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ABSTRACT.This paper focuses on improving the description of the contact between solid particles
in a fluid flow. The numerical approach used is related to the fictitious domain method for the
fluid–solid problem. It is associated to a gluey particle model in order to improve the behaviour
of the particles during their contacts as a Lagrangian method is applied for their displacement.
The numerical methodology is validated through 2D and 3D computations describing interac-
tions of two particles in a shear flow. The results obtained show the ability of the scheme to
recover the reversibility of the Stokes equations, even for3D configurations. Finally, another
example is studied with larger number of particles.

RÉSUMÉ.On s’intéresse à l’amélioration de la description du contact entre plusieurs particules
solides dans un écoulement fluide. Le modèle numérique est laméthode des domaines fictifs
pour la description du problème fluide–solide. Elle est associée à un modèle de contact visqueux
qui intervient lors du déplacement Lagrangien des particules. Le schéma numérique a été validé
sur des calculs 2D et 3D décrivant l’évolution de deux particules dans un écoulement cisaillé.
Les résultats obtenus montre la capacité du schéma à retrouver la réversibilité des équations
de Stokes tout en évitant le recouvrement même pour des configurations 3D. Enfin, un exemple
avec plus de particules est présenté.
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1. Introduction

Since the emergence of the fictitious domain methods in the 2000’s (Glowinskiet
al., 1999; Singhet al., 2000; Patankaret al., 2000), lots of multiphase applications
have been treated that way, see for instance (Glowinskiet al., 2001; Wachs, 2009;
Coupezet al., 2009). The advantages of these methods are straightforward: fluid/solid
or multiphase problems can be treated with an Eulerian approach on the whole domain
because the rigidity condition can be added in the weak formulation.

In this work, we study the displacement of solid particles ina shear flow. For this
purpose, a characteristic function is used to describe the particle domain and there-
fore allows to extend all variables associated to each phaseto whole computational
domain thanks to mixing relations. Then the displacement ofthe particles and the
corresponding characteristic function is achieved by using a Lagrangian approach.

As the distance between particles can be very small (Meunieret al., 2008), typi-
cally around10−5 times the characteristic size of particles. Another important point is
to deal with particlesoverlapping. This will be achieved by introducing contact mod-
els, especially thegluey particle model(Maury, 2007; Lefebvre, 2009) which takes
into account viscous effects between particles.

2. Numerical Modelling

This work is carried out using an immersed domain approach using a level set
function for determining the interface between fluid and solids (Coupezet al., 2009).
The weak formulation of the mixed fluid-solid system is written by mean of a La-
grange multiplier. At last, the displacement of the solid particles is carried out with
a Lagrangian approach, which includes the gluey model. These points are described
hereafter.

2.1. The immersed domain approach

The immersed domain method is achieved by splitting the computational domain
Ω into two subdomainsΩf andΩs for respectively the fluid and solid parts (see Fig-
ure 1). In the case of multiple particles, the solid domain isthe union of domain
corresponding to each particle, namelyΩs =

⋃N
i Ωsi for N particles.

The interfaceΓs between the two phases is described by the zero isosurface ofa
distance function:

α(x, t) =

{

> 0 if x ∈ Ωs

< 0 if x /∈ Ωs

[1]
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Ω

Ωf

solid particles

Figure 1. Schematic representation of computational domain

In practice, for a spherical particlei of centerXi and radiiai, thelevel setfunction
is defined from the following signed distance:

αi(x) = ai − ‖Xix‖ [2]

Obviously, the signed distanceα for N spherical particles can be written as:

α(x) = max
i=1,··· ,N

αi(x) [3]

Finally, a "smooth" characteristic function is deduced from the level set function
by taking

I(x, t) =



























= 1 if α(x) > e

=
α

e
if 0 < α(x) < e

= 0 if α < 0

[4]

wheree the mixing thickness depends on the mesh size around the interface. Note that
the mixing area is inside the solid domain. In addition, the viscosityη will be defined
thanks to mixing relation:

η = Iηs + (E− I)ηf [5]

whereηf is the fluid viscosity andηs ≃ rηf the solid viscosity (or penalisation factor)
usually taken much bigger thanηf (r ≈ 103).



