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Abstract. We study propagations of high frequency oscillations for one dimensional
semi-linear hyperbolic system with small parabolic perturbation. We obtain a new de-
generate parabolic system for profile, and valid an asymptotic development in a spirit of
Joly, Métivier and Rauch.
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1. Introduction

Joly, Métivier and Rauch in [13] give a rigorous and deep description of solutions to
one dimensional nonlinear hyperbolic equations with smooth and highly oscillatory initial
data. On the other hand, numerous physical problems involve parabolic partial differential
equations with small viscosity, for instance Navier-Stokes system with large Reynolds
number. Then it is of interest to put the Joly, Métivier, Rauch framework with a small
diffusion. The first step to study such multiphase expansions is the semilinear case. So
we wish to investigate propagations of high frequency oscillations for following nonlinear
parabolic system with highly oscillatory initial data uε

0 and small positive viscosity ν:

−ν ∂
2uε

∂x2
+
∂uε

∂t
+A(t, x)

∂uε

∂x
= F (t, x, uε)(1.1)

uε(0, x) = uε
0(x).(1.2)

The matrix A(t, x) is a smooth N × N real matrix with N distinct real eigenvalues:
λ1(t, x) < λ2(t, x) < · · · < λN (t, x), in such a way that ∂t+A(t, x)∂x is a strictly hyperbolic
operator.

In this paper, we will focus our attention on the special case of a rapidly oscillating data
with a given vectorial phase ϕ0(x), frequency 1/ε and a viscosity equals to the square of
the wavelength:

uε(0, x) = uε
0(x) = U0

(
x,
ϕ0(x)
ε

)
,(1.3)

ν = ε2.(1.4)

So, with such oscillating data, the viscous coefficient has critical size (see next section),
such that we expect to have ε2∂2

xu
ε of order one. And we hope to see interactions of high

oscillations with the viscous term. Indeed, it is the aim of this paper to justify a geometric
optics expansion:

uε(t, x) = U

(
t, x,

ϕ(t, x)
ε

)
+ o(1),
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where ϕ is a vectorial phase as in hyperbolic case (without viscosity) and the profile U
satisfies a new degenerate parabolic modulation system. With such diagonal viscosity, we
validate WKB expansion in L2

x with initial data only bounded in L2
x ∩ L∞x .

There is a rich literature devoted to nonlinear geometric optics expansions. The classical
work here is [13]. For the quasilinear case restricted to constant background states and
linear phases, see [4, 5, 11, 12, 18, 15, 16]. For the semilinear case, see [14, 13, 20, 21, 14].
For some results with oscillations and viscosity in multidimensional framework with one
phase see [1, 7, 8], with a nonlinear instability result obtained trough WKB expansions in
the second reference. To a reader interested by an overview on nonlinear geometric optics
we refer to survey paper [6] and references given there.

The paper is organized as follows. In short section 2 we briefly explain the choose of
viscosity (1.4) on a simple example. In section 3 we repeat relevant material from [13],
give new parabolic profile systems and state our main results. Section 4 set up notation
for the almost diagonal system, and reviews some of the standard estimates on parabolic
equations. We conclude by a useful interpolation lemma. In section 5, we prove uniform
existence in time for solutions of (1.1), (1.4) with initial data (1.2) uniformly bounded in
L∞ ∩ L2. Section 6 is devoted to the study of the profile system. Section 7 deals with
the important linear scalar case. Then, in section 8, geometric optics expansion is proved.
Finally , in section 9, we give few comments and comparisons with the inviscid case.

2. About viscosity size

Let us examine a simple example to get critical size of viscosity ν with ε-wavelength:

∂tu
ε + λ∂xu

ε = ν∂2
xu

ε, uε(0, x) = u0(x/ε),(2.1)

where ν > 0, u0 is a smooth one periodic function with zero mean. We have the classical
decay rate in L∞(Rx) for one periodic solutions with zero mean:

‖uε(t, .)‖∞ ≤ ‖u0‖∞√
πt

ε√
ν
.(2.2)

So, if ν � ε2, diffusion is too strong and kills oscillations.
Now, let vε(t, x) = uε(t, x)− u0

(
x−λt

ε

)
. vε satisfies the following Cauchy problem:

∂tv
ε + λ∂xv

ε − ν∂2
xv

ε = νε−2u′′0, vε(0, x) = 0.

Using maximum principle for vε we conclude that:∥∥∥∥uε(t, x)− u0

(
x− λt

ε

)∥∥∥∥
∞

≤ t‖u′′0‖∞
ν

ε2
.(2.3)

So, if ν � ε2,we have the same hyperbolic behavior when ν = 0. Thus, the critical
viscosity size is ν ∼ ε2. Furthermore, for ν = ε2, inequalities (2.2), (2.3) give bounds of
order one and we get an exact geometric optics expansion and a parabolic profile equation:

uε(t, x) = U

(
t,
x− λt

ε

)
, where − ∂2

θU + ∂tU = 0, U(0, θ) = u0(θ).

