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ABSTRACTT his paper focuses on improving the description of the atrttatween solid particles
in a fluid flow. The numerical approach used is related to thtiicas domain method for the
fluid—solid problem. It is associated to a gluey patrticle midd order to improve the behaviour
of the particles during their contacts as a Lagrangian meitisapplied for their displacement.
The numerical methodology is validated through 2D and 3Dpatations describing interac-
tions of two particles in a shear flow. The results obtainedvsithe ability of the scheme to
recover the reversibility of the Stokes equations, everBibconfigurations. Finally, another
example is studied with larger number of particles.

RESUME.On s'intéresse a I'amélioration de la description du contastre plusieurs particules
solides dans un écoulement fluide. Le modéle numérique esttlaode des domaines fictifs
pour la description du probleme fluide—solide. Elle est ag&a un modele de contact visqueux
qui intervient lors du déplacement Lagrangien des parésulLe schéma numérique a été validé
sur des calculs 2D et 3D décrivant I'évolution de deux patés dans un écoulement cisaillé.
Les résultats obtenus montre la capacité du schéma a retrdawéversibilité des équations
de Stokes tout en évitant le recouvrement méme pour deswatifigs 3D. Enfin, un exemple
avec plus de particules est présenté.
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1. Introduction

Since the emergence of the fictitious domain methods in tO@'8¢Glowinskiet
al., 1999; Singhet al,, 2000; Patankaet al, 2000), lots of multiphase applications
have been treated that way, see for instance (Glowieski. 2001; Wachs, 2009;
Coupezt al, 2009). The advantages of these methods are straightforiiaid/solid
or multiphase problems can be treated with an Eulerian @gpron the whole domain
because the rigidity condition can be added in the weak ftation.

In this work, we study the displacement of solid particlea ishear flow. For this
purpose, a characteristic function is used to describe dntcfe domain and there-
fore allows to extend all variables associated to each pteagdole computational
domain thanks to mixing relations. Then the displacemenhefparticles and the
corresponding characteristic function is achieved bygisihagrangian approach.

As the distance between particles can be very small (Mewtiat, 2008), typi-
cally aroundl0~° times the characteristic size of particles. Another impairpoint is
to deal with particle®verlapping This will be achieved by introducing contact mod-
els, especially thgluey particle mode{Maury, 2007; Lefebvre, 2009) which takes
into account viscous effects between patrticles.

2. Numerical Modelling

This work is carried out using an immersed domain approagigus level set
function for determining the interface between fluid anddso{Coupezt al,, 2009).
The weak formulation of the mixed fluid-solid system is vaittby mean of a La-
grange multiplier. At last, the displacement of the solidtigkes is carried out with
a Lagrangian approach, which includes the gluey model. & pests are described
hereafter.

2.1. The immersed domain approach

The immersed domain method is achieved by splitting the edatipnal domain
Q into two subdomain§; and<, for respectively the fluid and solid parts (see Fig-
ure[d). In the case of multiple particles, the solid domaithis union of domain
corresponding to each particle, namely = U,fv Q,, for N particles.

The interfacd’s between the two phases is described by the zero isosurface of
distance function:

>0ifx € Q,

a(x’t):{<0ifx¢Qs (1]
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()
Q ‘ solid particles

Figure 1. Schematic representation of computational domain

In practice, for a spherical particlef centerX; and radiia;, thelevel sefunction
is defined from the following signed distance:

i(x) = a; — || Xix|| (2]
Obviously, the signed distaneefor N spherical particles can be written as:

a(x) = max  o;(x) [3]

i=1,,

Finally, a "smooth" characteristic function is deducedrthe level set function
by taking

=1if a(z)>e
I(z,t) = :% if 0<alx)<e [4]

=0if a<0

wheree the mixing thickness depends on the mesh size around thréaicee Note that
the mixing area is inside the solid domain. In addition, tiee@sityn will be defined
thanks to mixing relation:

n=1Ins + (E—Dns (5]

whereny is the fluid viscosity angs ~ rn¢ the solid viscosity (or penalisation factor)
usually taken much bigger than (r =~ 10?).
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2.2. Governing set of equations and weak formulation

Neglecting inertia and gravity, the fluid-solid problem d¢snwritten with the fol-
lowing set of equations:

