,X)

]
� TV(cb, c0).

Proof. By monotonicity of the solution of the Riemann problem under the CFL condition
Remark 3.1) we have, for allt ∈ (tj , tj+1) and allt ∈ (tj , tj+1):

TV
[
cN(t, .), (xi, xi+1)

] = ∣∣cN(tj+1/2, xi) − cN(tj+1/2, xi+1)
∣∣.

Therefore, we have:

TV
[
cN(tj+1/2, .), (0,X)

] =
N∑

i=0

∣∣cN(tj+1/2, xi+1) − cN(tj+1/2, xi)
∣∣.

In particular, in the lower row, we obtain:

TV
[
cN(t1/2, .), (0,X)

] = ∣∣cN(t1/2,0) − cN(0, x1/2)
∣∣

+
N∑

i=1

∣∣cN(0, xi−1/2) − cN(0, xi+1/2)
∣∣

�
∣∣cN(t1/2,0) − cN(0, x1/2)

∣∣ + TV
(
c0(.), (0,X)

)
.

By induction, we get easily

TV
[
cN(tj+1/2, .), (0,X)

]
�

∣∣cN(tj+1/2,0) − cN(tj , x1/2)
∣∣ + TV

[
cN(tj−1/2, .), (0,X)

]
.

SincecN(tj , x1/2) is betweencN(tj−1/2,0) andcN(tj−1, x1/2) we have∣∣cN(tj+1/2,0) − cN(tj , x1/2)
∣∣ �

∣∣cN(tj+1/2,0) − cN(tj−1/2,0)
∣∣

+ ∣∣cN(tj−1/2,0) − cN(tj−1, x1/2)
∣∣.

Then, we get

TV
[
cN(tj+1/2, .), (0,X)

]
�

j∑∣∣cN(tk+1/2,0) − cN(tk−1/2,0)
∣∣ + TV

[
cN(∆t/2, .), (0,X)

]

k=1
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.

�
j∑

k=1

∣∣cN(tk+1/2,0) − cN(tk−1/2,0)
∣∣ + ∣∣cN(t1/2,0) − cN(0, x1/2)

∣∣
+ TV

(
c0(.), (0,X)

)
� TV

(
cb(.), (0, tj+1)

) + ∣∣cN(t1/2,0) − cN(0, x1/2)
∣∣ + TV

(
c0(.), (0,X)

)
� TV(cb, c0). �

Lemma 4.3. Let beλ = ‖ub‖∞ × exp(γ TV(cb, c0)) > 0. If λ∆t < ∆x, then the CFL condition
is fulfilled.

Proof. We proceed by induction. Let (Hi,j ) the following hypothesis: onRi,j = (0, tj+1) ×
(0, xi+1) we have

0< u � sup
0<t<tj+1

(
ub(t)exp

(
γ TV

[
c(t, .), (0, xi+1)

]))
. (35)

Sinceλ � ‖ub‖∞, (H0,j ) is satisfied for allj . We have to show that forj from 0 toM , if (Hi,j )
is true andi < N then (Hi+1,j ) is also true. To this purpose we need only to prove thatu satisfies
inequality (35) onBi+1,j .

If (Hi,j ) is true, the CFL condition is fulfilled on rectangleRi,j , then

u− := u(tj+1/2, xi+1) � sup
0<t<tj+1

(
ub(t)exp

(
γ TV

[
c(t, .), (0, xi+1)

]))
.

Solving the Riemann problem onBi+1,j , we getu+ � u− exp(γ |c+ −c−|) thanks to Lemma 3.1
Then,

sup
Bi+1,j

u � sup
0<t<tj+1

(
ub(t)exp

(
γ TV

[
c(t, .), (0, xi+1)

])) × exp
(
γ |c+ − c−|)

� sup
0<t<tj+1

(
ub(t)exp

(
γ TV

[
c(t, .), (0, xi+2)

]))
.