516 EJCM – 19/2010. Fluid-structure interaction

2.2. Governing set of equations and weak formulation

Neglecting inertia and gravity, the fluid-solid problem canbe written with the fol-
lowing set of equations:































∇ . σ = 0
∇ . u = 0
σ = 2ηf ǫ̇(u)− pE
[[u]]Γs

= 0
[[σ.n]]Γs

= 0
u = uΓ on the external boundaryΓ

[6]

whereu is the fluid velocity,ǫ̇(v) the rate of strain tensor,σ the stress tensor,p the
pressure,ηf the fluid viscosity (the symbol [[f ]]Γs

means the jump of scalarf across
the interfaceΓs). Patankaret al. (Patankaret al., 2000) have proposed to extend the
above Stokes equation to the solid domain thanks to a Lagrange multiplier by using
the rigidity conditionǫ̇(v) = 0 onΩs. In this way, the motion in solid domainΩs

corresponds to a fluid motion with an additional stress field.This is equivalent to take
the stress tensorσ inside the solid domain of the form

σ = 2ηs ǫ̇(u)− p E+ ǫ̇(λ) [7]

Due to the rigid motion constraint the two first terms are zero; ηs can play the role
of a penalization factor of the constraintǫ̇(u) = 0, and the symmetrical tensorǫ̇(λ) is
the Lagrange multiplier associated to this constraint.

If we consider Dirichlet boundary conditions, the weak formulation of the fluid–
solid problem can be written as follows: find

(

u, p, λ
)

such that∀
(

v, q, µ
)

∈
H1(Ω)× L2

0(Ω)×H1(Ωs):






































0 =

∫

Ω

2η ǫ̇(u) : ǫ̇(v)dΩ −

∫

Ω

p∇.vdΩ +

∫

Ωs

ǫ̇(λ) : ǫ̇(v)dΩ

0 =

∫

Ω

q ∇.udΩ

0 =

∫

Ωs

ǫ̇(µ) : ǫ̇(v)dΩ

[8]

whereH1(Ω) andL2
0(Ω) are respectively the Sobolev and Lebesgue spaces.

The system of Equations [8] is solved using the augmented Lagrangian method
and an Uzawa algorithm (Fortinet al., 1983) where the fieldλ has been extended to
the whole domainΩ by using the characteristic function.
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Hence,the weak formulation of the problem reads, at stepk of the Uzawa procedure
(Laureet al., 2007):

∫

Ω

2η ǫ̇(uk) : ǫ̇(v)dΩ −

∫

Ω

pk∇.vdΩ = −

∫

Ω

I ηs ǫ̇(λ
k−1) : ǫ̇(v)dΩ

[9]
∫

Ω

q ∇.ukdΩ = 0

whereas the update of Lagrangian multiplier reads

λk = λk−1 + uk [10]

2.3. Particle displacements

Solving Equations [8] gives the velocity field that allows usto compute the new
particle positions (at timetn+1 = tn + ∆t) with a Lagrangian approach. Many dif-
ferent choices are possible ; the most straightforward is the Euler explicit scheme:

Xi(t
n+1) = Xi(t

n) + ∆t u(Xi(t
n), tn) [11]

But this first order scheme can lead to inaccurate displacements especially for rotat-
ing velocity fields, that is why the second order Adams-Bashforth scheme is usually
preferred:

Xi(t
n+1) = Xi(t

n) +
∆t

2

[

3 u(Xi(t
n), tn)− u(Xi(t

n−1), tn−1)
]

[12]

2.4. Overlapping of particles

In some computational conditions, even for non-dense suspensions, a non-physical
overlapping can occur between two particles (see Figure 2).This is most often due to a
large time step but it can even occur for a good set of computational parameters. Typ-
ically, that can be observed when the distances between particles becomes close to the
computer accuracy. In the literature it has been observed that the minimum distance
between two particles can be very small, especially for 3D spheres in a shear flow
(Meunieret al., 2008). These configurations can lead to overlapping in our numerical
procedure, that is why it is crucial to improve the treatmentof the contact between
particles.