V.o = 0
V.u = 0
o = 2ny é(u) — pE

6
[ull,, = 0 [6]
[lom]]r, = 0
u = ur onthe external boundary

whereu is the fluid velocity,é(v) the rate of strain tensos, the stress tensop, the
pressurey; the fluid viscosity (the symbol f[] -, means the jump of scalgracross
the interfacd’,). Patankaet al. (Patankaet al, 2000) have proposed to extend the
above Stokes equation to the solid domain thanks to a Lagrandtiplier by using
the rigidity conditioné(v) = 0 on{,. In this way, the motion in solid domaif,
corresponds to a fluid motion with an additional stress fi€hds is equivalent to take
the stress tenser inside the solid domain of the form

o =2nsé(u) —pE+é(N) [7]

Due to the rigid motion constraint the two first terms are zggaan play the role
of a penalization factor of the constraiia) = 0, and the symmetrical tenseéf)) is
the Lagrange multiplier associated to this constraint.

If we consider Dirichlet boundary conditions, the weak fatation of the fluid—
solid problem can be written as follows: fingh, p, ) such thatv (v, ¢, 1) €
HH(Q) x L3(2) x H (R):

0

/9277 é(u) : é(v)dQ — /QpV.VdQ +/Q E(N) : é(v)dS2

s

0 = /QqV.udQ (8]

0 = /QS é(p) : €(v)dQ2

whereH!(Q) and£3(92) are respectively the Sobolev and Lebesgue spaces.

The system of EquationE][8] is solved using the augmentedaloagan method
and an Uzawa algorithm (Fortet al., 1983) where the field has been extended to
the whole domaif2 by using the characteristic function.
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Hence,the weak formulation of the problem reads, at stepthe Uzawa procedure
(Laureet al,, 2007):

/9277 é(uP) : é(v)dQ — /pkv.de

Q

- / Ty éF=1) : ¢(v)dQ
Q
[l

/qV.ude =0
Q

whereas the update of Lagrangian multiplier reads
AP = At [10]

2.3. Particle displacements

Solving Equationd[8] gives the velocity field that allowstascompute the new
particle positions (at tim&**t! = ¢* 4+ At) with a Lagrangian approach. Many dif-
ferent choices are possible ; the most straightforwardesBhler explicit scheme:

X (") = X,(t") + At u(X;(t"), ") [11]
But this first order scheme can lead to inaccurate displanenespecially for rotat-

ing velocity fields, that is why the second order Adams-Badhfscheme is usually
preferred:

At

X, (1" = X,(t") + 5

[Bu(X;(t"),t") —u(X;(t" 1), " )] [12]

2.4. Overlapping of particles

In some computational conditions, even for non-dense sisspes, a non-physical
overlapping can occur between two particles (see Flgur€ts.is most often due to a
large time step but it can even occur for a good set of comipatatparameters. Typ-
ically, that can be observed when the distances betweednlpatbtecomes close to the
computer accuracy. In the literature it has been obsenagditie minimum distance
between two particles can be very small, especially for 3Bbegps in a shear flow
(Meunieret al, 2008). These configurations can lead to overlapping in aorarical
procedure, that is why it is crucial to improve the treatmefnthe contact between
particles.

In previous works, different approaches have been usect@pt the overlapping:

— using a simplified version of the lubrication force (lingar the weak formu-
lation of the problem in order to recover the same effectsfatt using directly the
lubrication force would lead to non-linearities that aralkedifficult and computa-
tionally expensive to solve,
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up (tn)

up (tn)

(a) at timet™ (b) attimet™*! after particle
displacements

Figure 2. Overlapping between two particles

— using avelocity correction Typically, it consists in moving the particle towards
the normal between two particles if the distance between thecomes too small with
respect to accuracy of numerical method. This correctiegne®en used in this study
and it is explained in the sequel.

2.5. The gluey model

As explained in the past section, tberrectionstrategies that have been used in
previous works are not rigorous enough to avoid the oventepphenomenon. In or-
der to improve the performance of our numerical scheme,cialpefor recovering
the reversibility of the 3D Stokes flow, we implemented a achinodel during the
particle displacement with Adams-Bashforth scheme. Thogleh originally devel-
oped in (Maury, 2007) for the contact between two partidhes, been generalized by
Lefebvre fordry granular flows (Lefebvre, 2009).