3. Main Results

Viscosity ν is now fixed by (1.4). Our first goal is to prove that the exact solutions of
(1.1), (1.2) exists on a domain independent of ε ∈ (0, ε0] for a positive ε0. Let us begin
with fixing an arbitrary T0 > 0 for all the sequel. For such parabolic system, in order to

2



avoid boundary value problems, we will work globally in the space variable and assume
that the entries of matrix

A(t, x), ∂xA(t, x), ∂2
xA(t, x) are bounded on [0, T0]× Rx.(3.1)

In a same way, F (t, x, u) is a smooth non linear function such that, for any positive T ,
and any compact K ⊂ RN

u ,

F (t, x, u) and ∂uF (t, x, u) are bounded on [0, T0]× Rx ×Ku.(3.2)

Furthermore, to have energy estimates, we also assume that

F (t, x, 0) ∈ C0([0, T0];L2(Rx,RN )).(3.3)

The following preliminary result gives sufficient conditions on the Cauchy data u0
ε to

get existence of a solution on a domain independent of ε.

Proposition 3.1. [Uniform existence]
Under assumptions (3.1), (3.2), (3.3), if the family (uε

0)0<ε≤1 is bounded in L∞∩L2(R,RN ),
then, there exist T > 0 and ε0 > 0 such that, for any ε ∈ (0, ε0], the system (1.1), (1.2),
(1.4) has a unique weak solution uε in E := C([0, T ];L2(R,RN )) ∩ L∞([0, T ] × R,RN ).
Furthermore the family (uε)0<ε≤1 is uniformly bounded in E independently of ε.

The proof of this result is given in section 5 and uses energy estimates for the lin-
earized problem together with the maximum principal for scalar parabolic equations and
an interpolation estimate.

After this preliminary result, we are going to find phases and the profile system. Typ-
ically in (1.3), ϕ0 ∈ C∞(R,Rm) and U0(x, θ) is smooth function, supported in {|x| < 1}
and Zm-periodic with respect to θ ∈ Θ0 = Rm, but we will also consider more general
almost-periodic profiles as in [13]. In order to state the main result, we have to introduce
some notations.

Phases and characteristic vector fields:
We note ϕ0 = (ϕ0

1, . . . , ϕ
0
m) where ϕ0

j ∈ C∞(R; R), and assume that the ϕ0
1, . . . , ϕm are

linearly independent. As in a pure hyperbolic problem, we use characteristic vector fields
of the hyperbolic operator ∂t +A(t, x)∂x

Xj = ∂t + λj(t, x)∂x, j = 1, . . . , N(3.4)

and define the (vector valued) phases ϕj ∈ C∞([0, T0],×R; Rm), j = 1, . . . , N by

Xjϕj = 0, ϕj(0, x) = ϕ0(x).(3.5)

Then we call ϕ = (ϕ1, . . . , ϕN ) ∈ C∞([0, T0]×R; (Rm)N ) and introduce the two following
linear spaces:

Θ0 := span{ϕ0(R)} = Rm, Θ := span{ϕ([0, T0]× R)} ⊂ RmN .

First equality Θ0 = Rm comes from linear independence of ϕ0
j , j = 1, . . . ,m.

Strict inequality dim(Θ) < Nm holds if and only if there exists resonance relations between
the phases ϕj , i.e. R := {α ∈ RN ; α.ϕ ≡ 0 on [0, T0]× R} 6= {0} . Notice that R⊥ = Θ.

Let’s call θ = (θ1, . . . , θN ) the independent variables in the space Rm× · · · ×Rm, where
θj = (θj,1, . . . , θj,m) ∈ Rm. Let Πj be the linear projection on j-component: Πj : Θ → Rm,
Πj(θ) = θj . Let us define Ψj = kerΠj ∩Θ and Θj := Ψ⊥

j ∩Θ.
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Now, to valid a geometric optics expansion, we need some assumption on phases. We use
the more general transversality conditions from [13] (named precisely weak transversality
condition in [13]):

∀α ∈ Θ∗,∀j,
{

either Xj(α.ϕ) ≡ 0 on [0, T0]× R,
or Xj(α.ϕ) 6= 0 almost everywhere on [0, T0]× R.(3.6)

In second case of (3.6), we said that α.ϕ is transverse to Xj . We also said that if (3.6) is
satisfied, phases are transverse.

To avoid constant phases, we assume non stationary condition on initial phases:

∀β ∈ Rm, ∂x(β.ϕ0) 6= 0 almost everywhere on R.(3.7)

Notice that (see [13]) such conditions (3.6) and (3.7) avoid constant phases.
We also assume following closedness property:

∀α ∈ Θ∗,∀j,Xj(α.ϕ) ≡ 0 on [0, T0]× R ⇒ ∃β ∈ Rm, such that α.ϕ ≡ β.ϕj .(3.8)

Indeed, it’s not really a compulsive assumption, since, without loss of generality, we can
add new phases coming from resonance as new initial phases in ϕ0. Thus, we increase m,
the number of initial phases.

Almost periodic profiles:
As in the classical geometrical optics ([13]), one is naturally lead to work within the
class of almost periodic functions. If Z is some finite dimensional real linear space,
we call C0

ap(Z,R) the topological closure in L∞(Z,R) of the linear subspace span{ξ 7→
exp(ια.ξ), α ∈ Z∗}. We also denote C∞ap(Z,R) = C0

ap(Z,R) ∩ C∞(Z,R).