In previous works, different approaches have been used to prevent the overlapping:

– using a simplified version of the lubrication force (linear) in the weak formu-
lation of the problem in order to recover the same effects. Infact using directly the
lubrication force would lead to non-linearities that are really difficult and computa-
tionally expensive to solve,
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u1(t
n)

u2(t
n)

(a) at timetn

u1(t
n)

u2(t
n)

(b) at timetn+1 after particle
displacements

Figure 2. Overlapping between two particles

– using avelocity correction. Typically, it consists in moving the particle towards
the normal between two particles if the distance between them becomes too small with
respect to accuracy of numerical method. This correction has been used in this study
and it is explained in the sequel.

2.5. The gluey model

As explained in the past section, thecorrectionstrategies that have been used in
previous works are not rigorous enough to avoid the overlapping phenomenon. In or-
der to improve the performance of our numerical scheme, especially for recovering
the reversibility of the 3D Stokes flow, we implemented a contact model during the
particle displacement with Adams-Bashforth scheme. This model, originally devel-
oped in (Maury, 2007) for the contact between two particles,has been generalized by
Lefebvre fordry granular flows (Lefebvre, 2009).

2.5.1. Principles of gluey model

Once again, the principle of this method is based on lubrication force as shown
in Figure 3. The hydrodynamic lubrication force for spherical particle is recalled
hereafter:

Fij = 6πa2 ηf
(uj − ui) · eij

‖XiXj‖ − (ai + aj)
eij with a =

ai aj
ai + aj

[13]

whereeij is the normal vector towards thejth particle

eij =
XiXj

‖XiXj‖
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ui

uj

eij

uj − ui

(a) Repulsion

ui

uj

eij

uj − ui

(b) Attraction

Figure 3. Effects of the lubrication force on the particle trajectories

As we can observe in expression [13], the lubrication force is acting in the same
way of the term(uj − ui) · eij , as schematically explained in Figure 3. Two different
situations can typically occur:

– when(uj − ui) · eij < 0, the particles are going closer to each other, and the
lubrication force acts like a repulsion force,

– when(uj − ui) · eij > 0, the particles are going away to each other, and the
lubrication force acts like an attraction force.

With our approach, that means that the lubrication force will be able to avoid
the overlap that can occur between the particles by adding a repulsive term in our
numerical scheme.

Instead of adding directly this force into the weak formulation of the fluid-solid
problem, the gluey model works like a predictor-corrector scheme. Indeed, adding the
term corresponding to the hydrodynamic force would lead to anon-linearity that will
be computationally more complicated and expensive to solve. The philosophy of the
gluey model can also be summarized as follows:

1) in a first step, the fluid velocity is computed using the weakformulation [8],

2) and in a second step, the velocity would be corrected by taking into account
more accurately the effects of lubrication forces in order to prevent the overlapping
between particles.

2.5.2. Correction of the predicted velocity

The velocity fieldu∗ obtained by solving Equation [8] does not take into account
of contacts, that is why it is calledpredicted velocity. The gap between particles is
defined by

Dij = ‖XiXj‖ − (ai + aj) [14]
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and has to be positive. Indeed, in Equation [8], we do not haveany information about
a non-overlapping condition. This is precisely the first idea of the gluey model: we
have to indicate which conditions must satisfy the velocityfield in order to avoid
overlapping. That is to sayDn+1

ij ≥ 0 and a first order estimation ofDn+1
ij reads

Dn
ij +∆t(un

j − un
i ) · e

n
ij ≥ 0 [15]

if the particle positions are updated by explicit scheme [11]. This is achieved by the
following condition on the velocity fieldun:

1

2
|un − u∗|2 = min

v∈K(Xn,γn
ij
)