2.5.1. Principles of gluey model

Once again, the principle of this method is based on lubidngbrce as shown
in Figure[3. The hydrodynamic lubrication force for sphatiparticle is recalled
hereafter:

(uj — ) - ey
Xl = (ai + aj)

aq Gj
a; + a;

Fij = 6ma’ nf HX € with a = [13]

wheree;; is the normal vector towards thjéh particle

_ XX,
(X X ]|

€
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u;

u; —u;

(a) Repulsion (b) Attraction

Figure 3. Effects of the lubrication force on the particle trajectsi

As we can observe in expressignl[13], the lubrication foscaciting in the same
way of the term(u; — u;) - €;5, as schematically explained in Figlide 3. Two different
situations can typically occur:

—when(u; — w;) - e;; < 0, the particles are going closer to each other, and the
lubrication force acts like a repulsion force,

—when(u; — w;) - e;; > 0, the particles are going away to each other, and the
lubrication force acts like an attraction force.

With our approach, that means that the lubrication forcé mél able to avoid
the overlap that can occur between the particles by addirepalsive term in our
numerical scheme.

Instead of adding directly this force into the weak formigiatof the fluid-solid
problem, the gluey model works like a predictor-correctdresne. Indeed, adding the
term corresponding to the hydrodynamic force would leadnomlinearity that will
be computationally more complicated and expensive to sdlte philosophy of the
gluey model can also be summarized as follows:

1) in a first step, the fluid velocity is computed using the wiatknulation [8],

2) and in a second step, the velocity would be corrected bipgakto account
more accurately the effects of lubrication forces in oraeptevent the overlapping
between particles.

2.5.2. Correction of the predicted velocity

The velocity fieldu* obtained by solving Equatioh][8] does not take into account
of contacts, that is why it is callepgredicted velocity The gap between particles is
defined by

Dij = |IXiX;|| — (ai + a;) [14]
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and has to be positive. Indeed, in Equatidn [8], we do not laayeinformation about
a non-overlapping condition. This is precisely the firstaidd the gluey model: we
have to indicate which conditions must satisfy the velofigyd in order to avoid
overlapping. That is to sa};"' > 0 and a first order estimation @#},"" reads

Dy + At(u} —u})-el >0 [15]

if the particle positions are updated by explicit schemé}.[This is achieved by the
following condition on the velocity fielah™:
1 lu" —u**=  min 1 lv — u*|? [16]
2 VEK(Xn,'yl?;) 2
whereK is the space of admissible velocity defined by

D + At(vj —v;) ey > 0if 472 =0

K(X"75) =4V (17]

D + At(vj —v;) ey <0if 42 <0

In these above constraintg;; is a new variable which represents the contact be-
tween particles and; as follows:

» ] < 0if there is contact between particleand
Yij [18]
=0else
Let us define the functional as follows:
1 1
J(V):§|Vfu*|2:§1\/[v~v71\/[u*~v [19]
whereM = diag(...,m;,--- ,m;,---) is the mass matrix. Then the Lagrangian of

J(u) for two particles: andj which takes into account of contact constraints has the
following form (omitting the superscript for legibility):

LV, A5 = JV) =N (Dig + At(v; — vi) - e5)
— )\;J (7Dij — At(Vj — Vi) . eij) [20]

where )\jj and \;; are Lagrange multipliers. Finally, by solving8£ =0 and
Vi
oL

v 0, we obtain the two following relations:
Vi

m;ul = m;ul — ()\j; — \i;j)At e
[21]
mjul = myut + (NS — M)At ey

under the conditions :

A5 (Dij + At(u) —uj') -e;;) =0 with A} >0 and A;; <0 [22]

This minimization problem is also solved with an Uzawa pthae because this
algorithm always converges even if there is no uniguenesagfange multipliers for
large numbers of contact.
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2.5.3. Characterisation of the viscous contact

In this section, we explain how we deal to characterise theotis contact, namely
how the variabley;; is computed. In previous papers (Maury, 2007; Lefebvre9200
for 3D spherical particles driven by external forces (likawdty), v;; is defined as the
limit value of

Yn,ij = 6’/TT] IH(DZ])

as the the viscosity tends to zero. In fagt;; describes the distance at microscopic
level wheread);; is the macroscopic distance between parti¢clasd;. That means
that if D;; is below a specific value which depends on time step, meslosacuracy

of numerical method, the two particles are assumed to be.stitcis shown that
the duration of this contact depends weakly on the viscasity the evolution of the
limit value ,; is sufficient to get the total contact time (Lefebvre, 200&éfdbvre,
2009). The relation between Lagrange multipliers apdis achieved by using the
Fundamental Principle of Dynamics with the lubricatiorcies for spherical particles:

dui o Qd’}/ij
Mg T

In their papersu* is the solution of the above equation without short range{ub
cation force and some basic calculus lead to the followitegignship:

