An introduction to finite volume methods for diffusion problems

F. Boyer

Institut de Mathématiques de Marseille
Aix-Marseille Université

Journées numériques
Nice, Mars 2014
(1) Introduction
(2) The basic FV scheme for the 2D Laplace problem
(3) The DDFV method
(4) A REVIEW OF SOME OTHER MODERN METHODS
(5) Comparisons : Benchmark from the FVCA 5 conference

The main points that I will not discuss

- The 3D case : many things can be done ... with some efforts.
- Parabolic equation.
- Non-linear problems.
(1) Introduction
- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The basic FV scheme for the 2D Laplace problem
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

Flow of an incompressible fluid in a porous medium
$\operatorname{div} v=f$, mass conservation, f represents sinks/wells, $v=-\varphi(x, \nabla p), \quad$ filtration velocity constitutive law.

Linear Regime

- Darcy law :

$$
v=-\frac{K(x)}{\mu} \nabla p
$$

the tensor $K(x)$ is the permeability, μ the viscosity.

Flow of an incompressible fluid in a porous medium
$\operatorname{div} v=f, \quad$ mass conservation, f represents sinks/wells, $v=-\varphi(x, \nabla p), \quad$ filtration velocity constitutive law.
Non-Linear Regimes

- Darcy-Forchheimer law : in case of high pressure gradients

$$
-\nabla p=\frac{1}{k} v+\beta|v| v, \Longleftrightarrow v=\frac{-2 k \nabla p}{1+\sqrt{1+4 \beta k^{2}|\nabla p|}}
$$

- Power law : Non-newtonian effects

$$
|v|^{n-1} v=-k \nabla p, \Longleftrightarrow v=-|k \nabla p|^{\frac{1}{n}-1}(k \nabla p)
$$

Monotonicity

Observe that in each case, $\nabla p \mapsto v=-\varphi(x, \nabla p)$ is monotone.

Heterogeneities, Discontinuities, Anisotropy

Example of the underground structure

Each color represents a different medium

$$
-\operatorname{div}(\varphi(x, \nabla p))=f
$$

- $\varphi(x, \cdot)$ can be linear in some areas.
- $\varphi(x, \cdot)$ can be non-linear in other areas.
- Some rocks are very permeable, other are almost impermeable.
- Some rocks have an isotropic structure, other are very anisotropic due to the particular structure at the pore scale.
Transmission conditions
- Pressure is continuous at interfaces.
- Mass flux $\varphi(x, \nabla p) \cdot \boldsymbol{\nu}$ is continuous across interfaces.

Electrocardiology

(Coudière-Pierre-Turpault '09)

$$
\left\{\begin{aligned}
u & =u_{i}-u_{e} \\
C\left(\partial_{t} u+f(u)\right) & =-\operatorname{div}\left(G_{e} \nabla u_{e}\right) \\
\operatorname{div}\left(\left(G_{i}+G_{e}\right) \nabla u_{e}\right) & =-\operatorname{div}\left(G_{i} \nabla u\right) \\
\operatorname{div}\left(G_{T} \nabla u_{T}\right) & =0 \\
\left(G_{i} \nabla u_{e}\right) \cdot \boldsymbol{\nu} & =-\left(G_{i} \nabla u\right) \cdot \boldsymbol{\nu} \\
\left(G_{e} \nabla u_{e}\right) \cdot \boldsymbol{\nu} & =-\left(G_{T} \nabla u_{T}\right) \cdot \boldsymbol{\nu}
\end{aligned}\right.
$$

in the heart, in the heart, in the torso, at the interface heart/torso, at the interface heart/torso.

Drift-diffusion models for semi-conductors
(Chainais-Hillairet - Peng '03,'04)

$$
\left\{\begin{aligned}
\partial_{t} N-\operatorname{div}(\nabla N-N \nabla \psi) & =0 \\
\partial_{t} P-\operatorname{div}(\nabla P+P \nabla \psi) & =0 \\
\lambda^{2} \Delta \psi & =N-P .
\end{aligned}\right.
$$

Maxwell, Stokes, Elasticity ...
(1) Introduction

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The Basic FV scheme for the 2D Laplace problem
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

Finite differences methods

- Mostly based on Taylor expansions of (smooth) solutions.
- Cartesian geometry only (at least without any additional tools).
- "Replace" derivatives by differential quotients

$$
\frac{\partial u}{\partial x} \rightsquigarrow \frac{u_{i+1}-u_{i}}{\Delta x}, \quad \frac{\partial^{2} u}{\partial x^{2}} \rightsquigarrow \frac{u_{i+1}-2 u_{i}+u_{i-1}}{\Delta x^{2}} .
$$

Galerkin methods

- Based on a variational formulation of the PDE.
- Solve the formulation on a suitable finite dimensional subspace of the energy space
- Piecewise polynomials : Finite Elements
- Fourier-like basis : Spectral Methods

Finite volume methods

- Based on the conservation form of the PDE :

$$
\operatorname{div}(\text { something })=\text { source }
$$

- Integrate the balance equation on each cell \mathcal{K} and apply Stokes formula

$$
\int_{\mathcal{K}} \text { source }=\sum_{\text {edges of } \mathcal{K}} \text { Outward flux of something across the edge }
$$

- Approximate each flux and write the discrete balance equation obtained from this approximation.

Weak constraints on the meshes FE: $\boldsymbol{V} / \boldsymbol{\aleph}$, FV : \boldsymbol{V}, FD : $\mathfrak{\star}$

- Non conforming meshes.
- Local refinement.
- Very stretched cells.

Expected properties of the scheme

- Local mass conservativity, and mass flux consistency.

FE: $\boldsymbol{*}, \mathrm{FV}$:

- Preservation of basic properties of the PDEs (well-posedness,...).

FE: $\boldsymbol{V}, \mathrm{FV}: \boldsymbol{\downarrow}$

- Preservation of physical bounds on solutions.

FE: $\boldsymbol{*} / \boldsymbol{\nu}, \mathrm{FV}: \boldsymbol{*} / \boldsymbol{\nu}$

- Accuracy on coarse meshes with high anisotropies and heterogeneities.

Here, we restrict ourselves to low order schemes
For higher order methods \rightsquigarrow Discontinuous Galerkin

(1) Introduction

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The basic FV scheme for the 2D Laplace problem - Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme
(Eymard, Gallouët, Herbin, ' $00 \rightarrow$ '09)

Definition in 2D

- Ω a connected bounded polygonal domain in \mathbb{R}^{2}.
- An admissible orthogonal mesh \mathcal{T} is made of
- a finite set of non empty compact convex polygonal subdomains of Ω refered to as \mathcal{K}, called control volumes such that
- If $\mathcal{K} \neq \mathcal{L}$, then $\stackrel{\circ}{\mathcal{K}} \cap \stackrel{\circ}{\mathcal{L}}=\emptyset$.
- $\bar{\Omega}=\bigcup_{\mathcal{K} \in \mathcal{T}} \mathcal{K}$.
- A set of points, called centers, $\left(x_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}}$ such that
- For any $\mathcal{K} \in \mathcal{T}, x_{\mathcal{K}} \in \stackrel{\circ}{\mathcal{K}}$.
- For any $\mathcal{K}, \mathcal{L} \in \mathcal{T}, \mathcal{K} \neq \mathcal{L}$ such that $\mathcal{K} \cap \mathcal{L}$ is a segment, then it is an edge of \mathcal{K} and an edge of \mathcal{L} is denoted $\mathcal{K} \mid \mathcal{L}$ and satisfies the orthogonality condition

$$
\left[x_{\mathcal{K}}, x_{\mathcal{L}}\right] \perp \mathcal{K} \mid \mathcal{L} .
$$

Notations

- Mesh size $: \operatorname{size}(\mathcal{T})=\max _{\mathcal{K} \in \mathcal{T}}(\operatorname{diam}(\mathcal{K}))$.
- Set of edges : $\mathcal{E}, \mathcal{E}_{\text {ext }}, \mathcal{E}_{\text {int }}, \mathcal{E}_{\mathcal{K}}$
- Unit normals : $\boldsymbol{\nu}_{\mathcal{K}}, \boldsymbol{\nu}_{\mathcal{K} \sigma}, \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}$
- Volumes/Areas/Measures : $|\mathcal{K}|,|\sigma|$
- Distances : $d_{\mathcal{K} \sigma}, d_{\mathcal{L} \sigma}, d_{\mathcal{K} \mathcal{L}}, d_{\sigma}$

Consider the following problem

$$
\left\{\begin{array}{c}
-\Delta u=f, \quad \text { in } \Omega \\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

and an admissible orthogonal mesh \mathcal{T}

Flux balance equation on the control volume \mathcal{K}

$$
|\mathcal{K}| f_{\mathcal{K}} \stackrel{\text { def }}{=} \int_{\mathcal{K}} f=\int_{\mathcal{K}}-\Delta u=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \underbrace{-\int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K} \sigma}}_{\stackrel{\text { def }}{=} \bar{F}_{\mathcal{K}, \sigma}(u)}
$$

$$
|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \bar{F}_{\mathcal{K}, \sigma}(u)
$$

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$
\bar{F}_{\mathcal{K}, \sigma}(u)=-\bar{F}_{\mathcal{L}, \sigma}(u), \quad \text { for } \sigma=\mathcal{K} \mid \mathcal{L}
$$

$$
|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \bar{F}_{\mathcal{K}, \sigma}(u)
$$

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$
\bar{F}_{\mathcal{K}, \sigma}(u)=-\bar{F}_{\mathcal{L}, \sigma}(u), \quad \text { for } \sigma=\mathcal{K} \mid \mathcal{L}
$$

CELL-CENTERED UNKNOWNS
We are looking for $u_{\mathcal{K}} \sim u\left(x_{\mathcal{K}}\right)$
Notation : $u^{\mathcal{T}}=\left(u_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.

$$
|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \bar{F}_{\mathcal{K}, \sigma}(u)
$$

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$
\bar{F}_{\mathcal{K}, \sigma}(u)=-\bar{F}_{\mathcal{L}, \sigma}(u), \quad \text { for } \sigma=\mathcal{K} \mid \mathcal{L}
$$

CELL-CENTERED UNKNOWNS
We are looking for $u_{\mathcal{K}} \sim u\left(x_{\mathcal{K}}\right)$
Notation : $u^{\mathcal{T}}=\left(u_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.
Numerical fluxes
A family of maps $u^{\mathcal{T}} \mapsto F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)$ in order to approximate $\bar{F}_{\mathcal{K}, \sigma}(u)$
Numerical scheme
We look for $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that $|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)$ for any $\mathcal{K} \in \mathcal{T}$.