Therefore, (Hi+1,j ) is true. Finally, we haveu � λ = ‖ub‖∞ exp(γ TV(cb, c0)) and the CFL
condition holds. �

Denote byceil(x) the lowest integer bigger thanx. We can fixM as follows:

M = 1+ ceil

(
λT

∆x

)
= 1+ ceil

(
λ

T

X
(N + 1)

)
(36)

and the CFL condition is then satisfied. Notice thatM∆x ∼ λT and ∆x
∆t

→ λ asN → ∞.

Lemma 4.4. Let beL > 0, f ∈ BV(0,L), f = 1
L

∫ L

0 f (x)dx, or f = f (0+)+f (L−)
2 , then

L∫
0

∣∣f (x) − f
∣∣dx � L × TV

(
f, (0,L)

)
.

We skip the proof of this rather classical lemma.
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Lemma 4.5. Let beλ1 = supN∈N
∆x
∆t

< ∞, then for any0 � s < t < T the sequence(cN) satis-
fies:

X∫
0

∣∣cN(t, x) − cN(s, x)
∣∣dx � 2λ1TV(cb, c0)

(|t − s| + 2∆t
)
. (37)

Proof. We recall that CFL condition is fulfilled. First, we work onBi,j , tj � s1 < s2 < tj+1. By
monotonicity with respect to time ofcN on each box, we have

xi+1∫
xi

∣∣cN(s2, x) − cN(s1, x)
∣∣dx �

xi+1∫
xi

∣∣cN(tj+1, x − 0) − cN(tj , x)
∣∣dx

� ∆x
∣∣cN(tj+1, xi) − cN(tj , xi+1/2)

∣∣
= ∆xTV

(
cN(tj+1/2, .), (xi, xi+1)

)
.

Since∆x � λ1∆t , after summation with respect toi, we get

X∫
0

∣∣cN(s2, x) − cN(s1, x)
∣∣dx � ∆xTV

(
cN(tj+1/2, .), (0,X)

)
� λ1∆tTV(cb, c0).

Otherwise, ont = tj , there is a jump, but by Lemma 4.4:

xi+1∫
xi

∣∣cN(tj , x) − cN(tj − 0, x)
∣∣dx =

xi+1∫
xi

∣∣cN(tj , x1/2) − cN(tj − 0, x)
∣∣dx

� ∆xTV
(
cN(tj+1/2, .), (xi, xi+1)

)
.

Summing overi, we get

X∫
0

∣∣cN(tj , x) − cN(tj − 0, x)
∣∣dx � ∆xTV

(
cN(tj+1/2, .), (0,X)

)
� λ1∆tTV(cb, c0).

For any 0� s < t < T , let bej := min{i, s � ti}, k := max{l, tj+l � t}, ands � tj < tj+1 <

· · · < tj+k � t . By conventiont−1 = 0, so we have|tj+k+1 − tj−1| � |t − s| + 2∆t and

X∫
0

∣∣cN(t, x) − cN(s, x)
∣∣dx �

k∑
l=−1

X∫
0

∣∣cN(tj+l+1, x) − cN(tj+l , x)
∣∣dx

� 2λ1TV(cb, c0)
(|t − s| + 2∆t

)
. �

Lemma 4.6. Assume that the CFL condition is fulfilled, thatub ∈ L∞(0, T ), inf0<t<T ub(t) >

0 and that c0 and cb have bounded variations. Then the sequence(uN) is bounded in
L∞((0, T ) × (0,X)) and inL∞(0, T ;BV(0,X)). Furthermore: infN inf(0,T )×(0,X) u

N > 0 and
supN ‖uN‖∞ � ‖ub‖∞ exp(γ TV(cb, c0)).
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that a

-
s,

term
Proof. Solving the Riemann problem,u+ > 0 follows from u− > 0 and we haveuN > 0 on
(0, T ) × (0,X). If ub ∈ L∞(0, T ) and if inf0<t<T ub(t) > 0 then ln(ub) ∈ L∞. Thanks to Lem-
mas 4.1 and 4.2, ifc0 andcb have bounded variations, we have supN sup0<t<T TVx(ln(uN(t, .))) <

