______U

L'objet de cet exercice est d'établir la formule de Stirling qui donne un ordre de grandeur de n! lorsque n tend vers $+\infty$. Cette formule apparait pour la première fois dans les *Miscellanea Analytica* de Abraham de Moivre en 1730. James Stirling a signalé à De Moivre quelques erreurs dans sa table des logarithmes des factorielles mais il a surtout amélioré la formule qui porte aujourd'hui son nom, pourtant due à De Moivre.

On rappelle que si (u_n) et (v_n) sont deux suites de nombres réels non nuls, on dit que u_n est équivalent à v_n lorsque n tend vers $+\infty$ si le quotient $\frac{u_n}{v_n}$ tend vers 1 lorsque n tend vers $+\infty$.

Partie A

Cette partie porte sur l'étude des intégrales de Wallis.

Soit I_n l'intégrale définie, pour tout nombre entier naturel n, par :

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x \, .$$

- 1. Calculer I_0 et I_1 .
- 2. Justifier que, pour tout nombre entier naturel $n, I_n \ge 0$ et $I_{n+1} \le I_n$.
- 3. Établir la relation de récurrence suivante valable pour tout nombre entier naturel n > 1:

$$n I_n = (n-1) I_{n-2}$$

On pourra utiliser une intégration par parties.

- 4. Montrer que la suite $(nI_nI_{n-1})_{n\geq 1}$ est constante. Quelle est la valeur de cette constante ?
- 5. Montrer que pour tout nombre entier naturel *n* non nul :

$$\frac{n}{n+1} \le \frac{I_n}{I_{n-1}} \le 1.$$

- 6. En déduire que I_n , I_{n-1} et $\sqrt{\frac{\pi}{2n}}$ sont équivalents lorsque n tend vers $+\infty$.
- 7. Montrer que, pour tout nombre entier naturel n, $I_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$

Partie B Cette partie porte sur l'étude d'une fonction.

Soit f la fonction de la variable réelle x définie sur l'intervalle] -1; 1 [par :

$$\begin{cases} f(x) = \frac{1}{2x} \ln\left(\frac{1+x}{1-x}\right) & \text{si } x \neq 0, \\ f(0) = 1. \end{cases}$$

- 1. Montrer que la fonction f est paire.
- 2. Montrer que la fonction f est continue en 0.
- 3. Prouver que pour tout nombre réel x de l'intervalle] 0 ; 1 [:

$$2x + \frac{2x^3}{3} \le \ln\left(\frac{1+x}{1-x}\right).$$

On admettra pour la suite de l'exercice que pour tout nombre réel x de l'intervalle] 0 ; 1 [:

$$2x + \frac{2x^3}{3} \le \ln\left(\frac{1+x}{1-x}\right) \le 2x + \frac{2x^3}{3(1-x^2)}$$

Partie C

Cette partie permet d'aboutir à la formule de Stirling.

On considère la suite de nombres réels de terme général u_n définie pour tout nombre entier naturel n non nul par :

$$u_n = n! e^n n^{-\left(n + \frac{1}{2}\right)}.$$

- 1. Montrer que, si on pose $p = \frac{1}{2n+1}$, on obtient : $\ln \frac{u_n}{u_{n+1}} = f(p) 1$.
- 2. En déduire que pour tout nombre entier naturel *n* non nul

$$\frac{1}{3(2n+1)^2} \le \ln \frac{u_n}{u_{n+1}} \le \frac{1}{12n(n+1)},$$

puis que:

$$\frac{1}{12(n+1)(n+2)} \le \ln \frac{u_n}{u_{n+1}} \le \frac{1}{12n(n+1)}$$

3. Soient les suites $(v_n)_{n\geq 1}$ et $(w_n)_{n\geq 1}$ définies pour tout nombre entier naturel n non nul par :

$$v_n = \ln(u_n) - \frac{1}{12n}$$
 et $w_n = \ln(u_n) - \frac{1}{12(n+1)}$.

Montrer que les suites $(v_n)_{n\geq 1}$ et $(w_n)_{n\geq 1}$ sont adjacentes.

On notera ℓ leur limite commune lorsque n tend vers $+\infty$.

- 4. Justifier que n! est équivalent à $e^{\ell}e^{-n}n^{\left(n+\frac{1}{2}\right)}$ lorsque n tend vers $+\infty$.
- 5. En déduire que $e^{\ell} = \sqrt{2\pi}$. On pourra utiliser les questions 6 et 7 de la partie A.

Partie D

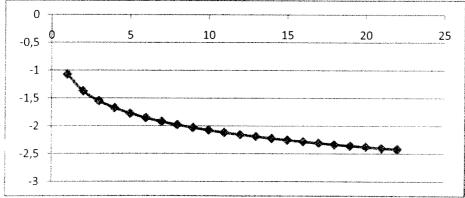
On a obtenu dans la partie précédente l'équivalent suivant $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ qui peut encore s'écrire $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n + \varepsilon(n)$ où $\varepsilon(n)$ désigne l'erreur absolue commise en approximant le nombre n! par le nombre $S(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Le tableau ci-dessous, réalisé sur un tableur, permet de constater que si l'erreur absolue grandit avec l'entier n, l'erreur relative reste faible et a même tendance à décroître.