CASE OF AN INTERIOR EDGE

$$
\sigma \in \mathcal{E}_{i n t}, \sigma=\mathcal{K} \mid \mathcal{L}
$$

$$
x_{\mathcal{L}}-x_{\mathcal{K}}=d_{\mathcal{K} \mathcal{L}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}
$$

For $x \in \sigma, \quad(\nabla u(x)) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}+O(\operatorname{size}(\mathcal{T}))$

$$
\Longrightarrow \bar{F}_{\mathcal{K}, \sigma}(u)=-|\sigma| \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
$$

CASE OF AN INTERIOR EDGE

$$
\sigma \in \mathcal{E}_{i n t}, \sigma=\mathcal{K} \mid \mathcal{L}
$$

$$
x_{\mathcal{L}}-x_{\mathcal{K}}=d_{\mathcal{K} \mathcal{L}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}
$$

For $x \in \sigma, \quad(\nabla u(x)) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}+O(\operatorname{size}(\mathcal{T}))$

$$
\Longrightarrow \bar{F}_{\mathcal{K}, \sigma}(u)=-|\sigma| \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
$$

Thus, we define

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=}-|\sigma| \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}
$$

REMARK AND DEFINITION

The scheme is built so as to be conservative

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)
$$

We set

$$
F_{\mathcal{K}, \mathcal{L}}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right) .
$$

CASE OF A BOUNDARY EDGE

$$
\sigma \in \mathcal{E}_{e x t}
$$

$$
\begin{gathered}
x_{\sigma}-x_{\mathcal{K}}=d_{\mathcal{K} \sigma} \boldsymbol{\nu}_{\mathcal{K} \sigma} \\
(\nabla u(x)) \cdot \boldsymbol{\nu}_{\mathcal{K} \sigma} \sim \frac{u\left(x_{\sigma}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \sigma}}=\frac{0-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \sigma}} \Leftarrow \text { Boundary data } \\
\Longrightarrow \bar{F}_{\mathcal{K}, \sigma}(u)=-|\sigma| \frac{-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \sigma}}+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
\end{gathered}
$$

Thus we define

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=}-|\sigma| \frac{-u_{\mathcal{K}}}{d_{\mathcal{K} \sigma}}
$$

Definition of the TPFA scheme

We look for $u^{\mathcal{T}}=\left(u_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$
\left\{\begin{array}{rr}
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=|\mathcal{K}| f_{\mathcal{K}}, & \forall \mathcal{K} \in \mathcal{T}, \tag{TPFA}\\
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-|\sigma| \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}, & \text { for } \sigma=\mathcal{K} \mid \mathcal{L} \in \mathcal{E}_{i n t} \\
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-|\sigma| \frac{-u_{\mathcal{K}}}{d_{\mathcal{K} \sigma}}, & \text { for } \sigma \in \mathcal{E}_{e x t}
\end{array}\right.
$$

- It is a linear system of N equations with N unknowns ($N=\mathrm{nb}$ of control volumes in \mathcal{T}).
- The scheme is also known as VF4/FV4 : 4-point stencil for a triangle 2D mesh.
- On a 2D uniform Cartesian mesh : we recover the usual 5-point scheme.

Definition of the TPFA scheme

We look for $u^{\mathcal{T}}=\left(u_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$
\left\{\begin{array}{rr}
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=|\mathcal{K}| f_{\mathcal{K}}, & \forall \mathcal{K} \in \mathcal{T}, \tag{TPFA}\\
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-|\sigma| \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}, & \text { for } \sigma=\mathcal{K} \mid \mathcal{L} \in \mathcal{E}_{i n t} \\
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-|\sigma| \frac{-u_{\mathcal{K}}}{d_{\mathcal{K} \sigma}}, & \text { for } \sigma \in \mathcal{E}_{e x t}
\end{array}\right.
$$

Notations - Piecewise constant approximation

- We define $f^{\mathcal{T}}=\left(f_{\mathcal{K}}\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.
- With each set of unknowns $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, we associate the piecewise constant function

$$
v^{\mathcal{T}}(x)=\sum_{\mathcal{K} \in \mathcal{T}} v_{\mathcal{K}} \mathbf{1}_{\mathcal{K}}(x)
$$

- Natural norms $\left\|v^{\mathcal{T}}\right\|_{L^{\infty}}=\sup _{\mathcal{K} \in \mathcal{T}}\left|v_{\mathcal{K}}\right|, \quad\left\|v^{\mathcal{T}}\right\|_{L^{2}}=\left(\sum_{\mathcal{K} \in \mathcal{T}}\left|\mathcal{K} \| v_{\mathcal{K}}\right|^{2}\right)^{\frac{1}{2}}$.

FV methods are non-conforming methods
(1) Introduction

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The basic FV scheme for the 2D Laplace problem - Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

Notations: Oriented difference quotients

- For any couple of neighboring control volumes $(\mathcal{K}, \mathcal{L})$ we set

$$
D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=} \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} .
$$

- For any interior edge $\sigma \in \mathcal{E}_{\text {int }}$ we set

$$
D_{\sigma}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=} D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right)=D_{\mathcal{L} \mathcal{K}}\left(u^{\mathcal{T}}\right)
$$

- For any exterior edge $\sigma \in \mathcal{E}_{\text {ext }}$ we set $D_{\sigma}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=} \frac{0-u_{\mathcal{K}}}{d_{\mathcal{K} \sigma}} \boldsymbol{\nu}_{\mathcal{K} \sigma}$.

Lemma (Discrete integration by parts)

Let $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ be a solution of (TPFA) if it exists, then for any $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

$$
\underbrace{\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma| D_{\sigma}\left(u^{\mathcal{T}}\right) \cdot D_{\sigma}\left(v^{\mathcal{T}}\right)}_{\stackrel{\text { def }}{=}\left[u^{\mathcal{T}}, v^{\mathcal{T}}\right]_{1, \mathcal{T}}}=\sum_{\mathcal{K} \in \mathcal{T}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}=\left(v^{\mathcal{T}}, f^{\mathcal{T}}\right)_{L^{2}}
$$

\rightsquigarrow Local conservativity of the scheme is crucial here.

Lemma (Discrete integration by parts)
Let $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ be a solution of (TPFA) if it exists, then for any $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

$$
\underbrace{\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma| D_{\sigma}\left(u^{\tau}\right) \cdot D_{\sigma}\left(v^{\tau}\right)}_{\text {气的 }\left[u^{\prime}, v^{\tau}\right]_{1, \tau}}=\sum_{\kappa \in \mathcal{T}}|\kappa| v_{\mathcal{K}} f_{\mathcal{K}}=\left(v^{\tau}, f^{\tau}\right)_{L^{2}} .
$$

\rightsquigarrow Local conservativity of the scheme is crucial here.

Proposition

The bilinear form

$$
\left(u^{\mathcal{T}}, v^{\mathcal{T}}\right) \in \mathbb{R}^{\mathcal{T}} \times \mathbb{R}^{\mathcal{T}} \mapsto\left[u^{\mathcal{T}}, v^{\mathcal{T}}\right]_{1, \mathcal{T}}
$$

is an inner product in $\mathbb{R}^{\mathcal{T}}$ that we call discrete H_{0}^{1} inner product.
The associated norm $\|\cdot\|_{1, \mathcal{T}}$ is called discrete H_{0}^{1} norm.

Theorem

For any source term $f \in L^{2}(\Omega)$, the scheme (TPFA) has a unique solution $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ and we have

$$
\left\|u^{\mathcal{T}}\right\|_{1, \mathcal{T}}^{2} \leq\left\|u^{\mathcal{T}}\right\|_{L^{2}}\left\|f^{\mathcal{T}}\right\|_{L^{2}} \leq\left\|u^{\mathcal{T}}\right\|_{L^{2}}\|f\|_{L^{2}}
$$

In order to get a useful discrete- H^{1} estimate, we need

Theorem (Discrete Poincaré inequality)

For any orthogonal admissible mesh \mathcal{T}, we have

$$
\left\|v^{\mathcal{T}}\right\|_{L^{2}} \leq \operatorname{diam}(\Omega)\left\|v^{\mathcal{T}}\right\|_{1, \mathcal{T}}, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}
$$

Matrix of the system :

- A is symmetric definite positive (See : Discrete integration by parts).
- A is a M-matrix \Rightarrow Discrete maximum principle

$$
f^{\mathcal{T}} \geq 0 \Longrightarrow u^{\mathcal{T}} \geq 0
$$

Indeed, the line of the system $A u^{\mathcal{T}}=f^{\mathcal{T}}$ corresponding to the control volume \mathcal{K} reads

$$
\sum_{\mathcal{L} \in V_{\mathcal{K}}} \underbrace{\tau_{\mathcal{K} \mathcal{L}}}_{\geq 0}\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)=|\mathcal{K}| f_{\mathcal{K}}
$$

DIAMOND CELLS

DISCRETE GRADIENT
For any $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, and any $\mathcal{D} \in \mathfrak{D}$, we set

$$
\begin{gathered}
\nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{aligned}
d \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=d D_{\sigma}\left(u^{\mathcal{T}}\right), & \text { for } \sigma \in \mathcal{E}_{\text {int }}, \\
d \frac{0-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \sigma}=d D_{\sigma}\left(u^{\mathcal{T}}\right), & \text { for } \sigma \in \mathcal{E}_{\text {ext }},
\end{aligned}\right. \\
\nabla^{\mathcal{T}} v^{\mathcal{T}} \stackrel{\text { def }}{=} \sum_{\mathcal{D} \in \mathfrak{D}} \mathbf{1}_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{D}} v^{\mathcal{T}} \in\left(L^{2}(\Omega)\right)^{2}
\end{gathered}
$$

Link with the discrete H_{0}^{1} NORM

$$
\left\|v^{\mathcal{T}}\right\|_{1, \mathcal{T}}^{2}=\frac{1}{d}\left\|\nabla^{\mathcal{T}} v^{\mathcal{T}}\right\|_{L^{2}}^{2}
$$

Theorem (Weak compactness)

Let $\left(\mathcal{T}_{n}\right)_{n}$ be a sequence of admissible orthogonal meshes such that $\operatorname{size}\left(\mathcal{T}_{n}\right) \rightarrow 0$ and $\left(u^{\mathcal{T}_{n}}\right)_{n}$ a familly of discrete functions defined on each of these meshes and such that

$$
\sup _{n}\left\|u^{\mathcal{T}} n\right\|_{1, \mathcal{T}_{n}}<+\infty
$$

Then

- There exists a function $u \in L^{2}(\Omega)$ and a subsequence $\left(u^{\mathcal{T}} \varphi(n)\right)_{n}$ that strongly converges towards u in $L^{2}(\Omega)$.