Averaging operators:
We use the averaging operators already introduced by [13] which are defined as follow.
Let µj be the Lebesgue measure on Ψj , Qj a cubic subset of Ψj such that µj(Qj) = 1. We
define the averaging operator Ej acting on C0

ap(Θ,R), by the formula

(Ejv)(θj) = lim
T→+∞

1
T dim Ψj

∫
T.Qj

v(θ + ξ)dµj(ξ) .

In the previous equation the right hand side depends actually only on the variable θj and

Ej : C0
ap(Θ,R) −→ C0

ap (Θj ,R)

is a linear and continuous projector. This map can be also defined on elementary expo-
nential functions by the following rule

Ej(exp(iα.θ)) =
{

exp(iα.θ) if Xj(α.ϕ) = 0
0 else

and then extended by density and continuity (cf [13]).

The profile system:
Let Λ(t, x) the diagonal matrix with components (λ1(t, x), . . . , λN (t, x)). There exists a
smooth invertible matrix P (t, x) such that: P−1AP = Λ. To get profile system, it suffices
to make a WKB expansion for vε(t, x) = P−1(t, x)uε(t, x) with anzatz:

vε(t, x) = V

(
t, x,

ϕ(t, x)
ε

)
+ o(1).
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Following this way, we formally obtain differential operator Dj

Dj =
m∑

k=1

∂ϕjk

∂x

∂

∂θjk
= ∂xϕj .∇θj

.(3.9)

We also obtain initial profile V0 and new right hand side of (1.1) written in the new base
where A is a diagonal matrix. We give profile equations in the next proposition.

V0(x, θ) = P−1(0, x)U0(x, θ),(3.10)
G(t, x, v) := P−1(t, x) (F (t, x, P (t, x)v)− (∂tP (t, x) + Λ(t, x)∂xP (t, x)) v) .(3.11)

Proposition 3.2. [ Equations and existence of profile]. Under assumptions (3.1),
(3.2), (3.3), and if U0 belongs in L2

x(R;C0
ap(Θ

0,RN )) ∩ L∞(Rx × Θ0,RN ), there exists a
positive T such that, following system, with j = 1, . . . , N , admits a unique solution in
C0([0, T ];L2

x(R;C0
ap(Θ,RN ))) ∩ L∞([0, T ]× R×Θ,RN ):

−D2
jVj +XjVj = EjGj(t, x, V ),(3.12)

Vj(0, x, θ) = V0,j(x, θj).(3.13)

Indeed we have Vj(t, x, θ) = Vj(t, x, θj). And, we denote U(t, x, θ) = P (t, x)V (t, x, θ).
We can now state the main result of the paper which describe the propagation on the
oscillations for the parabolic system.

Theorem 3.1. [ Validity of geometric optics expansion]. We assume that U0

belongs to L2(Rx;C0
ap(Rm,RN )) ∩ L∞(Rx × Rm,RN ) and assumptions (3.1), (3.2), (3.3)

are satisfied. Then there exist T > 0 and ε0 > 0 such that, for any ε ∈ (0, ε0], the system
(1.1), (1.4) with initial data (1.3) admits an unique solution uε in C([0, T ];L2(R,RN )) ∩
L∞([0, T ]× R,RN ), and the system (3.12), (3.13) admits an unique solution U in
C0([0, T ];L2

x(R;C0
ap(Θ,RN ))) ∩ L∞([0, T ]× R×Θ,RN ).

Furthermore, if phases are transverse, we have the following geometric optics expansion:

lim
ε→0

[
uε(t, x)− U

(
t, x,

ϕ(t, x)
ε

)]
= 0 in L∞([0, T ];L2(R,RN )).

4. Almost diagonal system, L∞ and L2 estimates

We diagonalize A. Then we write system (1.1), (1.4), in this new base. After we recall
and give energy and uniform estimates used below.

The almost diagonal system:
We diagonalize the hyperbolic operator ∂t +A(t, x)∂x in system (1.1). Unfortunately, this
procedure slightly couples first order derivatives. But, we will control this coupling effect
with Lemma 4.1 in section 5. More precisely, let us give following notations.

vε(t, x) := P−1(t, x)uε(t, x), vε
0(x) := P−1(t, x)uε

0(t, x),(4.1)
G(t, x, v) := P−1(t, x) (F (t, x, P (t, x)v)− (∂tP (t, x) + Λ(t, x)∂xP (t, x)) v) ,(4.2)
Q1(t, x) := 2P−1(t, x)∂xP (t, x), Q2(t, x) := P−1(t, x)∂2

xP (t, x)(4.3)
Gε(t, x, v) := G(t, x, v) + ε2Q2(t, x)v,(4.4)

Lε = −ε2 ∂
2

∂x2
− ε2Q1(t, x)

∂

∂x
+
∂

∂t
+ Λ(t, x)

∂

∂x
(4.5)
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vε is the solution of the almost diagonal system with initial data

Lεvε = Gε(t, x, vε), vε(0, x) = vε
0(x).(4.6)

We use below the diagonal part of the linear operator Lε:

Dε = Lε + ε2Q1
∂

∂x
= −ε2 ∂

2

∂x2
+
∂

∂t
+ Λ(t, x)