€ij +m;g (23]

dyij

For solid particles in shear flow, the gravity and the ineati@ usually neglected if
the particles and fluid have same density. However by takiagdider approximation
of hydrodynamic force and assuming that is solution of the Stokes equation for
which the lubrication force is not taken into account caltgfene can gets the same
relation [24] forv;; = In(D;;) andM = At diag(...,a;,- - ,a;,---) (Verdonet
al., 2010). Moreover the reversibility of the Stokes equationglies that the time
for which the Lagrange multipliek;; is positive ( that means that particléends to
go inside particley) is the same that the time for whicky; is negative ( particle
tends to go outside particl§. Therefore the contact functiop; can be connected to
Lagrange multiplier by a simple relationship

dry; j

= i (25]

The case of inelastic collision is recovered by imposing lhcantact function at
any time and therefore the Lagrangian multiplier will beyopbsitive.
2.6. Final algorithm of the numerical procedure

In this section we finally sum up the whole numerical procedimcluding the
gluey particle model.
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1) Initialization
n = 0 (index for time step) : initializéX;, I and-;; for all contacts

2) Flow solver

The weak formulation of the problem is solved with an augreéritagrangian
method and an Uzawa algorithm:

a) The velocity fieldu is computed by using a stable/stabilized finite element

method for solving the weak formulation of the problem apstef the Uzawa pro-
cedure:

J

2 ¢(uf) 1 ¢(v)dQ — /kav.de = f/ﬂﬂns N L e(v)dQ  [26]
/qV.ude = [27]
Q

b) update of Lagrangian multiplier
AP = At ut [28]

) at convergence, we have the predicted velogity

3) Correction of velocity for an Adam-Bashforth scheme
The predicted velocity* is corrected by the following Uzawa algorithm

a) letw” be definedw” = u* and choose arbitraril§; andp > 0.
b) For allk > 0, we computer**! andd;;"" as follows:
* 3A —

whtlh = u* + 2EM B},
H n k+1 _ n A
if 2 <0, 05 =df — p(Dpy + 23t BwhT) [29]
i n k+1 _ k n 3At k
ity =20, & = max (0, O35 — p(Dij + =5"Bw 1)

whereB = ( —ej; e}’ ), M = diag(a;, a;) and

At
n n n—1 n—1y  .n
D = D} — 5 (uj —ul ) -ep

c) at convergence, we have corrected veloaityand Lagrange multipliex;;

4) Update of contact functionsy;;
Forgluey contact

Y = — AEAY [30]
If 7;;.“ < 0 then we have contact between particlesmd; at next time step.

If 4/i*! > 0, there is no more contact ang,*' = 0.
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Forinelastic collision: fyfj“ =0.

5) Update of particle position
it is done thanks to an Adams-Bashforth scheme (Hweirad.,, 2004):

X, (") = X, (t") + % (Bu™—u") [31]

3. Results

In this part we present the numerical improvements obtalnedsing the gluey
particle model. As mentioned before, the main problem ofipres results concerned
the non-reversibility of the Stokes equations due to badrig®n of contact. That
induces either an overlapping between particles, or a iysipal change in the tra-
jectories coming from correction forces.

As illustrated in Figuré€l4, the problematic is checked onahalution of particles
in a shear flow. The shear flow is obtained by imposed velacdie the upper and
lower walls (the shear rate is equal to 1 in all computations)

-

u
Q\ dinit :
—u

-«

Figure 4. Two particles in a shear flow

In the following, we present results obtained with this cguafation for both 2D
and 3D flows. The computations are made with particles ofusadi= .05 in an
unitary box. It should be noted that particles must be sereras infinite cylinders
for 2D computations. The last paragraph is devoted to exasngl multi-particle
computations.