Theorem (Weak compactness)

Let $\left(\mathcal{T}_{n}\right)_{n}$ be a sequence of admissible orthogonal meshes such that $\operatorname{size}\left(\mathcal{T}_{n}\right) \rightarrow 0$ and $\left(u^{\mathcal{T}_{n}}\right)_{n}$ a familly of discrete functions defined on each of these meshes and such that

$$
\sup _{n}\left\|u^{\mathcal{T}} n\right\|_{1, \mathcal{T}_{n}}<+\infty
$$

Then

- There exists a function $u \in L^{2}(\Omega)$ and a subsequence $\left(u^{\mathcal{T}} \varphi(n)\right)_{n}$ that strongly converges towards u in $L^{2}(\Omega)$.
Moreover,
- The function u belongs to $H_{0}^{1}(\Omega)$.
- The sequence of discrete gradients $\left(\nabla^{\mathcal{T}} \varphi(n) u^{\mathcal{T}} \varphi(n)\right)_{n}$ weakly converges towards ∇u in $\left(L^{2}(\Omega)\right)^{d}$.

Theorem (Convergence of the TPFA scheme)
Let $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ be the unique solution to the PDE.

Let $\left(\mathcal{T}_{n}\right)_{n}$ be a family of admissible orthogonal meshes such that $\operatorname{size}\left(\mathcal{T}_{n}\right) \rightarrow 0$.

For any n, let $u^{\mathcal{T}_{n}} \in \mathbb{R}^{\mathcal{T}_{n}}$ be the unique solution of the TPFA scheme on the mesh \mathcal{T}_{n} associated with the source term f.

Theorem (Convergence of the TPFA scheme)

Let $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ be the unique solution to the PDE.

Let $\left(\mathcal{T}_{n}\right)_{n}$ be a family of admissible orthogonal meshes such that $\operatorname{size}\left(\mathcal{T}_{n}\right) \rightarrow 0$.

For any n, let $u^{\mathcal{T}_{n}} \in \mathbb{R}^{\mathcal{T}_{n}}$ be the unique solution of the TPFA scheme on the mesh \mathcal{T}_{n} associated with the source term f.

Then, we have
(1) The sequence $\left(u^{\mathcal{T}_{n}}\right)_{n}$ strongly converges towards u in $L^{2}(\Omega)$.
(2) The sequence $\left(\nabla^{\tau_{n}} u^{\tau_{n}}\right)_{n}$ weakly converges towards ∇u in $\left(L^{2}(\Omega)\right)^{d}$.
(3) Strong convergence of the gradients DOES NOT HOLD (excepted for $f=u=0$).

First Remarks

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^{2}(\Omega)$.

First Remarks

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^{2}(\Omega)$.

Principle of the analysis

- We want to compare $u^{\mathcal{T}}$ with the projection $\mathbb{P}^{\mathcal{T}} u=\left(u\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K}}$ of the exact solution on the mesh. The error is thus defined by

$$
e^{\mathcal{T}} \stackrel{\text { def }}{=} \mathbb{P}^{\mathcal{T}} u-u^{\mathcal{T}}
$$

First Remarks

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^{2}(\Omega)$.

Principle of the analysis

- We want to compare $u^{\mathcal{T}}$ with the projection $\mathbb{P}^{\mathcal{T}} u=\left(u\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K}}$ of the exact solution on the mesh. The error is thus defined by

$$
e^{\mathcal{T}} \stackrel{\text { def }}{=} \mathbb{P}^{\mathcal{T}} u-u^{\mathcal{T}}
$$

- We compare the numerical fluxes computed on $\mathbb{P}^{\mathcal{T}} u$ with exact fluxes

$$
|\sigma| R_{\mathcal{K}, \sigma}(u) \stackrel{\text { def }}{=} F_{\mathcal{K}, \sigma}\left(\mathbb{P}^{\mathcal{T}} u\right)-\bar{F}_{\mathcal{K}, \sigma}(u)
$$

that is

$$
R_{\mathcal{K}, \sigma}(u)=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x, \quad \forall \sigma \in \mathcal{E}_{i n t}
$$

$$
|\sigma| R_{\mathcal{K}, \sigma}(u) \stackrel{\text { def }}{=} F_{\mathcal{K}, \sigma}\left(\mathbb{P}^{\mathcal{T}} u\right)-\bar{F}_{\mathcal{K}, \sigma}(u)
$$

- We subtract the exact fluxes balance equation (that is the PDE integrated on \mathcal{K})

$$
|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \bar{F}_{\mathcal{K}, \sigma}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(\mathbb{P}^{\tau} u\right)-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma| R_{\mathcal{K}, \sigma}(u),
$$

and the numerical scheme

$$
|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)
$$

We get

$$
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(e^{\mathcal{T}}\right)=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma| R_{\mathcal{K}, \sigma}(u), \quad \forall \mathcal{K} \in \mathcal{T}
$$

$$
|\sigma| R_{\mathcal{K}, \sigma}(u) \stackrel{\text { def }}{=} F_{\mathcal{K}, \sigma}\left(\mathbb{P}^{\mathcal{T}} u\right)-\bar{F}_{\mathcal{K}, \sigma}(u)
$$

- We get

$$
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(e^{\mathcal{T}}\right)=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma| R_{\mathcal{K}, \sigma}(u), \quad \forall \mathcal{K} \in \mathcal{T}
$$

$$
|\sigma| R_{\mathcal{K}, \sigma}(u) \stackrel{\text { def }}{=} F_{\mathcal{K}, \sigma}\left(\mathbb{P}^{\tau} u\right)-\bar{F}_{\mathcal{K}, \sigma}(u)
$$

- We get

$$
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(e^{\mathcal{T}}\right)=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma| R_{\mathcal{K}, \sigma}(u), \quad \forall \mathcal{K} \in \mathcal{T}
$$

- We multiply (\star) by $e_{\mathcal{K}}$ and we sum over \mathcal{K}.
- We Notice that the flux consistency error terms are conservative $R_{\mathcal{K}, \sigma}(u)=-R_{\mathcal{L}, \sigma}(u)$, thus we get

$$
\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}}^{2}=\left[e^{\mathcal{T}}, e^{\mathcal{T}}\right]_{1, \mathcal{T}}=\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma| D_{\sigma}\left(e^{\mathcal{T}}\right)^{2}=\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma| R_{\sigma}(u) D_{\sigma}\left(e^{\mathcal{\tau}}\right)
$$

- We use the Cauchy-Schwarz inequality

$$
\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma}\left|\sigma \| R_{\sigma}(u)\right|^{2}\right)^{\frac{1}{2}}
$$

Recall

$$
\begin{gathered}
\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma|\left|R_{\sigma}(u)\right|^{2}\right)^{\frac{1}{2}} . \\
\left|R_{\sigma}(u)\right|=\left|\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\kappa}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\kappa \mathcal{L}} d x\right|, \quad \forall \sigma \in \mathcal{E}_{\text {int }} .
\end{gathered}
$$

Theorem (Error estimate - Version 1)
Assume $u \in \mathcal{C}^{2}(\bar{\Omega})$, there exists $C>0$ depending only on Ω s.t.

$$
\begin{gathered}
\left(\left\|\mathbb{P}^{\tau} u-u^{\mathcal{T}}\right\|_{L^{2}}=\right) \quad\left\|e^{\mathcal{T}}\right\|_{L^{2}} \leq \operatorname{diam}(\Omega)\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}} \leq C \operatorname{size}(\mathcal{T})\left\|D^{2} u\right\|_{L^{\infty}}, \\
\left\|u-u^{\mathcal{T}}\right\|_{L^{2}} \leq C \operatorname{size}(\mathcal{T})\left\|D^{2} u\right\|_{L^{\infty}} .
\end{gathered}
$$

Main tool : Consistency error terms estimate
For $u \in \mathcal{C}^{2}(\bar{\Omega}), \quad\left|R_{\sigma}(u)\right| \leq C\left\|D^{2} u\right\|_{\infty} \operatorname{size}(\mathcal{T})$.

Recall

$$
\begin{gathered}
\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma|\left|R_{\sigma}(u)\right|^{2}\right)^{\frac{1}{2}} . \\
\left|R_{\sigma}(u)\right|=\left|\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\kappa}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\kappa \mathcal{L}} d x\right|, \quad \forall \sigma \in \mathcal{E}_{\text {int }} .
\end{gathered}
$$

Theorem (Error estimate - Version 2)

Assume $u \in H^{2}(\Omega)$, there exists $C>0$ depending only on Ω and $\operatorname{reg}(\mathcal{T})$ s.t.

$$
\left(\left\|\mathbb{P}^{\mathcal{T}} u-u^{\tau}\right\|_{L^{2}}=\right) \quad\left\|e^{\tau}\right\|_{L^{2}} \leq \operatorname{diam}(\Omega)\left\|e^{\mathcal{T}}\right\|_{1, \mathcal{T}} \leq C \operatorname{size}(\mathcal{T})\left\|D^{2} u\right\|_{L^{2}}, ~\left(\left\|u-u^{\tau}\right\|_{L^{2}} \leq \operatorname{Csize}(\mathcal{T})\left\|D^{2} u\right\|_{L^{2}} .\right.
$$

Main tool : Consistency error terms estimate

$$
\text { For } u \in H^{2}(\Omega), \quad\left|R_{\sigma}(u)\right| \leq C \operatorname{size}(\mathcal{T})\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}}\left|D^{2} u\right|^{2} d x\right)^{\frac{1}{2}}
$$

where $C>0$ only depends on $\operatorname{reg}(\mathcal{T}) \stackrel{\text { def }}{=} \sup _{\sigma \in \mathcal{E}}\left(|\sigma| / d_{\mathcal{E}_{\sigma}}+|\sigma| / d_{\mathcal{L} \sigma}\right)$.

- In practice, we observe a super-convergence phenomenon

$$
\left\|e^{\mathcal{T}}\right\|_{L^{2}(\Omega)} \sim C \operatorname{size}(\mathcal{T})^{2}
$$

the same as for \mathbb{P}^{1} finite element approximation (Aubin-Nitschze trick).
\rightsquigarrow Still an open problem up to now.

- Discrete functional analysis
- Discrete Poincaré inequalities (Eymard-Gallouët-Herbin, '00) (Omnes-Le, '13)
- Discrete Gagliardo-Nirenberg-Sobolev embeddings
(Bessemoulin-Chatard - Chainais-Hillairet - Filbet, '12)
- Discrete Besov estimates
(Andreianov -B. - Hubert,'07)
(Gallouët-Latché, '12)

We need to build the linear system $A u^{\mathcal{T}}=b$ to be solved.
General philosophy : loop over edges

- If $\sigma=\mathcal{K} \mid \mathcal{L}$ is an interior edge, we define the transmissivity $\tau_{\sigma} \stackrel{\text { def }}{=} \frac{|\sigma|}{d_{\mathcal{K} \mathcal{L}}}$, and we assemble the contributions of the flux

$$
F_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{\tau}}\right)=-|\sigma| \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}=\tau_{\sigma}\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)
$$

$$
\left\{\begin{array}{l}
A(\mathcal{K}, \mathcal{K}) \hookleftarrow A(\mathcal{K}, \mathcal{K})+\tau_{\sigma} \\
A(\mathcal{K}, \mathcal{L}) \hookleftarrow A(\mathcal{K}, \mathcal{L})-\tau_{\sigma} \\
A(\mathcal{L}, \mathcal{L}) \hookleftarrow A(\mathcal{L}, \mathcal{L})+\tau_{\sigma} \\
A(\mathcal{L}, \mathcal{K}) \hookleftarrow A(\mathcal{L}, \mathcal{K})-\tau_{\sigma}
\end{array}\right.
$$

REQUIRED DATA structure:

- Connectivity informations for each edge
- Positions of centers and vertices of the mesh.