∂

∂x
(4.7)

Energy and L∞ estimates:
First notice that Λ, P and P−1 also satisfy assumption (3.1). So ∂xΛ, ∂xQ1 are bounded
on [0, T0]× R and we have:

Theorem 4.1. [Classical energy estimates]. Let 1 ≥ ν > 0, T0 ≥ T > 0, L and Q1

bounded matrix on [0, T0]× R, w(t, x) the unique solution in C0([0, T0], L2(Rx,RN )) of:

−ν ∂
2w

∂x2
− νQ1(t, x)

∂w

∂x
+
∂w

∂t
+ Λ(t, x)

∂w

∂x
= L(t, x)w + h(t, x)

w(0, x) = w0(x)

then, there exist constants C = C(T ) > 1 and D depending only on
T, T0, ‖L‖L∞([0,T0]×R,RN ) , ‖∂xΛ‖L∞([0,T0]×R,RN ) , ‖Q1‖L∞([0,T0]×R,RN ) , such that

‖w‖L∞([0,T ],L2(R,RN )) ≤ C
(
‖w0‖L2(R,RN ) + T ‖h‖L∞([0,T ],L2(R,RN ))

)
, lim

T→0
C(T ) = 1.

√
ν‖∂xw‖L2([0,T ]×R,RN ) + ‖w‖L∞([0,T ],L2(R,RN )) ≤ D

(
‖w0‖L2(R,RN ) + ‖h‖L2([0,T ]×R,RN )

)
.

We recall this fundamental result.

Theorem 4.2. [Maximum principle].
Let ν > 0, T0 ≥ T > 0, λ(t, x) ∈ C1([0, T0]× R,R), g ∈ L∞(]0, T [×R,R), w0 ∈ L∞(R,R),
and w(t, x) the unique solution in L∞([0, T0]×R,R) of the following scalar equation with
initial data w0 :

−ν ∂
2w

∂x2
+
∂w

∂t
+ λ(t, x)

∂w

∂x
= g(t, x), w(0, x) = w0(x),

then

‖w‖L∞([0,T ]×R,R) ≤ ‖w0‖L∞(R,R) + T‖g‖L∞([0,T ]×R,R).

We are going in next section to use the following interpolation result.

Lemma 4.1. Let ν > 0, T > 0, λ(t, x) ∈ C1([0, T ] × R,R), g ∈ L2([0, T ] × R,R), and
w(t, x) the unique solution in C0([0, T ], L2(Rx,R)) of the scalar equation, with null initial
data :

−ν ∂
2w

∂x2
+
∂w

∂t
+ λ(t, x)

∂w

∂x
= g(t, x), w(0, x) = 0.

If ∂xλ is bounded on [0, T ]× R then there exists c0 > 0 such that:

ν1/4‖w‖L∞([0,T ]×R,R) ≤ c0‖g‖L2([0,T ]×R,R))

Proof : From standard energy estimates (Theorem 4.1), there exists d1 = d1(T ) > 0 such
that:

sup
0≤t≤T

‖w(t, .)‖L2(Rx) ≤ d1‖g‖L2([0,T ]×R).
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We now turn to establish that there exists d2 = d2(T ) > 0 such that for each t ∈ [0, T ]:
√
ν‖∂xw(t, .)‖L2(Rx) ≤ d2‖g‖L2([0,T ]×R).(4.8)

Let us beginning with smooth g with compact support and conclude by density. Write
z = ∂xw. So z satisfies:

−ν∂2
xz + ∂tz + λ∂xz = −λxz + gx, z(0, x) = 0.

Following classical computations to get an energy estimate we have:∫
R
ν(∂xz)2dx+

d

dt

∫
R

z2

2
dx = −

∫
R
λz∂xzdx−

∫
R
λxz

2dx+
∫

R
gxzdx

= −1
2

∫
R
λxz

2dx−
∫

R
g∂xzdx

≤ ‖λx‖∞
2

∫
R
z2dx+

1
2ν

∫
R
g2dx+

ν

2

∫
R
(∂xz)2dx

⇒ d

dt

∫
R
z2dx ≤ ‖λx‖∞

∫
R
z2dx+

1
ν

∫
R
g2dx,

⇒
∫

R
z2(t, x)dx ≤ ‖λx‖∞

∫ t

0

∫
R
z2(s, x)dsdx+

1
ν

∫ T

0

∫
R
g2dx,

which gives (4.8) by Gronwall Lemma.
Then, by classical interpolation inequality

‖w(t, .)‖2L∞(Rx,R) ≤ 2‖w(t, .)‖L2(Rx,R)‖∂xw(t, .)‖L2(Rx,R),

used for each t, we conclude the proof.

5. Proof of the uniform existence

In this section we prove Proposition 3.1 by a Picard iteration combining energy and L∞

estimates. Fix T0 a positive number. Let M be a constant chosen later (indeed M will
be greater than the profile norm) such that:

M > M0 := sup
0<ε≤1

‖vε
0‖L2∩L∞ , where ‖vε

0‖L2∩L∞ := max
(
‖vε

0‖L2(Rx,RN ), ‖vε
0‖L∞(Rx,RN )

)
.