+∞ and Lemma 4.6 holds.�
5. Convergence towards a weak solution

Theorem 5.1 (Global large weak solution). Let beX > 0, T > 0. Assume(10)–(11)and that
c0 ∈ BV(0,X), cb ∈ BV(0, T ), ub ∈ L∞(0, T ), satisfying0� c0, cb � 1 and inf0<t<T ub(t) > 0.
Then the system(8)–(9)admits a weak solution given by Godunov scheme. Furthermore,c and
u satisfy:

c ∈ L∞(
(0, T ) × (0,X)

) ∩ L∞(
(0, T );BV(0,X)

)
, (38)

c ∈ Lip
(
0, T ;L1(0,X)

)
, (39)

c ∈ BV
(
(0, T ) × (0,X)

)
, (40)

u ∈ L∞(
(0, T ) × (0,X)

) ∩ L∞(
(0, T );BV(0,X)

)
, (41)

with the following bounds:

X∫
0

c(t, x) dx �
X∫

0

c0(x) dx + ‖ub‖∞
t∫

0

cb(s) ds, (42)

0� min(inf cb, inf c0) � c � max(supcb,supc0) � 1, (43)

‖c‖L∞((0,T ),BV(0,X)) � TV(cb, c0), (44)

‖u‖L∞((0,T )×(0,X)) � ‖ub‖∞ exp
(
γ TV(cb, c0)

)
, (45)

inf[0,T ]×[0,X]u > 0. (46)

(γ is the constant defined in Lemma4.3and depending only on theh function.)

Proof. Let be(cN ,uN)N the sequence constructed in Section 4. We are going to prove
subsequence of(cN ,uN)N converges towards a weak solution(c, u) of (8)–(9), satisfying the
estimates (38) to (46).

First step: Convergence ofcN , uN , uNcN up to a subsequence.
By Lemma 4.2, the sequence(cN) is bounded inL∞((0, T );BV(0,X)). Furthermore, by

Lemma 4.5, we obtain a classical compactness argument on(cN) (see [14]). Then, up to a sub
sequence,(cN) converges toc in L1((0, T ) × (0,X)) and a.e. Thenc satisfies the same bound
i.e., (38), (39), (43) and (44) hold, in particularc verifies the maximum principle.

By Lemma 4.6, the sequence(uN) is bounded inL∞, then, up to a subsequence,(uN)

converges weakly tou in L∞ weak-�. By the same lemma, the sequence(∂xu
N) is bounded

L∞
t M1

x , dual from L1
t C0

x , then there existsv ∈ L∞
t M1

x such that(∂xu
N) converges weakly

to v in L∞
t M1

x weak-�. But the weak limit is unique then∂xu = v and u ∈ L∞
t BVx . Fur-

thermore we have‖u‖L∞ � lim infN ‖uN‖L∞ < +∞, ‖u‖L∞
t BVx

� lim infN ‖u‖N
L∞

t BVx
< +∞,

inf u � infN uN > 0 and (41), (45), (46) hold. Now, we can pass to the limit in the nonlinear
uNcN because the sequence(uN) converges weakly tou in L∞ weak-� and the sequence(cN)

converges strongly toc in L1.
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(9).

n-

for

,

Second step: We show that(c, u), obtained in the previous step is a weak solution of (8)–
Recall that(c, u) is a weak solution of (8)–(9) on(0, T ) × (0,X) if and only if, for any smooth
functionsφ,ψ ∈ C∞

c ((−∞, T ) × (−∞,X)):

T∫
0

X∫
0

(
c∂tφ + (cu)∂xφ

)
(t, x) dx dt +

X∫
0

c0(x)φ(0, x) dx (47)

+
T∫

0

ub(t)cb(t)φ(t,0) dt = 0, (48)

T∫
0

X∫
0

(
h(c)∂tψ − u∂xψ

)
(t, x) dx dt +

X∫
0

h
(
c0(x)