We need to build the linear system $A u^{\mathcal{T}}=b$ to be solved.
General philosophy : Loop over edges

- If $\sigma=\mathcal{K} \mid \mathcal{L}$ is an interior edge, we define the transmissivity $\tau_{\sigma} \stackrel{\text { def }}{=} \frac{|\sigma|}{d_{\mathcal{K} \mathcal{L}}}$, and we assemble the contributions of the flux

$$
F_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right)=-|\sigma| \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}=\tau_{\sigma}\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)
$$

$$
\left\{\begin{array}{l}
b(\mathcal{K}) \hookleftarrow b(\mathcal{K})+\int_{\mathcal{D}_{\mathcal{K}} \sigma} f(x) d x \\
b(\mathcal{L}) \hookleftarrow b(\mathcal{L})+\int_{\mathcal{D}_{\mathcal{L} \sigma}} f(x) d x
\end{array}\right.
$$

or any quadrature approximation, e.g.

$$
\left\{\begin{array}{l}
b(\mathcal{K}) \leftarrow b(\mathcal{K})+\left|\mathcal{D}_{\mathcal{K} \sigma}\right| f\left(x_{\mathcal{K}}\right) \\
b(\mathcal{L}) \hookleftarrow b(\mathcal{L})+\left.\right|_{\mathcal{D}_{\mathcal{L} \sigma}} \mid f\left(x_{\mathcal{L}}\right)
\end{array}\right.
$$

REQUIRED DATA structure :

- Connectivity informations for each edge
- Positions of centers and vertices of the mesh.
(1) Introduction
- Complex flows in porous media
- Very short battle: FV / FE /FD
(2) The basic FV scheme for the 2D Laplace problem - Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

The problem under study

$$
\left\{\begin{array}{c}
-\operatorname{div}(k(x) \nabla u)=f, \quad \text { in } \Omega \\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

with $k \in L^{\infty}(\Omega, \mathbb{R})$ and $\inf _{\Omega} k>0$.
TPFA SCHEME
General structure unchanged

$$
\forall \mathcal{K} \in \mathcal{T}, \quad|\mathcal{K}| f_{\mathcal{K}}=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)
$$

but we need to adapt the numerical flux definitions

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=|\sigma| k_{\sigma} \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}
$$

Question

How to choose the coefficient k_{σ} ?

Theorem

Assume that the coefficients k_{σ} are bounded and such that

$$
\sum_{\sigma \in \mathcal{E}} k_{\sigma} \mathbf{1}_{\mathcal{D}} \xrightarrow[\operatorname{size}(\mathcal{T}) \rightarrow 0]{ } k, \quad \text { in } L^{2}(\Omega)
$$

then the scheme is convergent.

Theorem

Assume that the coefficients k_{σ} are bounded and such that

$$
\sum_{\sigma \in \mathcal{E}} k_{\sigma} \mathbf{1}_{\mathcal{D}} \xrightarrow[\operatorname{size}(\mathcal{T}) \rightarrow 0]{ } k, \quad \text { in } L^{2}(\Omega)
$$

then the scheme is convergent.

- OK if we take

$$
k_{\sigma}=\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} k(x) d x
$$

- Assume that the mesh is built in such a way that k is Lipschitz continuous on each diamond cell then we can choose

$$
k_{\sigma}=\frac{1}{|\sigma|} \int_{\sigma} k(x) d x, \quad \text { or } \quad k_{\sigma}=k\left(x_{\mathcal{D}}\right), x_{\mathcal{D}} \in \mathcal{D}
$$

- Assume that the mesh is built in such a way that k is Lipschitz continuous on each control volume, then we can choose

$$
k_{\sigma}=\frac{d_{\mathcal{K} \sigma} k_{\mathcal{K}}+d_{\mathcal{L} \sigma} k_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}, \text { with } k_{\mathcal{K}}=\frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} k(x) d x, \text { or } k_{\mathcal{K}}=k\left(x_{\mathcal{K}}\right)
$$

Proposition

Assume that k is Lipschitz continuous on $\bar{\Omega}$ and that u is $H^{2}(\Omega)$, then we have the first order convergence as or the Laplace equation.

The case of a piecewise smooth diffusion coefficient

- If k is discontinous accross edges, we can loose first order convergence with the naive choices for k_{σ}.
- However, this optimal convergence rate is recovered if we set

$$
k_{\sigma} \stackrel{\text { def }}{=} \frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} .
$$

- $k_{\sigma}=$ arithmetic mean \rightsquigarrow convergence rate $\frac{1}{2}$.
- $k_{\sigma}=$ harmonic mean \rightsquigarrow convergence rate 1 .
- The solution u is "continuous" (in the trace sense on edges).
- The gradient of u is not continuous.
- However, the total flux $k(x) \nabla u(x) \cdot \boldsymbol{\nu}$ is (weakly) continuous across edges.
- We introduce an artificial unknown on each edge u_{σ}.
- We define the fluxes across σ coming from \mathcal{K} and from \mathcal{L}

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=|\sigma| k_{\mathcal{K}} \frac{u_{\sigma}-u_{\mathcal{K}}}{d_{\mathcal{K} \sigma}}, \quad F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)=|\sigma| k_{\mathcal{L}} \frac{u_{\sigma}-u_{\mathcal{L}}}{d_{\mathcal{L} \sigma}}
$$

- We impose local conservativity (= total flux continuity)

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=-F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)
$$

- We deduce the value of u_{σ} and then the formula for the numerical flux

$$
\begin{array}{r}
\Longrightarrow u_{\sigma}=\frac{\frac{k_{\mathcal{K}}}{d_{\mathcal{K} \sigma}} u_{\mathcal{K}}+\frac{k_{\mathcal{L}}}{d_{\mathcal{L} \sigma}} u_{\mathcal{L}}}{\frac{k_{\mathcal{K}}}{d_{\mathcal{K} \sigma}}+\frac{k_{\mathcal{L}}}{d_{\mathcal{L} \sigma}}}, \\
\Longrightarrow F_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right)=|\sigma|\left(\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}}\right) \frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}}}
\end{array}
$$

(1) Introduction

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The basic FV scheme for the 2D Laplace problem
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme
- Cartesian meshes : Control volumes are rectangular parallelepipeds thus choosing $x_{\mathcal{K}}$ as the mass center is OK
- Cartesian meshes :
- Conforming triangular meshes :

We take $x_{\mathcal{K}}=$ circumcenter ; BUT :

- It is not guaranteed that $x_{\mathcal{K}} \in \mathcal{K}$ (even $x_{\mathcal{K}} \in \Omega$ is not sure).
- We can have $x_{\mathcal{K}}=x_{\mathcal{L}}$ for $\mathcal{K} \neq \mathcal{L} \Rightarrow d_{\mathcal{K} \mathcal{L}}=0$!
- However, the scheme still works if

$$
\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}>0 \quad \Leftrightarrow \text { Delaunay condition }
$$

- For almost any point distribution in Ω, there exists a unique corresponding Delaunay triangulation.
- Dual construction :

Voronoï diagram of a set of point.

- There exist efficient algorithms for Delaunay triangulation and Voronoi diagrams.
- For a non conforming triangle mesh : orthogonality condition is impossible to fulfill.
- For a non Cartesian quadrangle mesh : orthogonality condition is impossible to fulfill.
- The homogeneous anisotropic case :

$$
-\operatorname{div}(A \nabla u)=f
$$

the admissibility condition becomes A-orthogonality

$$
x_{\mathcal{L}}-x_{\mathcal{K}} / / A \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} \Longleftrightarrow A^{-1}\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right) \perp \sigma .
$$

\rightsquigarrow thus the mesh needs to be adapted to the PDE under study.

- The heterogeneous anisotropic case :

$$
-\operatorname{div}(A(x) \nabla u)=f
$$

the orthogonality condition will depend on x...

- Nonlinear problems :

$$
-\operatorname{div}(\varphi(x, \nabla u))=f
$$

it is impossible to approximate fluxes by using only two points since a complete gradient approximation is necessary.

The discrete gradient given by TPFA is not useful

- It is only an approximation of the gradient in the normal direction at each edge.
- Gradient convergence is always weak.

Summary

- We need more than 2 unknowns to build suitable flux approximations.
- Approximation of the gradient of the solution in all directions is necessary.
- Cells-centered schemes : We use unknowns in the neighboring control volumes.
- Primal/dual schemes : We use new unknowns on vertices (dual mesh).
- Mimetic/hybrid/mixed schemes : We use new unknowns on edges/faces.
(1) Introduction
- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) The Basic FV scheme for the 2D Laplace problem
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme
(Hermeline '00) (Domelevo-Omnes '05) (Andreianov-Boyer-Hubert '07)
- Scalar ELLIPTIC PROBLEM

$$
-\operatorname{div}(A(x) \nabla u)=f, \text { in } \Omega,
$$

with homogeneous Dirichlet boundary conditions and $x \mapsto A(x) \in M_{2}(\mathbb{R})$ be a bounded, uniformly coercive matrix-valued function.

- General meshes
- Possibly non conforming meshes
- Without the orthogonality condition
- BASIC IDEAS
- To consider unknowns at the center of each control volume but also on vertices.
- To add new discrete balance equations associated with each vertex.
- It is more expensive than TPFA \# unknowns $(\approx \times 2)$ but much more robust and efficient.