Let Bε(T ) be the ball of C0([0, T ];L2(R,RN )) ∩ L∞([0, T ]× R,RN ) defined by:

Bε(T ) =
{
wε, wε(0, x) = vε

0(x) and ‖wε‖C0L2∩L∞) ≤M
}
.

On Bε(T ), we define the nonlinear operator Πε for any wε ∈ Bε(T ) by Πε(wε) is the unique
solution on [0, T ]× R of following initial value problem

Lε [Πε(wε)] = Gε(t, x, wε), [Πε(wε)] (0, x) = vε
0(x).(5.1)

Notice that vε is the solution of (4.6), if and only if Πε(vε) = vε. We are going to prove
that Πε is a contraction on Bε(T ) for a positive T with a Lipschitz constant independent
of ε.

Lemma 5.1. There exist T1 ∈ (0, T0] and ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0],
Πε(Bε(T1)) ⊂ Bε(T1).
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Proof : We first study L∞L2 stability of Πε.
Since Gε(t, x, w) = G(t, x, w) + ε2Q2(t, x)w, there exists c1 such that for all w ∈ Bε(T0):

‖Gε(t, x, w(t, x))‖L∞L2 ≤ c1(1 + ‖w‖L∞L2).

By Theorem 4.1 we get:

‖Πε(wε)‖L∞([0,T ];L2) ≤ C(T ) (‖wε
0‖L2 + T‖Gε(t, x, wε(t, x))‖L∞L2)

≤ C(T )(M0 + Tc1(1 +M)).

Since lim
T→0

C(T ) = 1, there exists T ′, 0 < T ′ ≤ T0 such that ‖Πε(wε)‖L∞([0,T ′];L2) ≤M.

We now study L∞-stability of Πε.
Let zε = Πε(wε) and E2 := sup

0<ε≤1
sup

wε∈Bε(T0)
‖Gε(t, x, wε(t, x))‖L2([0,T0]×R) <∞.

According to Theorem 4.1 we have:

‖ε∂xz
ε‖L2([0,T0]×R) ≤ D(M0 + E2).

By linearity, we decompose zε = zε
1 + zε

2 in such way that:

Dεzε
1 = Gε(t, x, wε), zε

1(0, x) = vε
0(x),

Dεzε
2 = ε

(
Q1(t, x)ε

∂zε

∂x

)
, zε

2(0, x) = 0.

Since zε
1 system is decoupled, we apply Theorem 4.2 for each component of zε

1 and we
have:

‖zε
1‖L∞([0,T0]×R) ≤ ‖vε

0‖L∞(R) + T sup
0≤t≤T0, x∈R, |w|≤M

|Gε(t, x, w)| ≤M0 + TE∞.

According to Lemma 4.1 component by component we have:

‖zε
2‖L∞([0,T ]×R) ≤ c0

√
ε
(
‖Q1‖L∞([0,T0]×R)D(M0 + E2)

)
.

Then, we can choose 0 < T1 ≤ T ′ and ε0 such that for all ε ∈ (0, ε0] :

‖zε‖L∞([0,T1]×R) ≤ ‖zε
1‖L∞([0,T1]×R) + ‖zε

2‖L∞([0,T1]×R) ≤M.

Lemma 5.2. There exists T2 such that 0 < T2 ≤ T1 and Πε is a contraction on Bε(T2))
for the L∞([0, T2];L2(R,RN )) norm with a same Lipschitz constant, for all ε ∈ (0, ε0].

Proof : Let us define zε
1 = Πε(wε

1), z
ε
2 = Πε(wε

2), z
ε = zε

1 − zε
2, w

ε = wε
1 − wε

2. z
ε is the

solution of the following linear system : Lεzε = Gε(t, x, wε
1)−Gε(t, x, wε

2), zε(0, x) = 0.
Obviously, there exists a constant g such that

‖Gε(t, x, wε
1)−Gε(t, x, wε

2)‖L∞([0,T0];L2) ≤ g‖|wε|‖L∞([0,T0];L2),

then ‖zε‖L∞([0,T0];L2) ≤ CTg‖wε‖L∞([0,T0];L2) so we can choose 0 < T2 ≤ T1 such that Πε

is a contraction for the L∞L2 norm on Bε(T2) with a Lipschitz constant independent of
ε.

Proof of Proposition 3.1 : Let vε
n+1 = Πε(vε

n), n ∈ N and vε
n=0(t, x) = vε

0(x). Lemmas
5.1 and 5.2 imply the uniform existence of (vε)0<ε≤ε0 , on [0, T2]×R and lim

n→+∞
vε
n = vε in

C0L2. Then vε also belongs in Bε(T2).
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6. On profile equations

Lemma 6.1 (L∞ and L2 estimates for linear scalar profile equation).
Let j be fixed, V0j ∈ L2(R;C0

ap(Θ
0,R))∩L∞(R×Θ0,R), fj ∈ C0([0, T ];L2(R;C0

ap(Θ
j ,R)))∩

L∞([0, T ]×R×Θj ,R), and Vj(t, x, θj) the unique solution of the scalar equation, with initial
data :

−D2
jVj +XjVj = fj , Vj(0, x, θj) = V0j(0, x, θj).