)
ψ(0, x) dx (49)

−
T∫

0

ub(t)ψ(t,0) dt = 0. (50)

We are going to prove that(c, u) satisfies (47). A similar proof works to obtain (49). By co
struction,(cN ,uN) is a weak solution of (8) on each boxBi,j and, thanks to the fulfilled CFL
condition, is also a weak solution on each row(tj , tj+1) × (0,X). The problem is only on line
t = tj , 0< j � M andt = 0, x = 0 for the discretisation of the initial boundary value (9). So,
anyφ, we have

T∫
0

X∫
0

(
cN∂tφ + cNuN∂xφ

)
(t, x) dx dt +

X∫
0

cN(0, x)φ(0, x) dx

+
T∫

0

uN(t,0)cN(t,0)φ(t,0) dt = −JN,

whereJN = ∑M
j=1

∫ X

0 (cN(tj , x + 0) − cN(tj , x − 0))φ(tj , x) dx. In order to prove that(c, u)

satisfies (47), thanks to the results of the first step, we have just to show thatJN → 0. We can
rewriteJN under the formJN = ∑M

j=1
∑N

i=0 Ji,j where

Ji,j =
∆x∫
0

(
cN(tj , xi+1/2) − cN(tj , xi + y)

)
φ(tj , xi + y)dy,

and

cN(tj , xi+1/2) = 1

∆x

∆x∫
0

cN(tj , xi + y)dy.

Since
∫ ∆x

0 (cN(tj , xi+1/2)− cN(tj , xi +y))φ(tj , xi) dy = 0, we writeφ(tj , xi +y) = φ(tj , xi)+
(φ(tj , xi + y) − φ(tj , xi)).

We have|φ(tj , xi +y)−φ(tj , xi)| � ‖∂xφ‖∞∆x because 0� y � ∆x. Thanks to Lemma 4.4
we have also



C. Bourdarias et al. / J. Math. Anal. Appl. 313 (2006) 551–571 565

rat-

dary.
ther
e

cewise

and
-

r usual
|Ji,j | =
∣∣∣∣∣

∆x∫
0

(
cN(tj , xi+1/2) − cN(tj , xi + y)

)(
φ(tj , xi + y) − φ(tj , xi)

)
dy

∣∣∣∣∣

� ‖∂xφ‖∞∆x

∆x∫
0

∣∣cN(tj , xi+1/2) − cN(tj , xi + y)
∣∣dy

� ‖∂xφ‖∞(∆x)2TV
(
c(tj , .), (xi, xi + ∆x)

)
.

Therefore,

|JN | �
M∑

j=1

‖∂xφ‖∞(∆x)2TV
(
cN(tj , .), (0,X)

)
� ‖∂xφ‖∞TV(cb, c0)M∆x × ∆x

thus, ifM � T
∆t

, we have|JN | � T ‖∂xφ‖∞TV(cb, c0)
∆x
∆t

× ∆x.
Since∆x

∆t
→ λ whenN → ∞, JN converges towards 0. Lastly we get easily (42) by integ

ing (8) over[0, t] × [0,X] and using the positivity ofu andc.
Last step: BV regularity ofc.
Since(c, u) is a weak solution of (8) we have∂xu = ∂th(c) and, thanks to the estimate on∂xu,

we get∂th(c) ∈ L∞((0, T );M1(0,X)). We haveh′ > 0, thenc = h−1(h(c)) and the chain rule
formula inBV gives∂t c = (h−1)′∂th(c) ∈ L∞M1

x . Then∂t c and∂xc lie in M1((0, T ) × (0,X))

and finallyc ∈ BV((0, T ) × (0,X)), which is (40). �
We have now strong trace results.

Proposition 5.1. The functionsc andu satisfy initial boundary conditions(9) strongly.