■ Primal unknown $\boldsymbol{u}_{\mathcal{\kappa}}$ \triangle Primal control vol. $\mathcal{\kappa} \in \mathfrak{M}$

- Dual unknown $\boldsymbol{u}_{\kappa^{*}}$气Dual control vol. $\mathcal{K}^{*} \in \mathfrak{M}^{*}$
:Diamond cells $\mathcal{D} \in \mathfrak{D}$

Approximate solution : $u^{\mathcal{T}}=\left(\left(u_{\mathcal{K}}\right)_{\mathcal{K}},\left(u_{\mathcal{K}^{*}}\right)_{\mathcal{K}^{*}}\right) \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}{ }^{*}}$

Approximate solution : $u^{\mathcal{T}}=\left(\left(u_{\mathcal{K}}\right)_{\mathcal{K}},\left(u_{\mathcal{K}^{*}}\right)_{\mathcal{K}^{*}}\right) \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}{ }^{*}}$

Primal unknown \boldsymbol{u}_{κ} \triangle Primal control vol. $\mathcal{K} \in \mathfrak{N}$

- Dual unknown $u_{\kappa^{*}}$

亿Dual control vol. $\mathcal{K}^{*} \in \mathfrak{M}^{*}$

WDiamond cells $\mathcal{D} \in \mathscr{D}$

Approximate solution : $u^{\mathcal{T}}=\left(\left(u_{\mathcal{K}}\right)_{\mathcal{K}},\left(u_{\mathcal{K}^{*}}\right)_{\mathcal{K}^{*}}\right) \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\text {M }} \times \mathbb{R}^{\mathfrak{M}}$

Diamond cells $\mathcal{D} \in \mathfrak{D}$

Approximate solution : $u^{\mathcal{T}}=\left(\left(u_{\mathcal{K}}\right)_{\mathcal{K}},\left(u_{\mathcal{K}^{*}}\right)_{\mathcal{K}^{*}}\right) \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}{ }^{*}}$

The DDFV meshes and unknowns

■ Primal unknown \boldsymbol{u}_{κ}
\triangle Primal control vol. $\mathcal{\kappa} \in \mathfrak{M}$

- Dual unknown $\boldsymbol{u}_{\mathcal{K}^{*}}$

DDual control vol. $\mathfrak{\kappa}^{*} \in \mathfrak{M}^{*}$
© Diamond cells $\mathcal{D} \in \mathfrak{D}$

\square Primal unknown u_{κ}
\triangle Primal control vol. $\mathcal{\kappa} \in \mathfrak{M}$
\bullet Dual unknown $\boldsymbol{u}_{\kappa^{*}}$ Dual control vol. $\mathcal{K}^{*} \in \mathfrak{N}^{*}$

Wiamond cells $\mathcal{D} \in \mathfrak{D}$

■ Primal unknown \boldsymbol{u}_{κ} \triangle Primal control vol. $\mathcal{K} \in \mathfrak{N}$

- Dual unknown $u_{\text {火 }^{*}}$
§Dual control vol. $\mathcal{K}^{*} \in \mathfrak{M}^{*}$

Wiamond cells $\mathcal{D} \in \mathfrak{D}$

\square Primal unknown $u_{\mathcal{K}}$
Dprimal control vol. $\mathcal{K} \in \mathcal{N}$

- Dual unknown $u_{\mathcal{K}^{*}}$

Mual control vol. $\left.\mathbb{K}^{*} \in\right)^{*}$
"Diamond cells $\mathcal{D} \in \mathfrak{D}$

Mesh regularity measurement

$$
\begin{aligned}
& \sin \alpha_{\mathcal{T}} \stackrel{\text { def }}{=} \min _{\mathcal{D} \in \mathfrak{D}}\left|\sin \alpha_{\mathcal{D}}\right| \\
& \operatorname{reg}(\mathcal{T}) \stackrel{\text { def }}{=} \max \left(\frac{1}{\alpha \mathcal{T}}, \max _{\substack{\mathcal{K} \in \mathfrak{N}_{\mathcal{K}}}} \frac{\operatorname{diam}(\mathcal{K})}{\operatorname{diam}(\mathcal{D})}, \max _{\substack{\mathcal{K}^{*} \in \mathfrak{N}^{*} \\
\mathcal{D} \in \mathcal{N}^{*}}} \frac{\operatorname{diam}\left(\mathcal{K}^{*}\right)}{\operatorname{diam}(\mathcal{D})}, \ldots\right)
\end{aligned}
$$

Discrete Gradient

$$
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau} \stackrel{\text { def }}{=} \frac{1}{\sin \alpha_{\mathcal{D}}}\left(\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{\left|\sigma^{*}\right|} \boldsymbol{\nu}+\frac{u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}}}{|\sigma|} \boldsymbol{\nu}^{*}\right) .
$$

COMES FROM $\left\{\begin{array}{c}\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau} \cdot\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right)=u_{\mathcal{L}}-u_{\mathcal{K}}, \\ \nabla_{\mathcal{D}}^{\mathcal{D}} u^{\tau} \cdot\left(x_{\mathcal{L}^{*}}-x_{\mathcal{K}^{*}}\right)=u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}} .\end{array}\right.$

Discrete Gradient

$$
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau} \stackrel{\text { def }}{=} \frac{1}{\sin \alpha_{\mathcal{D}}}\left(\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{\left|\sigma^{*}\right|} \boldsymbol{\nu}+\frac{u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}}}{|\sigma|} \boldsymbol{\nu}^{*}\right) .
$$

EqUivalent definition $\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\frac{1}{2|\mathcal{D}|}\left(|\sigma|\left(u_{\mathcal{L}}-u_{\mathcal{K}}\right) \boldsymbol{\nu}+\left|\sigma^{*}\right|\left(u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}}\right) \boldsymbol{\nu}^{*}\right)$,

Discrete Gradient

$$
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{\sin \alpha_{\mathcal{D}}}\left(\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{\left|\sigma^{*}\right|} \boldsymbol{\nu}+\frac{u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}}}{|\sigma|} \boldsymbol{\nu}^{*}\right)
$$

Still another definition $\quad \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\nabla\left(\Pi_{\mathcal{D}} u^{\mathcal{T}}\right)$, with $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ affine in \square

Discrete Gradient

$$
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau} \stackrel{\text { def }}{=} \frac{1}{\sin \alpha_{\mathcal{D}}}\left(\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{\left|\sigma^{*}\right|} \boldsymbol{\nu}+\frac{u_{\mathcal{L}^{*}}-u_{\mathcal{K}^{*}}}{|\sigma|} \boldsymbol{\nu}^{*}\right) .
$$

DDFV FLUXES

Across the primal edge $\sigma: F_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right)=-|\sigma|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}, \boldsymbol{\nu}\right)$, Across the dual edge $\sigma^{*}: F_{\mathcal{K}^{*} \mathcal{L}^{*}}\left(u^{\tau}\right)=-\left|\sigma^{*}\right|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\tau} u^{\tau}, \nu^{*}\right)$.

Finite Volume Formulation : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^{*}}$ such that

$$
\left\{\begin{aligned}
-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}}\right) & =|\mathcal{K}| f_{\mathcal{K}}, \quad \forall \mathcal{K} \in \mathfrak{M} \\
-\sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}}\left|\sigma^{*}\right|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right) & =\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}}, \forall \mathcal{K}^{*} \in \mathfrak{M}^{*}
\end{aligned}\right.
$$

(DDFV)
with $A_{\mathcal{D}}=\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) d x$.

Finite Volume Formulation : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^{*}}$ such that

$$
\left\{\begin{aligned}
-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}, \boldsymbol{\nu}_{\mathcal{K}}\right) & =|\mathcal{K}| f_{\mathcal{K}}, \quad \forall \mathcal{K} \in \mathfrak{M}, \\
-\sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}}\left|\sigma^{*}\right|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right) & =\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}}, \forall \mathcal{K}^{*} \in \mathfrak{M}^{*},
\end{aligned}\right.
$$

with $A_{\mathcal{D}}=\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) d x$.

DISCRETE DIVERGENCE OPERATOR

Given a discrete vector field $\xi^{\mathfrak{P}}=\left(\xi^{\mathcal{D}}\right)_{\mathcal{D} \in \mathfrak{D}} \in\left(\mathbb{R}^{2}\right)^{\mathfrak{D}}$, we set

$$
\begin{gathered}
\operatorname{div}^{\mathcal{K}} \xi^{\mathfrak{D}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(\xi^{\mathcal{D}}, \boldsymbol{\nu}_{\mathcal{K}}\right), \quad \forall \mathcal{K} \in \mathfrak{M} \\
\operatorname{div}^{\mathcal{K}^{*}} \xi^{\mathfrak{D}} \stackrel{\text { def }}{=} \frac{1}{\left|\mathcal{K}^{*}\right|} \sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}}\left|\sigma^{*}\right|\left(\xi^{\mathcal{D}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right), \quad \forall \mathcal{K}^{*} \in \mathfrak{M}^{*},
\end{gathered}
$$

which defines an operator

$$
\operatorname{div}^{\mathcal{T}}: \xi^{\mathfrak{P}} \in\left(\mathbb{R}^{2}\right)^{\mathfrak{D}} \mapsto\left(\left(\operatorname{div}^{\mathcal{K}} \xi^{\mathfrak{D}}\right)_{\mathcal{K} \in \mathfrak{M}},\left(\operatorname{div}^{\mathcal{K}^{*}} \xi^{\mathfrak{P}}\right)_{\mathcal{K}^{*} \in \mathfrak{M}^{*}}\right) \in \mathbb{R}^{\mathcal{T}}
$$

Finite Volume Formulation : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^{*}}$ such that

$$
\left\{\begin{aligned}
-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}, \boldsymbol{\nu}_{\mathcal{K}}\right) & =|\mathcal{K}| f_{\mathcal{K}}, \quad \forall \mathcal{K} \in \mathfrak{M} \\
-\sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}}\left|\sigma^{*}\right|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{\tau}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right) & =\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}}, \forall \mathcal{K}^{*} \in \mathfrak{M}^{*}
\end{aligned}\right.
$$

with $A_{\mathcal{D}}=\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) d x$.

$$
(\mathrm{DDFV}) \Longleftrightarrow \text { Find } u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} \text { such that }-\operatorname{div}^{\mathcal{T}}\left(A^{\mathfrak{P}} \nabla^{\mathcal{D}} u^{\mathcal{T}}\right)=f^{\mathcal{T}}
$$

Finite Volume Formulation : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}=\mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^{*}}$ such that

$$
\left\{\begin{aligned}
-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}, \boldsymbol{\nu}_{\mathcal{K}}\right) & =|\mathcal{K}| f_{\mathcal{K}}, \quad \forall \mathcal{K} \in \mathfrak{M}, \\
-\sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}}\left|\sigma^{*}\right|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right) & =\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}}, \forall \mathcal{K}^{*} \in \mathfrak{M}^{*},
\end{aligned}\right.
$$

with $A_{\mathcal{D}}=\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) d x$.

$$
(\mathrm{DDFV}) \Longleftrightarrow \text { Find } u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} \text { such that }-\operatorname{div}^{\boldsymbol{\mathcal { T }}}\left(A^{\mathfrak{D}} \nabla^{\mathcal{D}} u^{\mathcal{T}}\right)=f^{\mathcal{T}} .
$$

Proposition (Discrete Duality formula / Stokes Formula)

For any $\xi^{\mathfrak{D}} \in\left(\mathbb{R}^{2}\right)^{\mathfrak{D}} v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, we have

$$
\sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}| \operatorname{div}^{\mathcal{K}}\left(\xi^{\mathfrak{D}}\right) v_{\mathcal{K}}+\sum_{\mathcal{K}^{*} \in \mathfrak{M}^{*}}\left|\mathcal{K}^{*}\right| \operatorname{div}^{\mathcal{K}^{*}}\left(\xi^{\mathfrak{D}}\right) v_{\mathcal{K}^{*}}=-2 \sum_{\mathcal{D} \in \mathfrak{D}}|\mathcal{D}|\left(\xi^{\mathcal{D}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}}\right)
$$