Then, there exists C such that:

‖Vj‖L∞([0,T ]×R×Θj ,R) ≤ ‖V0j‖L∞(R×Θ0,R) + T‖fj‖L∞([0,T ]×R×Θj ,R),

‖Vj‖C0([0,T ],L2(R;C0
ap(Θj))) ≤ C

(
‖V0j‖L2(R;C0

ap(Θ0)) + T ‖fj‖C0([0,T ],L2(R;C0
ap(Θ)))

)
.

Proof : The first inequality is the classical maximum principle. So, we have only to prove
the second one. Let wj be the solution of :

−D2
jwj +Xjwj = f j = ‖fj(t, x, .)‖L∞(Θ) , wj(0, x, θj) = V 0j = ‖V0j(0, x, .)‖L∞(Θj).

By maximum principle |Vj(t, x, θj)| ≤ |wj(t, x, θj)| and, by uniqueness, wj does not depend
of θ. In fact, wj is solution of : Xjwj = f j , wj(0, x, θj) = V 0j . It is a linear hyperbolic
equation, so the classical energy inequality for wj give us the result.

Now we are able to prove Proposition 3.2: By a standard Picard iteration, V 0(t, x, θ) =
V0(x, θ), and, for n ∈ N, j = 1, . . . , N , V n+1

j is given by:

−D2
jV

n+1
j +XjV

n+1
j = EjGj(t, x, V n), V n+1

j (0, x, θj) = V0,j(x, θj).

Thanks to Lemma 6.1, and since ‖|Ej‖| = 1 we get classically a contraction for small
positive T .

A straightforward computations gives us the following useful Lemma:

Lemma 6.2 (periodic exponential solution). Let j be fixed, T positive, α ∈ Θ∗, bα(t, x) ∈
C0([0, T ];L2(R,R))), a0

α(t, x) ∈ L2(R,R). Let V be the unique solution of:

−D2
jV +XjV = bα(t, x) exp(iα.θ), V (0, x, θ) = a0

α(x) exp(iα.θ).

Then V (t, x, θ) = aα(t, x) exp(iα.θ), where aα is the solution of:

Xjaα + |α.∂xφj |2aα = bα(t, x), aα(0, x) = a0
α(x).

Then we can compute Fourier expansion of V . Indeed aα has the same smoothness as
a0

α and bα. Furthermore, if data are compactly supported w.r.t. x, aα and V too.

7. The linear scalar case

In this section, we validate the geometric optics expansion for the linear scalar case.
The last result comes in useful to prove the main result of this paper.

Lemma 7.1. Let 0 < ε ≤ 1, h ∈ L2(R;C0
ap(Θ

0,R)), and j ∈ {1, · · · , N}.
Let uε and U be the unique solutions of equations (7.1) ,(7.2) on [0, T ]× R,

−ε2∂2
xu

ε +Xju
ε = 0, uε(0, x) = h

(
x,
ϕ0

ε

)
,(7.1)

−D2
jU +XjU = 0, U(0, x, θj) = h(x, θj),(7.2)
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then uε(t, x) = U
(
t, x,

ϕj

ε

)
+O(ε) in L∞([0, T ];L2(R,R))

Proof : First, we assume that h ∈ C∞c (Rx;C∞ap(Θ0,R)), where the subscript c means that

h has compact support with respect to x. Let vε(t, x) = U

(
t, x,

ϕj(t, x)
ε

)
. Then, a direct

computation give us with Sε(t, x) := −ε2∂2
xU − ε(∂xDj)U = O(ε) ∈ L∞([0, T ];L2(R,R)):

−ε2∂2
xv

ε +Xjv
ε = Sε −D2

jU +XjU = Sε, vε(0, x) = uε(0, x).

Since −ε2∂2
xu

ε+Xju
ε = 0, we can apply energy estimate to uε−vε to conclude this smooth

case. We finish the proof using density of C∞c (Rx;C∞ap(Θ0,R)) in L2(R;C0
ap(Θ

0,R)).

We recall and slightly extend on unbounded domain and with a linear term a non stationary
phases Lemma from [13]:

Lemma 7.2. Let 0 < ε ≤ 1, a ∈ C0([0, T ];L2(R,R)), b ∈ L∞([0, T ] × R,R), ψ ∈
C∞([0, T ] × R,R) and j ∈ {1, · · · , N}. Assume that ψ is transverse to Xj i.e. Xjψ 6= 0
a.e., and uε is the unique solution of (7.3) on [0, T ]× R,

Xju
ε + b(t, x)uε = a(t, x) exp

(
i
ψ(t, x)
ε

)
, uε(0, x) = 0,(7.3)

then lim
ε→0

uε(t, x) = 0 in L∞([0, T ];L2(R,RN )).

We now apply the previous Lemma to a weakly parabolic equation.

Lemma 7.3. Let 0 < ε ≤ 1, a ∈ C0([0, T ];L2(R,R)), j ∈ {1, · · · , N}.
Let uε, U the unique solution of the following equations on [0, T ]× R

−ε2∂2
xu

ε +Xju
ε = a(t, x) exp

(
iα.ϕ(t,x)

ε

)
, uε(0, x) = 0,

−D2
jU +XjU = a(t, x)Ej (exp(iα.θ)) , U(0, x, θj) = 0,

then lim
ε→0

[
uε(t, x)− U

(
t, x,

ϕj(t, x)
ε

)]
= 0 in L∞([0, T ];L2(R,RN )).