Α	В	С	D	Е	F	G	
n	n!	S(n)	ε(n)=n!-S(n)	ε(n)/n!	ε(n)/S(n)	$h(n)=S(n)/\epsilon(n)$	h(n)-h(n-1)
1	1	0,92213701	7,79E-02	7,79E-02	8,44E-02	11,84307	
2	2	1,91900435	8,10E-02	4,05E-02	4,22E-02	23,69268	11,84961
3	6	5,83620959	1,64E-01	2,73E-02	2,81E-02	35,63218	11,93950
4	24	23,5061751	4,94E-01	2,06E-02	2,10E-02	47,60023	11,96804
5	120	118,019168	1,98E+00	1,65E-02	1,68E-02	59,58060	11,98038
6	720	710,078185	9,92E+00	1,38E-02	1,40E-02	71,56737	11,98676
7	5040	4980,39583	5,96E+01	1,18E-02	1,20E-02	83,55784	11,99048
8	40320	39902,3955	4,18E+02	1,04E-02	1,05E-02	95,55067	11,99283
9	362880	359536,873	3,34E+03	9,21E-03	9,30E-03	107,54508	11,99441
10	3628800	3598695,62	3,01E+04	8,30E-03	8,37E-03	119,54059	11,99552
11	39916800	39615625,1	3,01E+05	7,55E-03	7,60E-03	131,53692	11,99633
12	479001600	475687486	3,31E+06	6,92E-03	6,97E-03	143,53385	11,99693
13	6227020800	6187239475	3,98E+07	6,39E-03	6,43E-03	155,53126	11,99740
14	87178291200	8,6661E+10	5,17E+08	5,93E-03	5,97E-03	167,52903	11,99777
15	1,30767E+12	1,3004E+12	7,24E+09	5,54E-03	5,57E-03	179,52710	11,99807

En colonne F, l'erreur relative $\frac{\varepsilon(n)}{S(n)}$ décroît avec l'entier n.

1. On suppose dans cette question que l'erreur relative est de la forme $\frac{\varepsilon(n)}{S(n)} = a b^n$ où a et b sont

deux réels. On réalise à l'aide du tableur le graphique ci-dessous où est représenté en ordonnée le logarithme décimal de l'erreur relative.



Que peut-on en déduire quant à l'hypothèse faite sur l'erreur relative ? Aurait-on pu mettre en évidence ce résultat par la représentation graphique d'une autre suite ? Préciser laquelle dans ce cas.

2. Quelle hypothèse raisonnable vous inspire la dernière colonne H du tableau donné ci-dessus ? Proposer alors une formule acceptable donnant la valeur de l'erreur relative en fonction de l'entier *n*.

Partie D

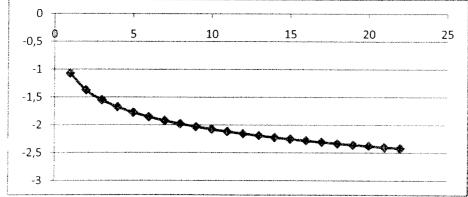
On a obtenu dans la partie précédente l'équivalent suivant $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ qui peut encore s'écrire $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n + \varepsilon(n)$ où $\varepsilon(n)$ désigne l'erreur absolue commise en approximant le nombre n! par le nombre $S(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Le tableau ci-dessous, réalisé sur un tableur, permet de constater que si l'erreur absolue grandit avec l'entier n, l'erreur relative reste faible et a même tendance à décroître.

Α	В	С	D	. E	F	G	ı
n	n!	S(n)	ε(n)=n!-S(n)	ε(n)/n!	ε(n)/S(n)	$h(n)=S(n)/\epsilon(n)$	h(n)-h(n-1)
1	1	0,92213701	7,79E-02	7,79E-02	8,44E-02	11,84307	
_ 2	2	1,91900435	8,10E-02	4,05E-02	4,22E-02	23,69268	11,84961
3	6	5,83620959	1,64E-01	2,73E-02	2,81E-02	35,63218	11,93950
4	24	23,5061751	4,94E-01	2,06E-02	2,10E-02	47,60023	11,96804
5	120	118,019168	1,98E+00	1,65E-02	1,68E-02	59,58060	11,98038
6	720	710,078185	9,92E+00	1,38E-02	1,40E-02	71,56737	11,98676
7	5040	4980,39583	5,96E+01	1,18E-02	1,20E-02	83,55784	11,99048
8	40320	39902,3955	4,18E+02	1,04E-02	1,05E-02	95,55067	11,99283
9	362880	359536,873	3,34E+03	9,21E-03	9,30E-03	107,54508	11,99441
10	3628800	3598695,62	3,01E+04	8,30E-03	8,37E-03	119,54059	11,99552
11	39916800	39615625,1	3,01E+05	7,55E-03	7,60E-03	131,53692	11,99633
12	479001600	475687486	3,31E+06	6,92E-03	6,97E-03	143,53385	11,99693
13	6227020800	6187239475	3,98E+07	6,39E-03	6,43E-03	155,53126	11,99740
14	87178291200	8,6661E+10	5,17E+08	5,93E-03	5,97E-03	167,52903	11,99777
15	1,30767E+12	1,3004E+12	7,24E+09	5,54E-03	5,57E-03	179,52710	11,99807

En colonne F, l'erreur relative $\frac{\varepsilon(n)}{S(n)}$ décroît avec l'entier n.

1. On suppose dans cette question que l'erreur relative est de la forme $\frac{\mathcal{E}(n)}{S(n)} = a b^n$ où a et b sont

deux réels. On réalise à l'aide du tableur le graphique ci-dessous où est représenté en ordonnée le logarithme décimal de l'erreur relative.



Que peut-on en déduire quant à l'hypothèse faite sur l'erreur relative ? Aurait-on pu mettre en évidence ce résultat par la représentation graphique d'une autre suite ? Préciser laquelle dans ce cas.

2. Quelle hypothèse raisonnable vous inspire la dernière colonne H du tableau donné ci-dessus ? Proposer alors une formule acceptable donnant la valeur de l'erreur relative en fonction de l'entier *n*.