Equivalent formulation of DDFV
Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that, for any test function $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, we have

$$
2 \sum_{\mathcal{D} \in \mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}}\right)=\sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}| f_{\mathcal{K}} v_{\mathcal{K}}+\sum_{\mathcal{K}^{*} \in \mathfrak{M}^{*}}\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}} v_{\mathcal{K}^{*}}
$$

(1) InTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) THE BASIC FV SCHEME FOR THE 2D LAPLACE PROBLEM
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme
－Use the discrete integration by parts formula with $v^{\tau}=u^{\tau}$

$$
2 \sum_{\mathcal{D} \in \mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}, \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\tau}\right)=\sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}| f_{\mathcal{K}} u_{\mathcal{K}}+\sum_{\mathcal{K}^{*} \in \mathfrak{M}^{*}}\left|\mathcal{K}^{*}\right| f_{\mathcal{K}^{*}} u_{\mathcal{K}^{*}} .
$$

－It follows

$$
\alpha\left\|u^{\mathcal{T}}\right\|_{1, \mathcal{T}}^{2} \leq\|f\|_{L^{2}}\left(\left\|u^{\mathfrak{M}}\right\|_{L^{2}}+\left\|u^{\mathfrak{M}}\right\|_{L^{2}}\right) .
$$

Theorem（Discrete Poincaré inequality Proof）

There exists a $C>0$ depending only on Ω and $\operatorname{reg}(\mathcal{T})$ such that

$$
\left\|u^{\cdots 刃}\right\|_{L^{2}}+\left\|u^{刃 刃^{*}}\right\|_{L^{2}} \leq C\left\|u^{\tau}\right\|_{1, \mathcal{T}}, \quad \forall u^{\tau} \in \mathbb{R}^{\mathcal{T}} .
$$

Conclusion ：The approximate solution satisfies $\left\|u^{\tau}\right\|_{1, \mathcal{T}} \leq C\|f\|_{L^{2}}$ ．

Theorem

Let $\left(\mathcal{T}_{n}\right)_{n}$ be a family of DDFV meshes, such that $\operatorname{size}\left(\mathcal{T}_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ and $\left(\operatorname{reg}\left(\mathcal{T}_{n}\right)\right)_{n}$ is bounded.
Then, the sequence of approximate solutions $u^{\mathcal{T}_{n}}$ converges towards the exact solution in the following sense

$$
\begin{gathered}
u^{\mathfrak{M}_{n}} \xrightarrow[n \rightarrow \infty]{ } u \text { in } L^{2}(\Omega), \\
u^{\mathfrak{M n}_{n}^{*}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} u \text { in } L^{2}(\Omega), \\
\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \xrightarrow[n \rightarrow \infty]{ } \nabla u \text { in }\left(L^{2}(\Omega)\right)^{2} .
\end{gathered}
$$

REMARK : We have strong convergence of the gradients.

Assume that A is smooth with Respect to x

- Laplace equation
- First order convergence for $u^{\mathcal{T}}$ and $\nabla^{\mathcal{T}} u^{\mathcal{T}}$
(Domelevo - Omnès, 05)
- Some super-convergence results of $u^{\mathcal{T}}$ in L^{2}
(Omnes, 10)
- General case (even for nonlinear Leray-Lions operator)
(Andreianov - B. - Hubert, '07)

Theorem

Assume that $u \in H^{2}(\Omega)$ and $x \mapsto A(x)$ is Lipschitz continuous, then there exists $C(\operatorname{reg}(\mathcal{T}))>0$ such that

$$
\left\|u-u^{\mathfrak{M}}\right\|_{L^{2}}+\left\|u-u^{\mathfrak{M}}\right\|_{L^{2}}+\left\|\nabla u-\nabla^{\mathcal{T}} u^{\mathcal{T}}\right\|_{L^{2}} \leq C \operatorname{size}(\mathcal{T})
$$

Stokes problem

The DDFV method applied to the Stokes problem is (almost) inf-sup stable and first-order convergent (in L^{2} for the pressure, in H^{1} for the velocity).
(Delcourte, '07) (Krell,'10)
(Krell-Manzini, '12) (B.-Krell-Nabet, '13)
(1) InTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) THE BASIC FV sCHEME FOR THE 2D LAPLACE PROBLEM
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme
- The matrix is built through a loop over primal edges (that is diamond cells). For each such edge/diamond, we compute 4×4 terms.
- Stencil :
- does not depend on the permeability tensor.
- The row corresponding to the unknown $u_{\mathcal{K}}$ has at most $2 N+1$ non zero entries, where N is the number of edges of \mathcal{K}.
- The matrix is symmetric positive definite.
- In the case of an orthogonal admissible mesh,

DDFV \Longleftrightarrow TPFA on the primal mesh + TPFA on the dual mesh.

- In the nonlinear case $-\operatorname{div}(\varphi(x, \nabla u))=f$, we can adapt the decomposition-coordination method of Glowinski to obtain a suitable nonlinear solver that can be proved to be convergent.
(B.-Hubert '08)
(1) InTRODUCTION
- Complex flows in porous media
- Very short battle : FV / FE /FD
(2) THE BASIC FV SCHEME FOR THE 2D LAPLACE PROBLEM
- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks
(3) The DDFV method
- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

```
(B. - Hubert, '08)
```

Goals

- To take into account possible permeability discontinuities in the problem without loss of accuracy.
- We allow (full tensor) permeability jumps across
- Primal edges.
- Dual edges.
- Both primal and dual edges.
- Same stencil as for the standard DDFV method.
- To take into account possible permeability discontinuities in the problem without loss of accuracy.
- We allow (full tensor) permeability jumps across
- Primal edges.
- Dual edges.
- Both primal and dual edges.
- Same stencil as for the standard DDFV method.

General Principle

- We want to mimick the harmonic mean-value formula that we obtained for TPFA.
- We need to introduce artificial edges unknowns.
- We impose local conservativity of some well-chosen numerical fluxes.
- We eliminate those additional unknowns so that we finally get suitable numerical fluxes formulas
- The coupling between primal and dual unknowns and equations needs a particular care.

$A_{\mathcal{Q}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} A(x) d x$

Strategy

- We add a value $\delta_{\bullet}^{\mathcal{D}}$ to the value of $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ at the points \diamond.
- With these new values at hand, we build affine functions on each quarter diamond.
- The gradients of these new functions are used as new discrete gradients in DDFV.
- We eventually eliminate the values $\delta^{\mathcal{D}}={ }^{t}\left(\delta_{\mathcal{K}}^{\mathcal{D}}, \delta_{\mathcal{L}}^{\mathcal{D}}, \delta_{\mathcal{K}^{*}}^{\mathcal{D}}, \delta_{\mathcal{L}^{*}}^{\mathcal{D}}\right) \in \mathbb{R}^{4}$ by imposing suitable conservativity conditions.

New Gradients on each quarter diamond

$$
\nabla_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}^{\mathcal{N}}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}
$$

with

$$
B_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}} \stackrel{\text { def }}{=} \frac{1}{\left|{\mathcal{Q \mathcal { K }}, \mathcal{K}^{*}}\right|}\left(\left|\sigma_{\mathcal{K}}\right| \boldsymbol{\nu}^{*}, 0,\left|\sigma_{\mathcal{K}^{*}}\right| \boldsymbol{\nu}, 0\right)
$$

$Q_{\kappa \mathcal{L}^{*}} Q_{\mathcal{L L ^ { * }}}$
 $Q_{\text {KK }}{ }^{*} Q_{\text {LK }}{ }^{*}$

$$
A_{\mathcal{Q}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} A(x) d x
$$

Write local conservativity between quarter diamonds

$$
\left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)=\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)
$$

Write local conservativity between quarter diamonds

$$
\begin{aligned}
\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) & =\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) \\
\left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) & =\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)
\end{aligned}
$$

Write local conservativity between quarter diamonds

$$
\begin{aligned}
\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) & =\left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{L}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) \\
\left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) & =\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{D}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) \\
\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{D}} u^{\mathcal{T}}+\delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) & =\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)
\end{aligned}
$$

Write local conservativity between quarter diamonds

$$
\begin{aligned}
& \left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)=\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{L}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) \\
& \left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)=\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) \\
& \left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)=\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{\tau}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) \\
& \left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)=\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)
\end{aligned}
$$

Write local conservativity between quarter diamonds

$$
\left.\begin{array}{rl}
\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) & =\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) \\
\left(A_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}}, \mathcal{K}^{*}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) & =\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right) \\
\left(A_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{K}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right) & =\left(A_{\left.\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}^{*}\right)}\left(A_{\mathcal{L}^{*}}\left(\nabla_{\mathcal{D}}^{\mathcal{D}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)\right.
\end{array}\right)\left(A_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K}, \mathcal{L}^{*}}} \delta^{\mathcal{D}}\right), \boldsymbol{\nu}\right)
$$

$$
\Longleftrightarrow \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}}|\mathfrak{Q}|^{t} B_{\mathcal{Q}} \cdot A_{\mathcal{Q}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}} \delta^{\mathcal{D}}\right)=0
$$

Proposition

For any $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, and any diamond \mathcal{D}, there exists a unique $\delta^{\mathcal{D}} \in \mathbb{R}^{4}$ satisfying the local flux conservativity property

$$
\sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t} B_{\mathcal{Q}} \cdot A_{\mathcal{Q}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}} \delta^{\mathcal{D}}\right)=0
$$

and the map $\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \mapsto \delta^{\mathcal{D}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}\right)$ is linear.
REmark: This strategy applies to the non-linear case where the permeability-map $\xi \mapsto A_{\mathcal{Q}} \cdot \xi$ is now a monotone map

$$
\xi \in \mathbb{R}^{2} \mapsto \varphi_{\mathcal{Q}}(\xi) \in \mathbb{R}^{2}
$$

The m-DDFV scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$
A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}| A_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}} \delta^{\mathcal{D}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}\right)}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}}),
$$

The m-DDFV scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$
A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}| A_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}} \delta^{\mathcal{D}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}\right)}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}}),
$$

Discrete duality formulation on diamond cells

$$
2 \sum_{\mathcal{D} \in \mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}}\right)=\int_{\Omega} f v^{\mathfrak{M}} d x+\int_{\Omega} f v^{\mathfrak{M}^{*}} d x, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}
$$

The m-DDFV scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$
A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}| A_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}+B_{\mathcal{Q}} \delta^{\mathcal{D}}\left(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}\right)}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}}),
$$

Discrete duality formulation on diamond cells

$$
2 \sum_{\mathcal{D} \in \mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}}\right)=\int_{\Omega} f v^{\mathfrak{M}} d x+\int_{\Omega} f v^{\mathfrak{M}^{*}} d x, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}
$$

Discrete duality formulation on quarter diamonds

$$
2 \sum_{\mathcal{Q} \in \mathfrak{Q}}|\mathcal{Q}|\left(A_{\mathcal{Q}} \cdot \nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}, \nabla_{\mathcal{Q}}^{\mathcal{N}} v^{\mathcal{T}}\right)=\int_{\Omega} f v^{\mathfrak{M}} d x+\int_{\Omega} f v^{\mathfrak{M}^{*}} d x, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}
$$

Remarks :

- Same stencil as DDFV.
- All the maps $\xi \mapsto \delta^{\mathcal{D}}(\xi)$ can be pre-computed offline, in a parallel fashion \Rightarrow almost no additional computational cost.

