Course on Finite Volume discretization of PDEs, University Nice Sophia Antipolis

Exercize: finite volume discretization of the 1D Laplacian with Dirichlet and Neumann boundary conditions.

We consider the following problem

$$(P) \begin{cases} -u''(x) = f(x) & \text{on } (0,1), \\ u(0) = u_D, \\ -u'(1) = g, \end{cases}$$

which has a unique solution in $H^1(0,1)$ for all $u_D \in \mathbb{R}$, $g \in \mathbb{R}$, $f \in L^2(0,1)$.

We consider the following subdivision of the interval (0,1) with N+1 points:

$$x_{1/2} = 0 < x_{3/2} < \dots < x_{i-1/2} < x_{i+1/2} < \dots < x_{N-1/2} < x_{N+1/2} = 1.$$

Keeping the notations of the course, the finite volume discretization of the interval (0,1) consists of the set of N cells $\kappa_i = (x_{i-1/2}, x_{i+1/2})$ for $i=1, \cdots, N$, and of the cell centers $x_i = \frac{x_{i-1/2} + x_{i+1/2}}{2}$ for $i=1, \cdots, N$. We also set $x_0=0$ and $x_{N+1}=1$, $h_{i+1/2}=|x_{i+1}-x_i|$ for $i=0, \cdots, N$, and $h_i=|x_{i+1/2}-x_{i-1/2}|$ for $i=1, \cdots, N$. Finally, we set $h=\max_{i=1, \cdots, N} h_i$.

(1) Let us consider the N discrete unknowns u_i approximating $u(x_i)$ for $i = 1, \dots, N$. Write the discrete fluxes $f_{i+1/2}$ approximating $-u'(x_{i+1/2})$, $i = 0, \dots, N$, and taking into account the boundary conditions for i = 0 and i = N.

Write the finite volume discretization of (P) consisting of N discrete conservation equations on the cells κ_i , $i = 1, \dots, N$ using the previous fluxes.

Let $u_i^0 = u_i - u_D$, $i = 1, \dots, N$. Write the previous finite volume scheme for the unknowns $u_i^0, i = 1, \dots, N$

Corrigé: The numerical fluxes are defined by

$$F_{1/2}(u_h) = \frac{u_D - u_1}{h_{1/2}},$$

$$F_{i+1/2}(u_h) = \frac{u_i - u_{i+1}}{h_{i+1/2}}, i = 1, \dots, N-1,$$

$$F_{N+1/2}(u_h) = g.$$

and the finite volume conservation equations in each cell are

$$F_{i+1/2}(u_h) - F_{i-1/2}(u_h) = h_i f_i, i = 1, \dots, N,$$

with $f_i = \frac{1}{h_i} \int_{\kappa_i} f(x) dx$.

We remark that

$$F_{1/2}(u_h^0) = \frac{0 - u_1^0}{h_{1/2}},$$

$$F_{i+1/2}(u_h^0) = \frac{u_i^0 - u_{i+1}^0}{h_{i+1/2}}, i = 1, \dots, N - 1,$$

$$F_{N+1/2}(u_h^0) = g.$$

and that

$$F_{i+1/2}(u_h^0) - F_{i-1/2}(u_h^0) = h_i f_i, i = 1, \dots, N,$$

(2) Let V_h be the vector space of cellwise constant functions. We denote by v_i the value of v_h on the cell κ_i for $i=1,\dots,N$. For all $v_h,w_h\in V_h\times V_h$, we define the discrete scalar product and discrete norms

$$||v_h||_{0,h} = ||v_h||_{L^2(0,1)} = \left(\sum_{i=1}^N h_i v_i^2\right)^{1/2},$$

$$< v_h, w_h >_{1,h} = \frac{(0 - v_1)(0 - w_1)}{h_{1/2}} + \sum_{i=1}^{N-1} \frac{(v_i - v_{i+1})(w_i - w_{i+1})}{h_{i+1/2}}.$$

and

$$||v_h||_{1,h} = \left(\langle v_h, v_h \rangle_{1,h}\right)^{1/2}.$$

Prove the following discrete Poincaré inequality : for all $v_h \in V_h$

$$||v_h||_{0,h} \leq ||v_h||_{1,h}$$
.

Prove the following trace inequality: for all $v_h \in V_h$

$$|v_N| \le ||v_h||_{1,h}$$
.

Corrigé: Let us set for $v_h \in V_h$, $v_0 = 0$. Then

$$|v_i| = |\sum_{j=0}^{i-1} v_{j+1} - v_j| \le \sum_{j=0}^{N-1} |v_{j+1} - v_j| \le ||v_h||_{1,h} \left(\sum_{j=0}^{N-1} h_{j+1/2}\right)^{1/2} \le ||v_h||_{1,h}.$$

It results that

$$||v_h||_{0,h}^2 \le ||v_h||_{1,h}^2 (\sum_{i=1}^N h_i) \le ||v_h||_{1,h}^2,$$

hence

$$||v_h||_{0,h} \leq ||v_h||_{1,h}$$
.