Proof. The functionc belongs toBV((0, T ) × (0,X)), then admits a strong trace on{t = 0} and
{x = 0}. But c is a weak solution of (8), (9), then admits also a weak trace on the boun
By uniqueness of traces,c satisfies the initial boundary conditions (9) strongly. On the o
hand,u belongs toL∞((0, T ) × (0,X)) ∩ L∞((0, T );BV(0,X)), then admits a strong trac
v(t) in {x = 0} defined for a.e.t ∈ (0, T ). We haveu(t, x) → v(t) for a.e.t whenx → 0+ and
v ∈ L∞(0, T ) with ‖v‖L∞

t
� ‖u‖L∞

t,x
, thus, thanks to the Lebesgue’s theorem,u admitsv as

strong trace on{x = 0} in L1(0, T ): limx→0+
∫ T

0 |ũ(t, x) − v(t)|dt = 0, whereũ is defined for

a.e.t ∈ [0, T ] and allx ∈ [0,X] as the mean valuẽu(t, x) = u(t,x−0)+u(t,x+0)
2 . �

6. Uniqueness

We study the uniqueness problem for weak entropic solutions in some class of pie
smooth functions. More precisely we denote byC1

p([0, T ] × [0,X],R
2) (C1

p in brief) the set of

functions(c, u) : [0, T ] × [0,X] → R
2 such that there exists a finite number of continuous

piecewiseC1 curves outside of which(c, u) is C1 and across which(c, u) has a jump disconti
nuity. In the sequel, we consider weak solutions(c, u) ∈ C1

p of (8)–(9) in (0, T ) × (0,X), with
piecewise smooth initial and boundary data, satisfying the entropy condition (EC) and ou
assumptions (10)–(11) onh.
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ulation
yper-

actical

st

ion

s

ity.
initial

s

hat

-
-

-

ties
(51)
We restrict ourselves to the piecewise smooth case since we do not have a weak form
for the entropy condition (EC). Formally we can expect to obtain such a condition as for h
bolic PDEs, but it is still an open problem. Nevertheless, this case is relevant in most pr
cases and involve global solutions with shock waves and contact discontinuities.

Theorem 6.1. Let beT ,X > 0. Let beub : [0, T ] → R+, cb : [0, T ] → [0,1], c0 : [0,X] → [0,1]
some piecewiseC1 functions. Assumeinf[0,T ] ub(t) > 0 and (10), (11). Then there exists at mo
one weakC1

p solution (c, u) of the system(8)–(9) satisfying the entropy condition(EC), the
maximum principle(43)and (46).

Lemma 6.1. Any shock curve across whichc has a nonzero jump admits a parametrizat
t �→ x(t).

Proof. Let beν = (νt , νx) a normal of the shock line. Since(c, u) is a weak solution, it satisfie
the Rankine–Hugoniot condition and we getνx 	= 0 and Lemma 6.1 holds.�
Remark. In the case where[c] = 0 and [u] 	= 0, the solution admits a contact discontinu
We can easily obtain such a solution by considering for instance the following set of
boundary data:c0 ≡ a, cb ≡ a, ub = u1 for 0 < t < t∗ andub = u2 for t∗ < t < T . We have
an obvious weak solution defined byc(t, x) ≡ a, u(t, x) ≡ u1 on (0, t∗) × (0,X) andu(t, x) ≡
u2 on (t∗, T ) × (0,X): the boundary discontinuity ofu is linearly propagated. Figure 6 show
an example of such a situation. We define now a “determination zone”Ω = {(t, x), t0 < t <

t1, x1(t) < x < x2(t)} where 0� t0 < t1 < T , x1(t) andx2(t) are shock curves. We assume t
(c, u) ∈ C1(Ω).

