Séance 3: Initiation aux éléments finis 2D

Pour pouvoir faire ce TD facilement, il faut prendre à l'adresse

http://www.inln.cnrs.fr/~laure/EF/TD2/Seance3/index.html

les fichiers suivant:

- Q1.sci, Q2.sci, P1.sci; fonctions qui donne les fonctions de Lagrange pour les éléments Q_1 , Q_2 et P_1 .
- gauss.sci; une fonction qui donne les points de Gauss pour l'intégration numérique.
- maillage_2D_?.sci; des fonctions qui donnent le maillage d'un carré par des quadrangles et des triangles.
- cal_indice.sci, interpol.sci, trace_maillage_2D.sci, trace_u_2D.sci; des fonctions qui permettent de tracer le maillage et la solution u.

On va utiliser le fichier seance3.sci qui devrait ressembler au programme écrit à la deuxième séance. Les instructions d'assemblage ont été légèrement modifier pour tenir compte de la structure creuse de la matrice globale. Le travail consistera à ajouter les instructions permettant de calculer le système élémentaire pour un problème bidimensionnel.

Ex 1 Ecoulements de Poiseuille

On veut résoudre

$$-\Delta u = 1$$
 sur un carré $[0,1] \times [0,1]$

avec les conditions aux limites de Dirichlet

$$u(0,y) = u(1,y) = u(x,0) = u(x,1) = 0$$
 (1)

en utilisant des éléments Q2 (programme Q2.sci).

- 1) Ecrire la forme variationnelle de l'équation et le système élémentaire à résoudre sur chaque élément.
- 2) On utilise des quadrilatères comme éléments (cf. maillage_2D.sci et trace_maillage_2D.sci pour tracer ce maillage). Détailler le calcul de la matrice jacobienne qui correspond à la transformation linéaire du quadrilatère de référence vers un quadrilatère quelconque. Ecrire les instructions correspondantes.
- 3) La matrice CONNEC et le vecteur COOR sont donnés par la fonction maillage_2D.sci. La matrice ADRESS et le vecteur NUMER sont calculés pour les conditions aux limites (1) dans le fichier seance3.sci. Ecrire les instructions qui permettent de calculer le système élémentaire (les matrices A_el et F_el) en complétant le fichier seance3.sci.
- 4) Ecrire une fonction scilab qui calcule le débit de la solution u (c'est à dire $\int_0^1 \int_0^1 u \ dx \ dy$)
- 5) Modifier le calcul de NUMER pour avoir des conditions de Neumann pour x=0 et x=1. Vérifier que la solution trouvée ne dépend pas de x et est égal à u(y)=y(1-y)/2.

Ex 2 Solution analytique

Pour tester les différents maillages, on résoud un problème pour lequel on connaît une solution analytique. On considère l'équation sur $\Omega = [0,1] \times [0,1]$

$$-\Delta u + 3u = 0$$

et on peut montrer que $u(x, y) = e^{2x} \sin(y)$ est une solution si on ajuste correctement les conditions aux limites sur les bords.

- 1) Ecrire la formulation faible de ce problème.
- 2) En adaptant les programmes écrits à l'exercice précédents et les différentes fonctions maillage_2D_?.sci tester les élements Q_1 , Q_2 et P_1 . On peut comparer l'erreur entre la solution calculée et la solution analytique.