1

2
|v − u∗|2 [16]

whereK is the space of admissible velocity defined by

K(Xn, γn
ij) =







v

∣

∣

∣

∣

∣

∣

Dn
ij +∆t(vj − vi) · e

n
ij ≥ 0 if γn

ij = 0

Dn
ij +∆t(vj − vi) · e

n
ij ≤ 0 if γn

ij < 0







[17]

In these above constraints,γn
ij is a new variable which represents the contact be-

tween particlesi andj as follows:

γn
ij

{

< 0 if there is contact between particlesi andj

= 0 else
[18]

Let us define the functionalJ as follows:

J(v) =
1

2
|v − u∗|2 =

1

2
Mv · v −Mu∗ · v [19]

whereM = diag(. . . ,mi, · · · ,mj, · · · ) is the mass matrix. Then the Lagrangian of
J(u) for two particlesi andj which takes into account of contact constraints has the
following form (omitting the superscriptn for legibility):

L(v, λ±

ij) = J(v) − λ+
ij (Dij +∆t(vj − vi) · eij)

− λ−

ij (−Dij −∆t(vj − vi) · eij) [20]

where λ+
ij and λ−

ij are Lagrange multipliers. Finally, by solving
∂L

∂vi

= 0 and

∂L

∂vj

= 0, we obtain the two following relations:







miu
n
i = miu

∗
i − (λ+

ij − λ−

ij)∆t eij

mju
n
j = mju

∗
j + (λ+

ij − λ−

ij)∆t eij
[21]

under the conditions :

λ±

ij(Dij +∆t(un
j − un

i ) · eij) = 0 with λ+
ij ≥ 0 and λ−

ij ≤ 0 [22]

This minimization problem is also solved with an Uzawa procedure because this
algorithm always converges even if there is no uniqueness ofLagrange multipliers for
large numbers of contact.



Particles in a shear flow 521

2.5.3. Characterisation of the viscous contact

In this section, we explain how we deal to characterise the viscous contact, namely
how the variableγij is computed. In previous papers (Maury, 2007; Lefebvre, 2009),
for 3D spherical particles driven by external forces (like gravity),γij is defined as the
limit value of

γη,ij = 6πη ln(Dij)

as the the viscosity tends to zero. In factγη,ij describes the distance at microscopic
level whereasDij is the macroscopic distance between particlesi andj. That means
that ifDij is below a specific value which depends on time step, mesh sizeor accuracy
of numerical method, the two particles are assumed to be stuck. It is shown that
the duration of this contact depends weakly on the viscosityand the evolution of the
limit value γij is sufficient to get the total contact time (Lefebvre, 2007; Lefebvre,
2009). The relation between Lagrange multipliers andγij is achieved by using the
Fundamental Principle of Dynamics with the lubrication forces for spherical particles:

mi

dui

dt
= −a2

dγij
dt

eij +mig [23]

In their papers,u∗ is the solution of the above equation without short range lubri-
cation force and some basic calculus lead to the following relationship:

dγij
dt

= −
1

a2
λij with λij = λ+

ij − λ−

ij . [24]

For solid particles in shear flow, the gravity and the inertiaare usually neglected if
the particles and fluid have same density. However by taking first order approximation
of hydrodynamic force and assuming thatu∗ is solution of the Stokes equation for
which the lubrication force is not taken into account carefully, one can gets the same
relation [24] forγij = ln(Dij) andM = ∆t diag(. . . , ai, · · · , aj, · · · ) (Verdonet
al., 2010). Moreover the reversibility of the Stokes equationsimplies that the time
for which the Lagrange multiplierλij is positive ( that means that particlei tends to
go inside particlej) is the same that the time for whichλij is negative ( particlei
tends to go outside particlej). Therefore the contact functionγij can be connected to
Lagrange multiplier by a simple relationship

dγij
dt

= −λij [25]

The case of inelastic collision is recovered by imposing a null contact function at
any time and therefore the Lagrangian multiplier will be only positive.