Lemma 6.2. The characteristics curves lying inΩ satisfy

0<
dX

ds
(s, t, x) = u

H(c)
� u. (51)

Proof. Since(c, u) ∈ C1(Ω), we have∂t c + α(t)F ′(c)∂xc = 0, u(t, x) = α(t)exp(−g(c(t, x))),
whereα(t) = (uexp(g(c)))(t, x1(t) + 0) = (uexp(g(c)))(t, x2(t) − 0) > 0. Recall that the char
acteristics lines satisfydX

ds
(s, t, x) = α(s)F ′(c(s,X(s, t, x))). Thanks to (16) and (18) we get im

mediatelydX
ds

(s, t, x) = u
H(c)

. Sinceh′ > 0, we haveH(c) = 1+ ch′(c) � 1 and (51) holds. �
Lemma 6.3. The forward characteristic lines enter the discontinuity(and the backward charac
teristic lines never enter a discontinuity).

Proof. This proof relies on the entropy condition (EC). Let bes ∈ ]t0, t1[ ands �→ x(s) a shock
curve. As usually we definec+ = c(s, x(s) + 0), c− = c(s, x(s) − 0), u+ = u(s, x(s) + 0)

and u− = u(s, x(s) − 0). It follows from (19) that Lemma 6.3 reduces to the inequali
α(s)F ′(c+) < x′(s) < α(s)F ′(c−). Consider for instance the fist one: thanks to (31) and
it is equivalent tox′(s) = u+[c]

[c]+c−[h] >
u+

H(c+)
. Now we haveu+ > 0, c+ > c− > 0, H(c+) =

1+ c+h′(c+) > 0 and the assumption (10), thus an easy computation leads to

α(s)F ′(c+) < x′(s) ⇐⇒ c+h′(c+)[c] − c−[h] > 0 ⇐⇒ φ(c−) > 0,
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whereφ is defined byφ(y) = c+h′(c+)(c+ − y) − y(h(c+) − h(y)). We have

φ′(y) = −(
c+h′(c+) − yh′(y)

) − (
h(c+) − h(y)

)
= −(

H(c+) − H(y)
) − (

h(c+) − h(y)
)
.

Thanks to (10) and (11) we haveφ′(y) < 0 for y < c+, moreoverφ(c+) = 0. Thus we ge
φ(c−) > 0 and Lemma 6.3 holds.�
Lemma 6.4. From each point(t0, x0) ∈ [0, T [ × [0,X[ emerges at most one shock curve.

Proof. Let be (t0, x0) ∈ [0, T [ × [0,X[ and assume that there exists two shock curvesx1(s)

and x2(s) issuing from(t0, x0) such that we have for instancex1(s) < x2(s) locally in time
(t0 < s < t1) and(c, u) smooth inZ := {(s, ξ); t0 < s < t1, x1(s) < ξ < x2(s)}. Then we show
easily that a backward characteristic line drawn from any point(t, x) ∈ Z enter one of the two
shock curves which contradicts Lemma 6.3.�

We prove now the local uniqueness for rarefaction waves.

Lemma 6.5. Let be(t0, x0) a point of discontinuity forc(t, x), c+ = c(t0, x0 + 0) and c− =
c(t0, x0 − 0). If c− > c+, then there exists an open setU containing(t0, x0), there existst1 > t0
such that(8)–(9)admits an unique smooth solution in(]t0, t1[×]0,X[) ∩ U .

Proof. We assume thatx0 > 0 (the casex0 = 0 is similar). According to (EC) there is n
shock curve passing through(t0, x0), thus the solution is smooth in an open setV = ]t0, t1[ ×
]x0 − 2δ, x0 + δ[ and has no discontinuity point in{t0} × ]x0 − 2δ, x0[ and in{t0} × ]x0 + δ[.
Let beX± the “limiting characteristics” defined fors � t0, following (21), byX±(s) = x0 +
F ′(c±)

∫ s

t0
α(τ) dτ . We define as above the open setZ = {(s, ξ); t0 < s < t1, X−(s) < ξ <

X+(s)}. Let be(t, x) ∈ Z ∩ V andX(s, t, x), t0 < s � t , the associated backward characteri
line. We have lims→t0+0 X(s, t, x) = x0 because the characteristic lines cannot cross each o
thusx0 = x − F ′(c(t, x))A(t) with A(t) = ∫ t

t0
α(s) ds. SinceF ′ is strictly decreasing (Propo

sition 2.1) we getc(t, x) = (F ′)−1(
x−x0
A(t)

) and conversely this last formula defines a smo
solution inZ. Along (s,X±(s)) we havec = c± andu = u±. Lastly the solution is defined in a
unique way, using the characteristics lines, inV ∩ {X(s, t0, x0 − δ) < x < X−(s) or x > X+(s)}
and Lemma 6.5 follows. �

We prove now the local uniqueness for the shock waves.