3.1. Computations for two particles in 2D shear flow

As emphasized in previous works, the minimal distance betwgarticles in 2D
shear flow remains larger than for 3D configuration (Meueteal., 2008; Verdoret
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al., 2010). However, for a very small initial distance betwean particles, the two
particles rotate together and the minimal distance remmtmva x 10~3. Therefore

for large time stepAt, an overlapping can occur. For this purpose, we choose the
following set of initial coordinates:

0.451 0.549
X1< 0.51 ) and X2< 0.49 >

which corresponds td®;,;; = 2 - 10~°. With these initial values, the different ap-
proaches can be checked:

— without correction, that is to say that there is no cormettin velocity to prevent
the overlapping between particles,
— with inelastic collision model, that is to say that = 0 at each time step,

— with gluey model, that is to say thai; = —\;; as explained in the previous
section.

10°

PR TN

Figure 5. Two particles in 2D shear flow: evolution of normalized distas|D/a|
between particles for the three different strategies (rigigkeiey contact{), inelastic
collision (- -) and without velocity correction-()). For this latter case, the negative
distance is also plotted

The computations are carried out by using a time step equatte: 0.025, and
the results are summarized in Figurés 5[and 6. From thesefigue can make some
important observations:

— the curve corresponding to the computation without ceioad- .) is discontin-
uous because the absolute value of the negative distanicgtesdylogarithmic scale).
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— Gluey contact — Gluey contact
-+ Inelastic collision ==+ Inelastic collision
+_No correction -+ No correction

1.0

0.5

0.0y

Y/a

—0.5/

—1.0}

LS5 —10 =05 0.0 05 70 15 %80 05 70 5 2.0 2.5
X/a Xl
s

(a) Trajectories (b) Relative trajectories

Figure 6. Two particles in 2D shear flow: trajectories for gluey coritée), inelastic
collision (- -) and without velocity correction ()

When the distance is positive, the distance is the same agjitten by the gluey
model. When the distance is negative, the overlappinglieramportant (bigger than
a x 10~2) but thanks to Adam-Bashforth scheme, the particles doemoain sticked,

— with the gluey model, we recover the theoretical limitecpry for a zero initial
distance between two particles, namely a circle. When theygbrocedure is active,
the distance between particle can be bigger than 102 because the constraint
cancels only the first order expansion@f+! and the term of ordeAt? gives this
positive distance. These value will decrease with the tirap At,

— without correction, the trajectories of particles areikinto a circle, but with
small fluctuations because of discrepancy due to overlappin

— with the inelastic model, the particles change their ttajges, so they jump to
a new orbit that is more ellipsoidal.

The results obtained by numerical scheme using gluey pamiodel indicate that
circular trajectories are preserved, but at the same tim@#hnticles do not overlap.
Hence we recover the theoretical trajectories withoutlapging.
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3.2. Two particles in a 3D shear flow

For spherical particles in a 3D shear flow, we choose a casehich the minimal
distance between is very small. Two spheres with the saniesrace placed in the su-
perior and inferior mid-plane and move toward the right drelleft side respectively.
The time step is equal tAt = 0.05 and the initial positions are

0.3 0.7
X;=| 0525 and X, = | 0.475
0.5 0.5

0.1

— Gluey contact

- Inelastic collision
0.08 No correction
0.06
als
0.04
0.02
0.00,
4 5 6 7 tt3 9 10 11 12

(a) Normalised distance between particles

= Gluey contact
0.0) ==+ Inelastic collision
No correction

Y/a

=20 -15 -1.0 -05

0.0 0.5 1.0 1.5 2.0
X/a
(b) Particle trajectories
Figure 7. Two particles in a 3D shear flow: comparison of collision stgies (gluey
contact ¢), inelastic collision { -) and without velocity correctiort ()
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The Figures 17 show results obtained with the three diffestrategies already
described. Once again, we observe a large overlappingrié iseno correction on
velocity field. The inelastic model avoids the overlapping modifies significantly
the trajectories: the reversibility is no more satisfiedgiboth seen on the trajectory
and the distance between the particles). With gluey cortaetreversibility is almost
recovered but without overlapping (a better accuracy carbbeined with smaller time
step). In addition, the relative error between the compdigt@dnce and the theoretical
one when reversibility occurs is (at the end of the simuigtequals t®.5% which is
quite fair for 3D computations.

3.3. 2D multi-particle computations

In this last paragraph, we will present results of multitjgde computations. The
extension of algorithm described in previous section totrparticle case can be
found in (Lefebvre, 2009).