2.6. Final algorithm of the numerical procedure

In this section we finally sum up the whole numerical procedure, including the
gluey particle model.
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1) Initialization

n = 0 (index for time step) : initializeXi, I andγij for all contacts

2) Flow solver

The weak formulation of the problem is solved with an augmented Lagrangian
method and an Uzawa algorithm:

a) The velocity fieldu is computed by using a stable/stabilized finite element
method for solving the weak formulation of the problem at step k of the Uzawa pro-
cedure:

∫

Ω

2η ǫ̇(uk) : ǫ̇(v)dΩ −

∫

Ω

pk∇.vdΩ = −

∫

Ω

I ηs ǫ̇(λ
k−1) : ǫ̇(v)dΩ [26]

∫

Ω

q ∇.ukdΩ = [27]

b) update of Lagrangian multiplier

λk = λk−1 + uk [28]

c) at convergence, we have the predicted velocityu∗.

3) Correction of velocity for an Adam-Bashforth scheme

The predicted velocityu∗ is corrected by the following Uzawa algorithm

a) letw0 be definedw0 = u∗ and choose arbitrarilyδ0ij andρ > 0.

b) For allk > 0, we computeuk+1 andδk+1
ij as follows:

wk+1 = u∗ + 3∆t
2 M−1Btδkij

if γn
ij < 0, δk+1

ij = δkij − ρ(Dn
ij +

3∆t
2 Bwk+1)

if γn
ij ≥ 0, δk+1

ij = max(0, δkij − ρ(Dn
ij +

3∆t
2 Bwk+1))

[29]

whereB = ( −enij enij ), M = diag(ai, aj) and

Dn
ij = Dn

ij −
∆t

2
(un−1

j − un−1
i ) · enij

c) at convergence, we have corrected velocityun and Lagrange multiplierλn
ij

4) Update of contact functionsγij
Forgluey contact

γn+1
ij = γn

ij −∆tλn
ij [30]

If γn+1
ij < 0 then we have contact between particlesi andj at next time step.

If γn+1
ij ≥ 0, there is no more contact andγn+1

ij = 0.



Particles in a shear flow 523

For inelastic collision: γn+1
ij = 0.

5) Update of particle position

it is done thanks to an Adams-Bashforth scheme (Hwanget al., 2004):

Xi(t
n+1) = Xi(t

n) +
∆t

2

(

3 un − un−1
)

[31]

3. Results

In this part we present the numerical improvements obtainedby using the gluey
particle model. As mentioned before, the main problem of previous results concerned
the non-reversibility of the Stokes equations due to bad description of contact. That
induces either an overlapping between particles, or a non-physical change in the tra-
jectories coming from correction forces.

As illustrated in Figure 4, the problematic is checked on theevolution of particles
in a shear flow. The shear flow is obtained by imposed velocities on the upper and
lower walls (the shear rate is equal to 1 in all computations).

u

−u

dinit

Figure 4. Two particles in a shear flow

In the following, we present results obtained with this configuration for both 2D
and 3D flows. The computations are made with particles of radius a = .05 in an
unitary box. It should be noted that particles must be seen rather as infinite cylinders
for 2D computations. The last paragraph is devoted to examples of multi-particle
computations.

3.1. Computations for two particles in 2D shear flow

As emphasized in previous works, the minimal distance between particles in 2D
shear flow remains larger than for 3D configuration (Meunieret al., 2008; Verdonet
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al., 2010). However, for a very small initial distance between two particles, the two
particles rotate together and the minimal distance remainsbelowa× 10−3. Therefore
for large time step∆t, an overlapping can occur. For this purpose, we choose the
following set of initial coordinates:

X1 =

(

0.451
0.51

)

and X2 =

(

0.549
0.49

)

which corresponds toDinit = 2 · 10−5. With these initial values, the different ap-
proaches can be checked:

– without correction, that is to say that there is no correction on velocity to prevent
the overlapping between particles,

– with inelastic collision model, that is to say thatγij = 0 at each time step,

– with gluey model, that is to say thatγ̇ij = −λij as explained in the previous
section.

