Master MathMod, University Nice Sophia Antipolis

Finite Volume discretization of the Black and Scholes model

The Black and Scholes model computes the price of the option P(S,t) as function of the price of the asset S and of time $t \in (0,T)$. To fix ideas we will consider an European call option with the following parameters:

- T > 0: the maturity time at which the owner of the option can buy the asset
- K > 0: the strike defined as the price at which the call option gives the right to buy the asset
- σ : the volatility of the asset price model
- \bullet r: the free risk interest rate of the market

The Black and Scholes model is defined by the following linear unstationary convection diffusion reaction equation :

$$\begin{cases} \partial_t P(S,t) + \frac{\sigma^2}{2} S^2 \partial_{S^2} P(S,t) + r S \partial_S P(S,t) - r P(S,t) = 0 & \text{on } (0,S_{max}) \times (0,T), \\ P(S,T) = \max(0,S-K), & \text{on } (0,S_{max}) \times (0,T), \\ P(S_{max},t) = f(S_{max},t), & \text{on } (0,T), \end{cases}$$

where $S_{max} > K$ is given and $f(S_{max}, t)$ is the right side boundary condition determined by financing reasoning. In our case it will be defined by

$$f(S,t) = S - Ke^{-r(T-t)}.$$

Note that no boundary condition is needed at the left side S=0 since the equation reduces to $\partial_t P(S,t)=rP(S,t)$ which imposes

$$P(0,t) = e^{r(t-T)}P(0,T) = e^{r(t-T)}\max(0, -K) = 0.$$

To write the finite volume discretization of the Black and Scholes model, one must first reformulate the PDE in conservative form :

$$\partial_t P(S,t) + \partial_S \left(\frac{\sigma^2}{2} S^2 \partial_S P(S,t) + (r - \sigma^2) SP(S,t) \right) - (2r - \sigma^2) P(S,t) = 0.$$

For conveniency we also make the change of of variable $\tau = T - t$ and of function $V(S, \tau) = P(S, T - \tau)$ to obtain our (BS) model :

(BS)
$$\begin{cases} \partial_{\tau}V(S,\tau) + \partial_{S}\left(-\frac{\sigma^{2}}{2}S^{2}\partial_{S}V(S,\tau) - (r - \sigma^{2})SV(S,\tau)\right) + (2r - \sigma^{2})V(S,\tau) = 0 \text{ on } (0, S_{max}) \times (0, T), \\ V(S,0) = \max(0, S - K) \text{ on } (0, S_{max}) \\ V(S_{max},\tau) = S - Ke^{-r\tau} \text{ on } (0, T). \end{cases}$$

We consider the following subdivision of the interval $(0, S_{max})$ with N+1 points:

$$S_{1/2} = 0 < S_{3/2} < \dots < S_{i-1/2} < S_{i+1/2} < \dots < S_{N-1/2} < S_{N+1/2} = S_{max}$$

Keeping the notations of the course, the finite volume discretization of the interval (0,1) consists of the set of N cells $\kappa_i = (S_{i-1/2}, S_{i+1/2})$ for $i = 1, \dots, N$, and of the cell centers $S_i = \frac{S_{i-1/2} + S_{i+1/2}}{2}$

for $i = 1, \dots, N$. We also set $S_0 = 0$ and $S_{N+1} = S_{max}$, $h_{i+1/2} = |S_{i+1} - S_i|$ for $i = 0, \dots, N$, and $h_i = |S_{i+1/2} - S_{i-1/2}|$ for $i = 1, \dots, N$.

The time discretization is denoted by $\tau^0 = 0 < \tau^1 < \tau^2 \cdots \tau^n < \tau^{n+1} < \cdots < \tau^M = T$, and we set $\Delta \tau^n = \tau^n - \tau^{n-1} > 0$ for all $n \ge 1$.

- (1) Write the finite volume discretization of the (BS) model on the previous space time discretization of $(0, S_{max}) \times (0, T)$ using a θ scheme for the time integration and an upwind scheme for the convection term
- (2) Implement the code in scilab
- (3) Test the code for the following values of the parameters
 - T = 0.25
 - K = 100
 - $\sigma = 0.3$
 - r = 0.2
 - $S_{max} = 200$