Assume that $x \mapsto A(x)$ is constant on each primal control volume, we recover the schemes already introduced in Hermeline (03).
Explicit formulas for $A_{\mathcal{D}}^{\mathcal{N}}$ are available

$$
\begin{gathered}
\left(A_{\mathcal{D}}^{\mathcal{N}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)=\frac{\left(\left|\sigma_{\mathcal{K}}\right|+\left|\sigma_{\mathcal{L}}\right|\right)\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)}{\left|\sigma_{\mathcal{L}}\right|\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)+\left|\sigma_{\mathcal{K}}\right|\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)} \\
\left(A_{\mathcal{D}}^{\mathcal{N}} \boldsymbol{\nu}^{*}, \boldsymbol{\nu}^{*}\right)=\frac{\left|\sigma_{\mathcal{L}}\right|\left(A_{\mathcal{L}} \boldsymbol{\nu}^{*}, \boldsymbol{\nu}^{*}\right)+\left|\sigma_{\mathcal{K}}\right|\left(A_{\mathcal{K}} \boldsymbol{\nu}^{*}, \boldsymbol{\nu}^{*}\right)}{\left|\sigma_{\mathcal{K}}\right|+\left|\sigma_{\mathcal{L}}\right|} \\
-\frac{\left|\sigma_{\mathcal{K}}\right|\left|\sigma_{\mathcal{L}}\right|}{\left|\sigma_{\mathcal{K}}\right|+\left|\sigma_{\mathcal{L}}\right|} \frac{\left(\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}^{*}\right)-\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}^{*}\right)\right)^{2}}{\left|\sigma_{\mathcal{L}}\right|\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)+\left|\sigma_{\mathcal{K}}\right|\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)}, \\
\left(A_{\mathcal{D}}^{\mathcal{N}} \boldsymbol{\nu}, \boldsymbol{\nu}^{*}\right)=\frac{\left|\sigma_{\mathcal{L}}\right|\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}^{*}\right)\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)+\left|\sigma_{\mathcal{K}}\right|\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}^{*}\right)\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)}{\left|\sigma_{\mathcal{L}}\right|\left(A_{\mathcal{K}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)+\left|\sigma_{\mathcal{K}}\right|\left(A_{\mathcal{L}} \boldsymbol{\nu}, \boldsymbol{\nu}\right)}
\end{gathered}
$$

Theorem

The m-DDFV scheme has a unique solution $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ which depends continuously on the data.

Theorem

Assume that $x \mapsto A(x)$ is smooth on each quarter diamond, and that u belongs to H^{2} on each quarter diamond \mathcal{Q}, then we have

$$
\left\|u-u^{\mathfrak{M}}\right\|_{L^{2}}+\left\|u-u^{\mathfrak{M}}\right\|_{L^{2}}+\left\|\nabla u-\nabla^{\mathcal{N}} u^{\mathcal{T}}\right\|_{L^{2}} \leq C h
$$

$\bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$ with $\left.\Omega_{1}=\right] 0,0.5[\times] 0,1\left[\right.$ and $\left.\Omega_{2}=\right] 0.5,1[\times] 0,1[$
A linear example:

$$
-\operatorname{div}(A(x) \nabla u)=f, \quad \text { with } A(x)=\operatorname{Id} \text { in } \Omega_{1}, A(x)=\left(\begin{array}{ll}
15 & 20 \\
20 & 40
\end{array}\right) \text { in } \Omega_{2} .
$$

- DDFV : order $\frac{1}{2}$ in the H^{1} norm
- m-DDFV : order 1 in the H^{1} norm

(4) A REVIEW OF SOME OTHER MODERN METHODS - General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

Linear problems

$$
-\operatorname{div}(A(x) \nabla u)=f
$$

- Fully Cell-Centered schemes
- MPFA
(Aavatsmark et al. '98 \rightarrow '08)
(Edwards et al. '06,'08)
- Diamond schemes
(Coudière-Vila-Villedieu '99, '00)
(Manzini et al ... '04 \rightarrow '07)
- SUSHI (barycentric version) $=$ SUCCES
(Eymard-Gallouët-Herbin '08)
- Nonlinear monotone finite volume
- Nonlinear diamond schemes
(Bertolazzo-Manzini '07)
- NMFV
(Le Potier '05) (Lipnikov et al '07)
- Schemes on primal/dual meshes
- DDFV (Hermeline '00) (Domelevo-Omnes '05)
- m-DDFV
(Pierre '06) (Andreianov-B.-Hubert '07)
(Hermeline '03) (B.-Hubert '08)
- Hybrid and mixed schemes
- Mimetic schemes
- Mixed finite volumes
- SUSHI (hybrid version)
(Brezzi, Lipnikov et al '05 \rightarrow '08)
(Manzini et al '07-'08)
(Droniou-Eymard '06)
(Eymard-Gallouet-Herbin '08)
Recent Review paper :
(Droniou, '13)
(4) A REVIEW OF SOME OTHER MODERN METHODS
- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

O Scheme

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns: $\tilde{u}_{i j}$
- We compute a gradient on each red triangle T_{i}

$$
\begin{aligned}
\nabla_{i} u^{\mathcal{T}}= & \frac{\tilde{u}_{i, i+1}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i-1, i}-x_{i}\right)^{\perp} \\
& +\frac{\tilde{u}_{i-1, i}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i, i+1}-x_{i}\right)^{\perp}
\end{aligned}
$$

O Scheme

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns: $\tilde{u}_{i j}$
- We compute a gradient on each red triangle T_{i}

$$
\begin{aligned}
\nabla_{i} u^{\mathcal{T}}= & \frac{\tilde{u}_{i, i+1}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i-1, i}-x_{i}\right)^{\perp} \\
& +\frac{\tilde{u}_{i-1, i}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i, i+1}-x_{i}\right)^{\perp}
\end{aligned}
$$

- We write flux continuity at mid-edges

$$
F_{i, i+1} \stackrel{\text { def }}{=}\left(A_{i} \nabla_{i} u^{\mathcal{T}}\right) \cdot \boldsymbol{\nu}_{i, i+1}=\left(A_{i+1} \nabla_{i+1} u^{\mathcal{T}}\right) \cdot \boldsymbol{\nu}_{i, i+1}, \quad \forall i .
$$

- Given the $\left(u_{i}\right)_{i}$, we deduce the $\left(\tilde{u}_{i, i+1}\right)_{i}$ then the semi-fluxes $\left(F_{i, i+1}\right)_{i}$.

U SCHEME : Let us compute F_{12}

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : $\tilde{u}_{i j}$
- We compute a gradient on each red triangle T_{i}

$$
\begin{aligned}
\nabla_{i} u^{\mathcal{T}} & =\frac{\tilde{u}_{i, i+1}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i-1, i}-x_{i}\right)^{\perp} \\
& +\frac{\tilde{u}_{i-1, i}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i, i+1}-x_{i}\right)^{\perp}
\end{aligned}
$$

\rightsquigarrow This gives birth to an affine function on each control volume.

U SCHEME : Let us compute F_{12}

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : $\tilde{u}_{i j}$
- We compute a gradient on each red triangle T_{i}

$$
\begin{aligned}
\nabla_{i} u^{\mathcal{T}} & =\frac{\tilde{u}_{i, i+1}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i-1, i}-x_{i}\right)^{\perp} \\
& +\frac{\tilde{u}_{i-1, i}-u_{i}}{2\left|T_{i}\right|}\left(\tilde{x}_{i, i+1}-x_{i}\right)^{\perp}
\end{aligned}
$$

\rightsquigarrow This gives birth to an affine function on each control volume.

- We write fluxes continuity for F_{12}, F_{23} and F_{61}

$$
F_{i, i+1} \stackrel{\text { def }}{=}\left(A_{i} \nabla_{i} u^{\mathcal{T}}\right) \cdot \boldsymbol{\nu}_{i, i+1}=\left(A_{i+1} \nabla_{i+1} u^{\mathcal{T}}\right) \cdot \boldsymbol{\nu}_{i, i+1}, \quad i \in\{1,2,6\} .
$$

- We need two additional equations. We write :

$$
U_{2}\left(x_{0}\right)=U_{3}\left(x_{0}\right), \quad \text { and } \quad U_{1}\left(x_{0}\right)=U_{6}\left(x_{0}\right)
$$

- Given the $\left(u_{i}\right)_{i}$, we compute the $\left(\tilde{u}_{i, i+1}\right)_{i}$ then the semi-fluxes F_{12}.
- We do the same for the other fluxes.

Properties

- In general
- the final linear system is not symmetric.
- No coercivity/stability for high anisotropies/heterogeneies/mesh distorsion.
- There exists a stabilized/symmetric version on quadrangles
(Le Potier, '05).
- Stencil :
- The O scheme has a much too large stencil.
- For the U scheme on conforming triangles : one flux depends on 6 unknowns.
- In general, the equation on a control volume \mathcal{K} depends on \mathcal{K}, its neighbors and the neighbors of its neighbors.
- Other variants : G scheme, L scheme, ...
- No complete gradient reconstruction.
- No discrete maximum principle for basic methods. Some improvements possible to achieve this goal.
- Convergence in the general case provided that a geometric condition for coercivity holds true

$$
\begin{array}{r}
\text { (Agelas-Masson, '08), (Agelas-DiPietro-Droniou, '10) } \\
\text { (Klausen-Stephansen, '12) (Stephansen, '12) }
\end{array}
$$

(4) A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion
(Coudière-Vila-Villedieu, '99, '00)
- Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^{*}}, \tilde{u}_{\mathcal{L}^{*}}$.

- Discrete gradient on the diamond cell \mathcal{D} :

$$
\begin{aligned}
& \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+\frac{\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}}{d_{\mathcal{K}^{*} \mathcal{L}^{*}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^{*} \mathcal{L}^{*}} \\
& \quad \Leftrightarrow\left\{\begin{array}{l}
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right)=u_{\mathcal{L}}-u_{\mathcal{K}}, \\
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}^{*}}-x_{\mathcal{K}^{*}}\right)=\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}
\end{array}\right.
\end{aligned}
$$

(Coudière-Vila-Villedieu, '99, '00)

- Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^{*}}, \tilde{u}_{\mathcal{L}^{*}}$.