0 5 10 15 20 25 30 35 40
t

10-5

10-4

10-3

10-2

10-1

100

D a

Figure 5. Two particles in 2D shear flow: evolution of normalized distances|D/a|
between particles for the three different strategies (namely gluey contact (–), inelastic
collision (- -) and without velocity correction (- .). For this latter case, the negative
distance is also plotted

The computations are carried out by using a time step equal to∆t = 0.025, and
the results are summarized in Figures 5 and 6. From these figures we can make some
important observations:

– the curve corresponding to the computation without correction (- .) is discontin-
uous because the absolute value of the negative distance is plotted (logarithmic scale).
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�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
X/a

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

Y
/
a

Gluey contact

Inelastic collision

No correction

(a) Trajectories

0.0 0.5 1.0 1.5 2.0 2.5
|X2�X1 |

a

0.0

0.5

1.0

1.5

2.0

2.5

|Y 2

�

Y
1
|

a

Gluey contact

Inelastic collision

No correction

(b) Relative trajectories

Figure 6. Two particles in 2D shear flow: trajectories for gluey contact (–), inelastic
collision (- -) and without velocity correction (- .)

When the distance is positive, the distance is the same as that given by the gluey
model. When the distance is negative, the overlapping is rather important (bigger than
a× 10−2) but thanks to Adam-Bashforth scheme, the particles do not remain sticked,

– with the gluey model, we recover the theoretical limit trajectory for a zero initial
distance between two particles, namely a circle. When the gluey procedure is active,
the distance between particle can be bigger thana × 10−2 because the constraint
cancels only the first order expansion ofDn+1 and the term of order∆t2 gives this
positive distance. These value will decrease with the time step∆t,

– without correction, the trajectories of particles are similar to a circle, but with
small fluctuations because of discrepancy due to overlapping,

– with the inelastic model, the particles change their trajectories, so they jump to
a new orbit that is more ellipsoidal.

The results obtained by numerical scheme using gluey particle model indicate that
circular trajectories are preserved, but at the same time the particles do not overlap.
Hence we recover the theoretical trajectories without overlapping.
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3.2. Two particles in a 3D shear flow

For spherical particles in a 3D shear flow, we choose a case forwhich the minimal
distance between is very small. Two spheres with the same radius are placed in the su-
perior and inferior mid-plane and move toward the right and the left side respectively.
The time step is equal to∆t = 0.05 and the initial positions are

X1 =





0.3
0.525
0.5



 and X2 =





0.7
0.475
0.5





4 5 6 7 8 9 10 11 12
t

0.00

0.02

0.04

0.06

0.08

0.10

D a

Gluey contact

Inelastic collision

No correction

(a) Normalised distance between particles

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

X/a

�1.0

�0.5

0.0

0.5

1.0

Y
/
a Gluey contact

Inelastic collision

No correction

(b) Particle trajectories

Figure 7. Two particles in a 3D shear flow: comparison of collision strategies (gluey
contact (–), inelastic collision (- -) and without velocity correction (- .)
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The Figures 7 show results obtained with the three differentstrategies already
described. Once again, we observe a large overlapping if there is no correction on
velocity field. The inelastic model avoids the overlapping but modifies significantly
the trajectories: the reversibility is no more satisfied (itis both seen on the trajectory
and the distance between the particles). With gluey contact, the reversibility is almost
recovered but without overlapping (a better accuracy can beobtained with smaller time
step). In addition, the relative error between the computeddistance and the theoretical
one when reversibility occurs is (at the end of the simulation) equals to6.5% which is
quite fair for 3D computations.

3.3. 2D multi-particle computations

In this last paragraph, we will present results of multi-particle computations. The
extension of algorithm described in previous section to multi-particle case can be
found in (Lefebvre, 2009).