Proof : First, we assume that a ∈ C2
c ([0, T ]×R,R)). After, we extend the result to more

general data by density.
Let ψ :≡ α.ϕ. By transversality assumptions on phase ϕ, we have only two cases:

(1) Xjψ ≡ 0 : then we have Ej (exp(iα.θ)) = exp(iα.θ). As in Lemma 7.1 proof, let us

consider vε(t, x) := U

(
t, x,

ϕj(t, x)
ε

)
, then we have:

−ε2∂2
xv

ε +Xjv
ε = a(t, x) exp

(
iα.

ϕ(t, x)
ε

)
+O(ε), vε(0, x) = 0,

and we conclude this case by applying an energy estimate to uε − vε.
(2) ψ is transverse to Xj : then we have Ej exp(iα.θ) ≡ 0 and U ≡ 0. Let wε be the

solution of

Xjw
ε = a(t, x) exp

(
iα.

ϕ(t, x)
ε

)
, wε(0, x) = 0.(7.4)
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From Lemma 7.2 we get wε → 0 in L∞t L
2
x. In the same way, we are going to see

that ε∂xw
ε and ε2∂2

xw
ε also converge towards 0 in L2. So, at first, we derive (7.4)

with respect to ε∂x and then with respect to ε2∂2
x to get :

Xjz
ε + bzε = β exp

(
i
ψ

ε

)
+ O(ε), zε(0, x) = 0,

first with zε := ε∂xw
ε, and after with zε := ε2∂2

xw
ε. Then, we conclude with

Lemma 7.2. More precisely, we obtain following equations:

Xj (ε∂xw
ε) + (∂xλj) (ε∂xw

ε) = ia∂xψ exp
(
i
ψ

ε

)
+ ε×

(
∂xa exp

(
i
ψ

ε

))
Xj

(
ε2∂2

xv
ε
)

+ (∂xλj)
(
ε2∂2

xw
ε
)

= ia(∂xψ)2 exp
(
i
ψ

ε

)
+ O(ε),

where O(ε) = ε
[(
ia∂2

xψ) + 2(∂xa)(∂xψ) + ε∂2
xa

)
exp(iψ/ε)− (∂2

xλj)(ε∂xw
ε)

]
.

Now, let Rε := uε−wε. We can conclude by using energy estimate since Rε is the
solution of: −ε2∂2

xR
ε +XjR

ε = ε2∂2
xw

ε, wε(0, x) = 0.

Proposition 7.1. Let 0 < ε ≤ 1, h ∈ L2(R;C0
ap(Θ

0,R)), f ∈ C0([O, T ];L2(R;C0
ap(Θ,R))),

and let uε, U be the unique solutions of the following equations on [0, T ]

−ε2∂2
xu

ε +Xju
ε = f

(
t, x,

ϕ

ε

)
, uε(0, x) = h

(
x,
ϕ0

ε

)
−D2

jU +XjU = Ejf(t, x, θ), U(0, x, θj) = h(x, θj)

then lim
ε→0

[
uε(t, x)− U

(
t, x,

ϕj(t, x)
ε

)]
= 0 in L∞([0, T ];L2(R,RN )).

Proof : By linearity of previous P.D.E. we can decompose uε = uε
1 + uε

2. We make an
analogous decomposition for U . And uε

1, u
ε
2, U1, U2 are solutions of following equations

−ε2∂2
xu

ε
1 +Xju

ε
1 = 0, uε

1(0, x) = h
(
x, ϕ0

ε

)
,

−ε2∂2
xu

ε
2 +Xju

ε
2 = f

(
t, x, ϕ

ε

)
, uε

2(0, x) = 0,
−D2

jU1 +XjU = 0, U1(0, x, θ) = h(x, θ),
−D2

jU2 +XjU = Ejf(t, x, θ), U2(0, x, θ) = 0.

By Lemma 7.1, we obtain uε
1 = U1(t, x, ϕ/ε) + O(ε). For uε

2 we use the density of trigono-
metric polynomial, as in [13]. Then, we replace f by a trigonometric polynomial, and, by
linearity, we can use Lemma 7.3. Then, the proof is complete.

8. Proof of geometric optics expansion

The proof is based on the following observation as in [14]. For a contraction mapping Π
with a Lipschitz constant ρ and the fixed point u, we recall a classical posteriori estimate:

‖u− v‖ ≤ 1
1− ρ

‖Π(v)− v‖.
11



So, let wε(t, x) = V

(
t, x,

ϕ(t, x)
ε

)
. With stationary and non stationary phases Lemmas

we are going to prove that Πε(wε) = wε +o(1). Since (Πε)0<ε≤ε0 is a family of contraction
with same Lipschitz constant we have: vε = wε + o(1).