Lemma 6.6. Let be(t0, x0) ∈ [0, T [ × [0,X[, c± = c(t0, x0 ± 0) and M = sup[0,T ]×[0,X] u
H(c)

.
Under the assumptionc− < c+, there existst1 > t0, there existsδ > 0 such that the solution i
unique onD = {(t, x); t0 < t < t1, x0 − δ + M(t − t0) < x < x0 + δ − M(t − t0)} and presents
an unique admissible shock curve issuing from(t0, x0).

Proof. Let beδ > 0 such thatx0 is the only discontinuity point forc(t, x) in {0}×]x0−δ, x0+δ[,
andX± defined as in the proof of Lemma 6.5 (notice thatX+ < X−). Let t1 > t0 be such that the
solution of the ODE

dX
(s, t0, x) = α(s)F ′(c(s,X(s, t0, x)

))
, X(t0, t0, x) = x (52)
ds
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exists and is unique on]t0, t1[ for x ∈ ]x0 − δ, x0 + δ[\{0}. Moreover, we can assume that

sup
{
c(t0, x); x0 − δ < x < x0

}
< inf

{
c(t0, x); x0 < x < x0 + δ

}
(53)

and thatt1 − t0 is small enough to ensure that the characteristic lines issuing respectively
{0} × ]x0 − δ, x0[ and{0} × ]x0, x0 + δ[ meet each other before timet1. This last point is easily
justified using (21), (53), inf[0,T ] ub(t) > 0 and thatF ′ is continuous and strictly decreasing.
follows that the solution cannot be smooth inZ = {(s, ξ); t0 < s < t1, X+(s) < ξ < X−(s)}.
Using the characteristic lines given by (52), we define theC1 functionsC− and C+ respec-
tively on the open setsD− = {(s, ξ); t0 < s < t1, x0 − δ + M(s − t0) < x < X−(s)} and
D+ = {(s, ξ); t0 < s < t1, X+ < x < x0 + δ − M(s − t0)} which both containsZ. Thanks
to (16), we associate them twoC1 functionsU− andU+. Then the ODE

dξ

ds
= F

(
C−

(
s, ξ(s)

)
,C+

(
s, ξ(s)

))
, ξ(t0) = x0,

whereF(C−,C+) = U+−U−
h(C+)−h(C−)

is C1, admits locally (on]t0, t1[, restrictingt1 if necessary) an
unique solution which determines the shock curve. The entropic solution is uniquely defin
(s, ξ) ∈ D, x < ξ(s) or x > ξ(s) by C− or C+, respectively. �
Remark 6.1. If (t0, x0) is a point of discontinuity foru but not forc, the entropy condition (EC
implies that there is no shock curve passing through this point. The characteristic lines,
defined around(t0, x0) by dX

ds
= [u]

[H(c)] are piecewiseC1 and we get the local uniqueness of t
solution fort > t0.

Corollary 6.1. There existsτ > 0 such that the solution is unique on(0, τ ) × (0,X).