We present the motion of three particles in a shear flow. The main aim of this
example is to check the influence of non-overlapping strategies on particle motions.
The first two particles are located in the same position as in the example described in
section 3.1 whereas the third particle is located away from the two others, namely at

X3 =

(

0.7
0.49

)

as shown in Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y

Figure 8. Initial position of three particles in 2D shear flow

The computations were carried out untilt = 30 with a time step equal to∆t =
0.025. In Figure 9, the relative distance between particlesDij are plotted for the three
different strategies. The evolution ofD12 shows that the two first particles remain
together for gluey model and if no correction is applied. On the other hand, they are
separated with the inelastic collisions. Moreover withoutvelocity correction, the third
particle is also aggregated to the two other particles at time t = 30 as the distanceD23

becomes smaller thana× 10−2.
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Figure 9. Normalised distancesDij/a between the three particles for gluey contact
(–), inelastic collision (- -) and without velocity correction (- .); in the latter case only
positive distances are plotted

The time evolution of particle positions is plotted in Figures 10 and 11. From these
figures we can make once again some important remarks:

– the results obtained with the three approaches are quite different, in particular
with inelastic collision the three particles are no more close together,

– without correction of velocity field, there are overlapping between particles and
therefore the three particles remain together at the end of computation time,

– the trajectories without velocity corrections and for gluey contacts are not the
same because of the overlapping. The difference is bigger than in the case with two
particles,

– due to the third particle, the flow motion is not symmetric with respect to the
mid-plane. Therefore, the differences between trajectories obtained with these three
approaches are more important.

Once again, the gluey model is the only model which avoids overlapping and pre-
vents artificial numerical migration of particles in a suspension. These numerical
illustrations proves that this algorithm is robust and well-suited for computations of
multi-particle interactions in a fluid flow.
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Figure 10. Evolution of three particles in a 2D shear flow: comparisons between
computations with gluey contact (–) and without velocity correction (- .)
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Figure 11. Evolution of three particles in a 2D shear flow: comparisons between
computations with gluey contact (–) and with inelastic collision (- -)
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4. Conclusion

This article presents the adaptation of gluey particle model to study particle mo-
tions of in a shear flow. The gluey model has shown an improvement, especially
by avoiding the classic overlapping between particles thatcan occur during the La-
grangian displacement of the particles. The immersed domain method associated to
this contact model is then really effective to recover the reversibility of the Stokes
equations. This result is particularly important for 3D computations because there are
a lot of overlapping and artificial formation of aggregates.With the gluey model, we
are able to avoid overlapping whereas the reversibility is preserved with a rather small
relative error.

Furthermore, multi-particle examples have also been studied. In particular, the
motion of three particles in a shear flow has been intensivelystudied. This example
shows that the overlapping can be avoided by using the gluey model and that the re-
sulting trajectories are really model-dependant. Therefore the choice of contact model
has to be crucial for dense suspension computations.

Hence, future works will be devoted to the macroscopic impact of these micro-
scopic modifications in the case of dense suspensions.

Acknowledgements

Computer time was provided by the CEMEF and the Mesocentre SIGAMM ma-
chine hosted by l’Observatoire de la Cote d’Azur. N. Verdon has received a grant from
the ANR project RSC.

5. References

Coupez T., Digonnet H., Hachem E., Laure P., Silva L., Valette R., “ Multidomain Finite Ele-
ment Computations: Application to Multiphasic Problems”,in M. Souli, D. Benson (eds),
Arbitrary Lagrangian–Eulerian and Fluid–Structure Interaction, Wiley, p. 229-297, 2009.

Fortin M., Glowinski R.,Augmented Lagragian Methods, North-Holland, Amsterdam, 1983.

Glowinski R., Pan T.-W., Helsa T., Joseph D., “ A distributedLagrange multiplier/fictious do-
main method for particulate flows”,Int. J. Multiphase Flows, vol. 25, p. 755-794, 1999.

Glowinski R., Pan T.-W., Hesla T., Joseph D., Periaux J., “ A fictitious domain approach to
the direct numerical simulation of incompressible viscousflow past moving rigid bodies :
Application to particulate flow”,J. Comput. Phys., vol. 169, p. 363, 2001.