(3) Prove that the finite volume discretization of (P) is equivalent to the following discrete variational formulation: find $u_h^0 \in V_h$ such that

$$(FVP)$$
 $< u_h^0, v_h >_{1,h} = \int_0^1 f(x)v_h(x)dx - g v_N,$

for all $v_h \in V_h$. Using the previous Poincaré and trace inequalities, deduce that the discrete solution $u_h^0 \in V_h$ of (FVP) satisfies the following a priori estimate

$$||u_h^0||_{1,h} \le |g| + ||f||_{L^2(0,1)}.$$

What can be deduced for the finite volume scheme solution?

Corrigé: Let us set for conveniency $v_0 = 0$. Multiplying the conservation equation in cell i by v_i and summing over $i = 1, \dots, N$ we obtain that

$$\sum_{i=1}^{N} v_i F_{i+1/2}(u_h^0) - \sum_{i=1}^{N} v_i F_{i-1/2}(u_h^0) = \sum_{i=1}^{N} v_i h_i f_i.$$

Let us note that

$$\sum_{i=1}^{N} v_i h_i f_i = \int_0^1 f(x) v_h(x) dx,$$

and that

$$\sum_{i=1}^{N} v_i F_{i-1/2}(u_h^0) = \sum_{i=0}^{N-1} v_{i+1} F_{i+1/2}(u_h^0)$$

Using that v_0 is set to 0 we have that

$$\sum_{i=1}^{N} v_i F_{i+1/2}(u_h^0) = \sum_{i=0}^{N-1} v_i F_{i+1/2}(u_h^0) + gv_N.$$

It results that

$$< u_h^0, v_h >_{1,h} = \int_0^1 f(x) v_h(x) dx - g \ v_N.$$

(4) For all $v \in C^2[0,1]$, let us define the fluxes residuals

$$r_{i+1/2}(v) = \frac{v(x_i) - v(x_{i+1})}{h_{i+1/2}} + v'(x_{i+1/2}),$$

for all $i=0,\cdots,N-1$. Show that there exists a constant C(v) independent on h and such that

$$\max_{i=0,\cdots,N-1} |r_{i+1/2}(v)| \le C(v)h.$$

Assuming that the solution u of (P) is in $C^2[0,1]$, prove that

$$||e_h||_{1,h} \le C(u)h,$$

with $e_h(x) = u(x_i) - u_i$ on κ_i , $i = 1, \dots, N$.

Corrigé: Note that

$$-r_{i+1/2}(v) = \frac{1}{h_{i+1/2}} \int_{x_i}^{x_{i+1}} (v'(x) - v'(x_{i+1/2})) dx.$$

Using by Taylor expansion that for all $x \in (x_i, x_{i+1})$ one has

$$|v'(x) - v'(x_{i+1/2})| \le \sup_{y \in (x_i, x_{i+1})} |v''(y)| |x - x_{i+1/2}| \le \sup_{y \in (0,1)} |v''(y)| h_{i+1/2},$$

we deduce that

$$|r_{i+1/2}(v)| \le C(v)h$$
,

with $C(v) = \sup_{y \in (0,1)} |v''(y)|$.

Let us derive an equation for the error e_h . Integrating the equation -u''(x) = f(x) over the cell κ_i we obtain that

$$-u'(x_{i+1/2}) - (-u'(x_{i-1/2})) = h_i f_i.$$

From the definition of the flux consistency errors $r_{i+1/2}(u)$ we obtain for $i=1,\cdots,N-1$ that

$$\frac{u(x_i) - u(x_{i+1})}{h_{i+1/2}} - \frac{u(x_{i-1}) - u(x_i)}{h_{i-1/2}} = h_i f_i + r_{i+1/2}(u) - r_{i-1/2}(u).$$

For i = N we obtain by setting $r_{N+1/2}(u) = 0$ that

$$g - \frac{u(x_{N-1}) - u(x_N)}{h_{N-1/2}} = h_N f_N + r_{N+1/2}(u) - r_{N-1/2}(u).$$

Substrating the finite volume equations for u_h from these equations we get, setting $e_0 = 0$ that

$$F_{i+1/2}(e_h) - F_{i-1/2}(e_h) = r_{i+1/2}(u) - r_{i-1/2}(u),$$

for all $i = 1, \dots, N-1$ and

$$0 - F_{N-1/2}(e_h) = r_{N+1/2}(u) - r_{N-1/2}(u).$$

Multiplying each equation by e_i and summing over $i = 1, \dots, N$ and using that $e_0 = 0$ and that $r_{N+1/2} = 0$, we obtain that

$$||e_h||_{1,h}^2 = \sum_{i=1}^N e_i(r_{i+1/2}(u) - r_{i-1/2}(u)) = \sum_{i=0}^{N-1} (e_i - e_{i+1})r_{i+1/2}(u).$$

By Cauchy Scharwz inequality and from the flux consistency error estimate we get that

$$||e_h||_{1,h}^2 \le ||e_h||_{1,h} \Big(\sum_{i=0}^{N-1} (r_{i+1/2}(u))^2 h_{i+1/2} \Big)^{1/2} \le C(u)h||e_h||_{1,h}.$$

It results that

$$||e_h||_{1,h} \leq C(u)h.$$