Proof. It follows from Lemmas 6.5 and 6.6 that for allx0 ∈ (0,X) there existsδ > 0, there exists
τ > 0 such that the solution is unique on(0, τ ) × (x0 − δ, x0 + δ). Then we conclude using
mere compact argument.�
Proof of Theorem 6.1. Let

T ∗ = sup
{
τ ∈ [0, T ]; the solution is unique on(0, τ ) × (0,X)

}
and assume thatT ∗ < T . The solution is unique on(0, T ∗) × (0,X). By Corollary 6.1 there
existsτ > 0 such that we have uniqueness on(T ∗, T ∗ +τ)×(0,X). Then we have uniqueness
(0, T ∗ + τ) × (0,X), contradicting the assumption. FinallyT ∗ = T and Theorem 6.1 holds.�
Remark 6.2. In Section 2 we showed that, in the case of smooth solutions,c is the solution of
the scalar conservation law (12). Thus, it is a natural question to wonder if the weak en
solutions of (12) (in the usual sense) are the same as those of the system (8)–(9) with
tropy condition (EC) (at least in the case of uniqueness). Actually the answer is positive
only if the functionh is linear and increasing, i.e., if and only if the isotherm function is lin
(q∗(c1, c2) = ac1 with a > 0 or equivalentlyh(c) = ac − a). Let us briefly justify this claim. Fo
a shock wave connecting(c−, u−) and(c+, u+), let beσ the speed of the shock given by t
Rankine–Hugoniot condition for (12):σ = α(t)

[F(c)]
[c] and let bes the corresponding speed f

(8)–(9), given by (31). Writingα(t) = u−eg(c−), we get

s = σ ⇐⇒ c+ − c− = c+e−(g(c+−g(c−))) − c−
.

c+ − c− + c+(h(c+) − h(c−)) c+ − c−
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Settingc− = 0, c+ = x and using (15) we get, after differentiation with respect tox: g(x) =
ln(1 + xh′(x)). Differentiating again, we get finallyh′′ = 0 as a necessary condition. It is ve
easily shown that this condition is also sufficient. Finally ifh(c) = ac + b we haveg′(c) = a

ac+1
and, up to an additive constant,F(c) = c

ac+1: the (EC) condition (c increases through a shoc
coincides with the Oleinik condition if and only ifF is concave, i.e.,a > 0.

7. Figures

The following results have been obtained with a Langmuir isotherm, using the God
scheme presented in Section 4. The values of the various parameters, adapted from
[16] are not important: our purpose is to illustrate the phenomena pointed out along the
ous study. The bed profiles in the cases of adsorption or desorption steps (Figs. 2 and 3
Langmuir or the linear isotherm are the same as in [16], but, as pointed out in the introdu
the case of the so-called BET isotherm is out of our reach under the assumptions (10)–(1

Fig. 2. Desorption step. The initial concentration isc0 = 0.1, the boundary data arecb = 1.0 andub = 0.4. The discon-
tinuity at (t = 0, x = 0) gives a rarefaction wave which evolves towards the steady statec ≡ 1.0.

Fig. 3. Adsorption step. The initial concentration isc0 = 1.0, the boundary data arecb = 0.5 andub = 2.0. The discon-
tinuity at (t = 0, x = 0) gives a shock wave which propagates to the right. The concentrationc of the inert gas evolve
towards the steady statec ≡ 0.5.
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Fig. 4. Double shock. The initial concentration isc0 = 0.2 for x � 0.5 andc0 = 0.5 for x > 0.5, the boundary data ar
cb = 0.1 andub = 0.5. Both discontinuities at(t = 0, x = 0) and(t = 0, x = 0.5) give a shock wave which propagates
the right. The “small shock” catches the other and merge into a single one. The concentrationc of the inert gas evolve
towards the steady statec ≡ 0.1.

Fig. 5. Development of a shock. The initial concentration is continuous and increasing, there is no disconti
(t = 0, x = 0). Boundary data arecb = 0.2 andub = 0.5.
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Fig. 6. Contact discontinuity. We start with a rarefaction wave arising from a discontinuity at(t = 0, x = 0) with c0 = 0.2
andcb = 0.5. The velocityub is 0.2 for t � 20 and 0.8 for t > 20. c remains continuous while the discontinuity of t
velocity u “propagates at infinite speed.” We show the evolution ofc and u at the positionx = 0.5. Notice that the
maximum principle is not valid foru.
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