We present the motion of three particles in a shear flow. Thia mian of this
example is to check the influence of non-overlapping stiesegn particle motions.
The first two particles are located in the same position aserekample described in
sectior 3.1l whereas the third particle is located away fitwartwo others, namely at

0.7
X5 = < 0.49 )

as shown in Figurgl8.

0.8,

0.7,
0.6
< 000
0.4

0.3

040 02 04 06 08 1.0

Figure 8. Initial position of three particles in 2D shear flow

The computations were carried out urti= 30 with a time step equal td\t =
0.025. In Figur 9, the relative distance between partidesare plotted for the three
different strategies. The evolution @5 shows that the two first particles remain
together for gluey model and if no correction is applied. @& other hand, they are
separated with the inelastic collisions. Moreover witheelbcity correction, the third
particle is also aggregated to the two other particles atim 30 as the distanc®s3
becomes smaller thanx 102,
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Figure 9. Normalised distance®;; /a between the three particles for gluey contact
(-), inelastic collision { -) and without velocity correction (); in the latter case only
positive distances are plotted

The time evolution of particle positions is plotted in Figdl0 an@ 1. From these
figures we can make once again some important remarks:

— the results obtained with the three approaches are quferatit, in particular
with inelastic collision the three particles are no moreseltogether,

— without correction of velocity field, there are overlapplretween particles and
therefore the three particles remain together at the endropatation time,

— the trajectories without velocity corrections and foreylicontacts are not the
same because of the overlapping. The difference is biggeriththe case with two
particles,

— due to the third particle, the flow motion is not symmetri¢chaiespect to the
mid-plane. Therefore, the differences between trajeesasbtained with these three
approaches are more important.

Once again, the gluey model is the only model which avoidslapping and pre-
vents artificial numerical migration of particles in a susgien. These numerical
illustrations proves that this algorithm is robust and wgelited for computations of
multi-particle interactions in a fluid flow.
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Figure 10. Evolution of three particles in a 2D shear flow: comparisoretween
computations with gluey contaet)(and without velocity correction ()

08 0.8
07 07
0.6 0.6
0.5 0.5
0.4 O 0.4
03 03
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X X
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Figure 11.Evolution of three particles in a 2D shear flow: comparisortvween
computations with gluey contaet)(and with inelastic collision<-)
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4. Conclusion

This article presents the adaptation of gluey particle rumstudy particle mo-
tions of in a shear flow. The gluey model has shown an impromnespecially
by avoiding the classic overlapping between particles ¢hat occur during the La-
grangian displacement of the particles. The immersed domaihod associated to
this contact model is then really effective to recover theersibility of the Stokes
equations. This result is particularly important for 3D qmrtations because there are
a lot of overlapping and artificial formation of aggregatééth the gluey model, we
are able to avoid overlapping whereas the reversibilityéserved with a rather small
relative error.

Furthermore, multi-particle examples have also been atlidin particular, the
motion of three particles in a shear flow has been intenssteigiied. This example
shows that the overlapping can be avoided by using the glugehand that the re-
sulting trajectories are really model-dependant. Theestite choice of contact model
has to be crucial for dense suspension computations.

Hence, future works will be devoted to the macroscopic impdthese micro-
scopic modifications in the case of dense suspensions.

Acknowledgements

Computer time was provided by the CEMEF and the Mesocen®BABIM ma-
chine hosted by I'Observatoire de la Cote d’Azur. N. Verdan teceived a grant from
the ANR project RSC.

5. References

Coupez T., Digonnet H., Hachem E., Laure P., Silva L., Val&t, “ Multidomain Finite Ele-
ment Computations: Application to Multiphasic Problenig’M. Souli, D. Benson (eds),
Arbitrary Lagrangian—Eulerian and Fluid—Structure Intation, Wiley, p. 229-297, 2009.

Fortin M., Glowinski R.,Augmented Lagragian Method<orth-Holland, Amsterdam, 1983.

Glowinski R., Pan T.-W., Helsa T., Joseph D., “ A distributeajrange multiplier/fictious do-
main method for particulate flowslnt. J. Multiphase Flowsvol. 25, p. 755-794, 1999.

Glowinski R., Pan T.-W., Hesla T., Joseph D., Periaux J., “ditfous domain approach to
the direct numerical simulation of incompressible viscias past moving rigid bodies :
Application to particulate flow"J. Comput. Physvol. 169, p. 363, 2001.