Precisely, we use notations from section 5. Let T3 satisfying Proposition 3.2: a time
existence of the profile. Fix M > ‖V ‖L∞([0,T3];L2(R:C0

ap(Θ,RN ))) +‖V ‖L∞([0,T3]×R×Θ,RN ). We
now choose T4 such that vε, V live on [0, T4], Πε(Bε(T4)) ⊂ Bε(T4), and Πε are a uniform
L∞L2 contraction on Bε(T4).
First wε belongs to Bε(T4). Let zε = Πε(wε) and j fixed. Notice that zε belongs to Bε(T4).
zε
j satisfies following equation:

−ε2∂2
xz

ε
j +Xjz

ε
j = Gj

(
t, x, V

(
t, x,

ϕ(t, x)
ε

))
+ rε

j

where rε = ε2Q2w
ε + ε2Q1∂xz

ε = O(ε) in L∞L2. Then, neglecting rε, and according to
Proposition 7.1, we have zε

j (t, x) = Wj

(
t, x,

ϕj

ε

)
+ o(1), where Wj is the solution of

(−D2
j +Xj)U = EjGj (t, x, V (t, x, θ)) and Wj(0, ., .) = Vj(0, ., .).

So Wj is exactly Vj , zε
j = wε

j + o(1) and :

Πε(wε) = wε + o(1) in L∞([0, T4];L2(R,RN ))

Since Πε is a L∞([0, T4];L2(R,RN )) contraction on Bε(T4) with a Lipschitz constant in-
dependent of ε ∈ (0, ε0], we have

vε = wε + o(1) in L∞([0, T4];L2(R,RN )),

which completes the proof of Theorem 3.1.

9. Comparisons with the inviscid case

Let us first investigate the standard Lemma of non stationary phase. Could this Lemma
be improved by the presence of small viscosity? Unfortunately the answer is no as you
can see on the following simple example.

−ε2∂2
xu

ε + ∂tu
ε = exp (iφ(t, x)/ε) , uε(0, x) = 0,(9.1)

∂tv
ε = exp (iφ(t, x)/ε) , vε(0, x) = 0,(9.2)

with X = ∂t + 0× ∂x = ∂t.
Assume Xφ 6= 0 a.e., for instance with φ(t, x) = t, viscosity plays no role since
uε(t, x) = vε(t, x) = iε(1 − exp(it/ε)) = O(ε). Furthermore, if φ(t, x) = ψ(t), we always
have uε(t, x) = vε(t, x). So, if ψ′ vanishes on a discrete set we have no rate of convergence.
For instance if ψ(t) ∼ tα when t goes to 0 and α > 1, we have uε(t, x) ∼ Cε1/α with
C 6= 0. So we cannot expect any correctors for multiphase expansions with such such
general transversality conditions on phases. This construction follows [13], Remark 1.2, p.
114-115.

The new feature in our paper is to get and valid parabolic equations for profiles. These
equations are only related to phases transported by the hyperbolic operator ∂t +A(t, x)∂x.
For instance, solutions of (9.1),(9.2) with φ(t, x) = x, (Xφ ≡ 0), are uε(t, x) = (1 −
e−t) exp(ix/ε), vε(t, x) = t exp(ix/ε). Profiles satisfy the following equations:

−∂2
θU + ∂tU = exp (iθ) , U(0, x, θ) = 0,

∂tV = exp (iθ) , V (0, x, θ) = 0.
12



Then viscous profile is U(t, x, θ) = (1 − e−t)eiθ and hyperbolic profile is V (t, x, θ) = teiθ.
So, except for small time, uε and vε have different behaviors.

We conclude this section by few remarks about large time. If (uε)0<ε≤1 and U are
bounded in L∞([0, T ], L2(Rx)) ∩ L∞([0, T ] × Rx) then geometric expansions stated in
theorem 3.1 is still valid on [0, T ]. But, in general, the maximal existence time of the
family of exact solutions is not bounded from below by the existence time of profile.
Indeed, to have such result we have to valid WKB expansion in L∞([0, T ]×Rx). For this
purpose we have to strengthen transversality assumptions on phases and smoothness of
data and solutions. For a fuller treatment of existence times in the inviscid case we refer
the reader to [13].
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Mathématiques Pures et Appliquées, 77 (1998), 989–1054.
[9] GUES, Olivier, Ondes solitaires engendres par interaction d’ondes oscillantes non linaires. (French)

[Solitary waves generated by nonlinear oscillatory wave interaction] J. Math. Pures Appl. (9) 74 (1995),
no. 3, 199–252.

[10] GUES,Olivier, Vanishing viscosity boundary layers for nonlinear hyperbolic systems. Nonlinear the-
ory of generalized functions (Vienna, 1997), 75–84, Chapman & Hall/CRC Res. Notes Math., 401,
Chapman & Hall/CRC, Boca Raton, FL, 1999.

[11] HUNTER, John K.; KELLER, Joseph B. Weakly nonlinear high frequency waves. Comm. Pure Appl.
Math. 36 (1983), no. 5, 547–569.

[12] HUNTER, John. K.; MAJDA, Andrew; ROSALES, Rodolfo, Resonantly interacting, weakly nonlinear
hyperbolic waves. II. Several space variables. Stud. Appl. Math. 75 (1986), no. 3, 187–226.

[13] JOLY, Jean-Luc; METIVIER, Guy; RAUCH, Jeffrey, Resonant one-dimensional nonlinear geometric
optics. J. Funct. Anal. 114 (1993), no. 1, 106–231.
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