Hwang W., Hulsen M., Meijer H. E. H., “ Direct simulations of particle suspensions in a vis-
coelastic fluid in sliding bi-periodic frames”, , vol. 121, p. 15-33, 2004.

Laure P., Beaume G., Basset O., Silva L., Coupez T., “ Numerical methods for solid particles in
particulate flow simulations”,European J. Comp. Mechanics, vol. 16, p. 365-383, 2007.

Lefebvre A., Modélisation numérique d’écoulements fluide/particules, PhD thesis, Université
Paris Sud - Paris XI, 11, 2007.

Lefebvre A., “ Numerical simulation of gluey particles”,M2AN, vol. 43, p. 53-80, 2009.



Particles in a shear flow 531

Maury B., “ A gluey particle model”,ESAIM: Proc., vol. 18, p. 133-142, 2007.

Meunier A., Bossis G., “ The influence of surface forces on shear-induced tracer diffusion in
mono and bidisperse suspensions”,Eur. Phys. J. E, vol. 25, p. 187-199, 2008.

Patankar N., Singh P., Joseph D., Glowinski R., Pan T.-W., “ Anew formulation of the dis-
tributed Lagrange multiplier/fictitious domain method forparticulate flows”,Int. J. of Mul-
tiphase flow, vol. 26, p. 1509-1524, 2000.

Singh P., Joseph D., “ Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid”,J.
Non-Newtonian Fluid Mech., vol. 94, p. 179-203, 2000.

Verdon N., Beaume G., Lefebvre-Lepot A., Lobry L., Laure P.,“ Immersed finite element
method for direct numerical simulation of particle suspension in a shear flow”,J. Comp.
Physics, 2010.

Wachs A., “ A DEM-DLM/FD method for direct numerical simulation of particulate flows:
Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions”,Com-
puters & Fluids, vol. 38, p. 1608-1628, 2009.



ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LA REVUE:
EJCM – 19/2010. Fluid-structure interaction

2. AUTEURS :
Nicolas Verdona — Aline Lefebvre-Lepotb — Laurent Lobryc — Patrice
Laurea

3. TITRE DE L’ ARTICLE :
Contact problems for particles in a shear flow

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE40 SIGNES:
Particles in a shear flow

5. DATE DE CETTE VERSION:
May 11, 2011

6. COORDONNÉES DES AUTEURS:

– adresse postale :
a Laboratoire J.-A. Dieudonné, CNRS UMR 6621, Université de Nice – Sophia
Antipolis, Parc Valrose, 06108 Nice Cedex 02, France, verdon.nicolas@unice.fr,
patrice.laure@unice.fr
b Centre de Mathématiques Appliquées, Ecole Polytechnique,route de Saclay,
91128 Palaiseau Cedex, France, lefebvre@cmap.polytechnique.fr
c Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622
Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 2, France,
laurent.lobry@unice.fr

– téléphone : 00 00 00 00 00

– télécopie : 00 00 00 00 00

– e-mail : guillaume.laurent@ens2m.fr

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE:
LATEX, avec le fichier de stylearticle-hermes.cls,
version 1.23 du 17/11/2005.

8. FORMULAIRE DE COPYRIGHT:
Retourner le formulaire de copyright signé par les auteurs,téléchargé sur :
http://www.revuesonline.com

SERVICE ÉDITORIAL – HERMES-LAVOISIER

14 rue de Provigny, F-94236 Cachan cedex
Tél. : 01-47-40-67-67

E-mail : revues@lavoisier.fr
Serveur web : http://www.revuesonline.com


	Introduction
	Numerical Modelling
	The immersed domain approach
	Governing set of equations and weak formulation
	Particle displacements
	Overlapping of particles
	The gluey model
	Principles of gluey model
	Correction of the predicted velocity
	Characterisation of the viscous contact

	Final algorithm of the numerical procedure

	Results
	Computations for two particles in 2D shear flow
	Two particles in a 3D shear flow
	2D multi-particle computations

	Conclusion
	References