Hwang W., Hulsen M., Meijer H. E. H., “ Direct simulations oéiticle suspensions in a vis-
coelastic fluid in sliding bi-periodic frames”, , vol. 121,15-33, 2004.

Laure P., Beaume G., Basset O., Silva L., Coupez T., “ Nurabniethods for solid particles in
particulate flow simulations'European J. Comp. Mechanijosl. 16, p. 365-383, 2007.

Lefebvre A., Modélisation numérique d’écoulements fluideticules, PhD thesis, Université
Paris Sud - Paris XI, 11, 2007.

Lefebvre A., “ Numerical simulation of gluey particlesl2AN, vol. 43, p. 53-80, 2009.



Particles in a shear flow 531

Maury B., “ A gluey particle model’ESAIM: Proc, vol. 18, p. 133-142, 2007.

Meunier A., Bossis G., “ The influence of surface forces orasfieduced tracer diffusion in
mono and bidisperse suspensiorsty. Phys. J. Evol. 25, p. 187-199, 2008.

Patankar N., Singh P., Joseph D., Glowinski R., Pan T.-W.,fev formulation of the dis-
tributed Lagrange multiplier/fictitious domain method farticulate flows”Int. J. of Mul-
tiphase flowvol. 26, p. 1509-1524, 2000.

Singh P., Joseph D., “ Sedimentation of a sphere near aakentall in an Oldroyd-B fluid”,J.
Non-Newtonian Fluid Mechvol. 94, p. 179-203, 2000.

Verdon N., Beaume G., Lefebvre-Lepot A., Lobry L., Laure ‘Plmmersed finite element
method for direct numerical simulation of particle suspemsn a shear flow”J. Comp.
Physics 2010.

Wachs A., “ A DEM-DLM/FD method for direct numerical simuian of particulate flows:
Sedimentation of polygonal isometric particles in a Nevaarfluid with collisions”,Com-

puters & Fluids vol. 38, p. 1608-1628, 2009.



ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER
LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

. ARTICLE POUR LA REVUE:
EJCM - 19/2010. Fluid-structure interaction

. AUTEURS:
Nicolas VerdoA — Aline Lefebvre-Lep8t— Laurent Lobr§ — Patrice
Laure?

. TITRE DE L ARTICLE :
Contact problems for particles in a shear flow

. TITRE ABREGEPOUR LE HAUT DE PAGE_MOINS DE40 SIGNES:
Particles in a shear flow

. DATE DE CETTE VERSION:
May 11, 2011

. COORDONNEES DES AUTEURS

— adresse postale :
& Laboratoire J.-A. Dieudonné, CNRS UMR 6621, Université deeN- Sophia
Antipolis, Parc Valrose, 06108 Nice Cedex 02, France, werdoolas@unice.fr,
patrice.laure@unice.fr
b Centre de Mathématiques Appliquées, Ecole Polytechniquée de Saclay,
91128 Palaiseau Cedex, France, lefebvre@cmap.polytpehfi
C Laboratoire de Physique de la Matiére Condensée, CNRS UMR 66
Université de Nice-Sophia Antipolis, Parc Valrose, 06108eNcedex 2, France,
laurent.lobry@unice.fr

— téléphone : 00 00 00 00 00
— télécopie : 00 00 00 00 00
— e-mail : guillaume.laurent@ens2m.fr

. LOGICIEL UTILISE POUR LA PREPARATION DE CET ARTICLE
IATEX, avec le fichier de stylar ti cl e- her mes. cl s,
version 1.23 du 17/11/2005.

. FORMULAIRE DE COPYRIGHT:
Retourner le formulaire de copyright signé par les auteéigschargé sur :
http://ww. revuesonline.com

SERVICE EDITORIAL — HERMES-LAVOISIER
14 rue de Provigny, F-94236 Cachan cefdex
Tél. : 01-47-40-67-6}

E-mail : revues@lavoisier.

Serveur web : http://www.revuesonline.com

=




	Introduction
	Numerical Modelling
	The immersed domain approach
	Governing set of equations and weak formulation
	Particle displacements
	Overlapping of particles
	The gluey model
	Principles of gluey model
	Correction of the predicted velocity
	Characterisation of the viscous contact

	Final algorithm of the numerical procedure

	Results
	Computations for two particles in 2D shear flow
	Two particles in a 3D shear flow
	2D multi-particle computations

	Conclusion
	References