- Discrete gradient on the diamond cell \mathcal{D} :

$$
\begin{aligned}
& \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+\frac{\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}}{d_{\mathcal{K}^{*} \mathcal{L}^{*}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^{*} \mathcal{L}^{*}} \\
& \quad \Leftrightarrow\left\{\begin{array}{l}
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right)=u_{\mathcal{L}}-u_{\mathcal{K}}, \\
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}^{*}}-x_{\mathcal{K}^{*}}\right)=\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}
\end{array}\right.
\end{aligned}
$$

- Here, $\tilde{u}_{\mathcal{K}^{*}}$ and $\tilde{u}_{\mathcal{L}^{*}}$ are directly expressed with

$$
\begin{aligned}
& \tilde{u}_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{K}^{*}}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{L}^{*}}}_{\geq 0} u_{\mathcal{M}} \\
& \text { with } \sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}}=1, \sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}} x_{\mathcal{M}}=x_{\mathcal{K}^{*}}
\end{aligned}
$$

(Coudière-Vila-Villedieu, '99, '00)

- Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^{*}}, \tilde{u}_{\mathcal{L}^{*}}$.

- Discrete gradient on the diamond cell \mathcal{D} :

$$
\begin{aligned}
& \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+\frac{\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}}{d_{\mathcal{K}^{*} \mathcal{L}^{*}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^{*} \mathcal{L}^{*}} \\
& \quad \Leftrightarrow\left\{\begin{array}{l}
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right)=u_{\mathcal{L}}-u_{\mathcal{K}}, \\
\nabla{ }_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}^{*}}-x_{\mathcal{K}^{*}}\right)=\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}
\end{array}\right.
\end{aligned}
$$

- Here, $\tilde{u}_{\mathcal{K}^{*}}$ and $\tilde{u}_{\mathcal{L}^{*}}$ are directly expressed with

$$
\tilde{u}_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{K}^{*}}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{L}^{*}}}_{\geq 0} u_{\mathcal{M}}
$$

with $\sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}}=1, \sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}} x_{\mathcal{M}}=x_{\mathcal{K}^{*}}$.
(Coudière-Vila-Villedieu, '99, '00)

- Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^{*}}, \tilde{u}_{\mathcal{L}^{*}}$.

- Discrete gradient on the diamond cell \mathcal{D} :

$$
\begin{aligned}
& \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}=\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K} \mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+\frac{\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}}{d_{\mathcal{K}^{*} \mathcal{L}^{*}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^{*} \mathcal{L}^{*}} \\
& \quad \Leftrightarrow\left\{\begin{array}{l}
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right)=u_{\mathcal{L}}-u_{\mathcal{K}}, \\
\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot\left(x_{\mathcal{L}^{*}}-x_{\mathcal{K}^{*}}\right)=\tilde{u}_{\mathcal{L}^{*}}-\tilde{u}_{\mathcal{K}^{*}}
\end{array}\right.
\end{aligned}
$$

- Here, $\tilde{u}_{\mathcal{K}^{*}}$ and $\tilde{u}_{\mathcal{L}^{*}}$ are directly expressed with

$$
\begin{gathered}
\tilde{u}_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{K}^{*}}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}, \mathcal{L}^{*}}}_{\geq 0} u_{\mathcal{M}} \\
\text { with } \sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}}=1, \sum_{\mathcal{M}} \gamma_{\mathcal{M}, \mathcal{K}^{*}} x_{\mathcal{M}}=x_{\mathcal{K}^{*}}
\end{gathered}
$$

- The numerical flux then reads (formally the same as for DDFV)

$$
F_{\mathcal{K} \mathcal{L}}=-|\sigma| \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} .
$$

Properties

- The weights $\gamma_{\mathcal{M}, \mathcal{K}^{*}}$ are computed through a least-square procedure.
- Finite volume consistance is proved.
- Coercivity/stability is not ensured excepted for meshes not too far from Cartesian rectangle meshes.
- In the case where coercivity holds, we deduce the standard first order error estimates for u and ∇u.
- The scheme can be written on general meshes but is not supported by convergence analysis.
- In general, the linear system to be solved is not symmetric.

$$
\text { (Manzini et al } \ldots{ }^{\prime} 04 \rightarrow{ }^{\prime} 07 \text {) }
$$

- Assume that orthogonal projection of centers belong to the edges.

- With this assumption, the authors provide an algorithm to compute weights $\gamma_{\mathcal{M}, \mathcal{K}^{*}}$, such that

$$
\gamma_{\mathcal{M}, \mathcal{K}^{*}} \geq C_{0}>0, \quad \forall \mathcal{M} \text { containing } x_{\mathcal{K}^{*}}
$$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K} \sigma}$ and $\mathcal{D}_{\mathcal{L} \sigma}$ from the three values at our disposal:

$$
\nabla_{\mathcal{D}_{\mathcal{K}}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}}
$$

- We compute the corresponding fluxes

$$
\begin{aligned}
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{K} \sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\underbrace{\alpha_{\mathcal{K}}^{\mathcal{K}}}_{>0}\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\sum_{\mathcal{M} \neq \mathcal{L}} \underbrace{\alpha_{\mathcal{M}}^{\mathcal{K}}}_{\geq 0}\left(u_{\mathcal{K}}-u_{\mathcal{M}}\right), \\
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\underbrace{\alpha_{\mathcal{L}}^{\mathcal{L}}}_{>0}\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\sum_{\mathcal{M} \neq \mathcal{K}} \underbrace{\alpha_{\mathcal{M}}^{\mathcal{L}}}_{\geq 0}\left(u_{\mathcal{M}}-u_{\mathcal{L}}\right) .
\end{aligned}
$$

We set $\alpha=\min \left(\alpha_{\mathcal{K}}^{\mathcal{K}}, \alpha_{\mathcal{L}}^{\mathcal{L}}\right)>0$.

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K} \sigma}$ and $\mathcal{D}_{\mathcal{L} \sigma}$ from the three values at our disposal:

$$
\nabla_{\mathcal{D}_{\mathcal{K}}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}}
$$

- We compute the corresponding fluxes

$$
\begin{aligned}
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{K} \sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{\sum_{\mathcal{M}} \underbrace{\left(\alpha_{\mathcal{M}}^{\mathcal{K}}-\alpha \delta_{\mathcal{M L}}\right)}_{\stackrel{\text { def }}{=} g_{\mathcal{K}}(u)}\left(u_{\mathcal{K}}-u_{\mathcal{M}}\right)}_{\geq 0}, \\
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{}_{\underset{\mathcal{M}}{\sum_{\stackrel{\text { def }}{=}}^{\sum_{\mathcal{L}}(u)}} \underbrace{\underbrace{}_{\mathcal{M}}-u_{\mathcal{L}}}_{\substack{\left(\alpha_{\mathcal{M}}^{\mathcal{K}}-\alpha \delta_{\mathcal{M K}}\right)}})} .
\end{aligned}
$$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K} \sigma}$ and $\mathcal{D}_{\mathcal{L} \sigma}$ from the three values at our disposal:

$$
\nabla_{\mathcal{D K}_{\mathcal{K}}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}}
$$

$$
\begin{aligned}
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{K}}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+g_{\mathcal{K}}\left(u^{\mathcal{T}}\right) \\
& -|\sigma| \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)
\end{aligned}
$$

- We set $\omega_{\mathcal{D}}\left(u^{\mathcal{T}}\right)=\frac{\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|}{\left|g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\right|+\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|}$ and we consider now the following gradient on the diamond cell

$$
\begin{gathered}
\nabla_{\mathcal{D}} u^{\mathcal{T}}=\omega_{\mathcal{D}}\left(u^{\mathcal{T}}\right) \nabla_{\mathcal{D}_{\mathcal{K}}} u^{\mathcal{T}}+\left(1-\omega_{\mathcal{D}}\left(u^{\mathcal{T}}\right)\right) \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}} \\
\Rightarrow F_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}}\right) \stackrel{\text { def }}{=}-|\sigma| \nabla_{\mathcal{D}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{\frac{g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|+g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\left|g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\right|}{\left|g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\right|+\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|}}_{=\mathrm{T}} .
\end{gathered}
$$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K} \sigma}$ and $\mathcal{D}_{\mathcal{L} \sigma}$ from the three values at our disposal:

$$
\nabla_{\mathcal{D}_{\mathcal{K}}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L} \sigma}} u^{\mathcal{T}}
$$

$$
F_{\mathcal{K} \mathcal{L}}=-|\sigma| \nabla_{\mathcal{D}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{\frac{g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|+g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\left|g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\right|}{\left|g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)\right|+\left|g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)\right|}}_{=\mathbf{T}} .
$$

- If $g_{\mathcal{K}}\left(u^{\mathcal{T}}\right) g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)<0$:

$$
T=0
$$

- If $g_{\mathcal{K}}\left(u^{\mathcal{T}}\right) g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)>0$:

$$
T=\frac{2 g_{\mathcal{K}}\left(u^{\mathcal{T}}\right) g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)}{g_{\mathcal{K}}\left(u^{\mathcal{T}}\right)+g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)} \Rightarrow\left\{\begin{array}{l}
T \text { is a nonnegative multiple of } g_{\mathcal{K}}\left(u^{\mathcal{T}}\right) \\
T \text { is a nonnegative multiple of } g_{\mathcal{L}}\left(u^{\mathcal{T}}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& F_{\mathcal{K}, \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{C_{\mathcal{K}}}_{\geq 0} \sum_{\mathcal{M}}\left(\alpha_{\mathcal{M}}^{\mathcal{K}}-\alpha \delta_{\mathcal{M} \mathcal{L}}\right)\left(u_{\mathcal{K}}-u_{\mathcal{M}}\right) \\
& F_{\mathcal{K}, \mathcal{L}}=\alpha\left(u_{\mathcal{K}}-u_{\mathcal{L}}\right)+\underbrace{C_{\mathcal{L}}}_{\geq 0} \sum_{\mathcal{M}}\left(\alpha_{\mathcal{M}}^{\mathcal{K}}-\alpha \delta_{\mathcal{M} \mathcal{K}}\right)\left(u_{\mathcal{M}}-u_{\mathcal{L}}\right)
\end{aligned}
$$

Properties

- Consistency OK.
- There exists at least one solution of the scheme.
- Quasi-uniqueness : all solutions belong to a ball of radius $O\left(\operatorname{size}(\mathcal{T})^{2}\right)$.
- Solving the scheme can be done by using an iterative solver which necessitates the solution of a (unique) definite positive system.
- The converged solution satisfies the discrete maximum principle.
- Each solver iterate does not satisfy the discrete maximum principle.
- No convergence analysis available.
- In practice, we observe standard second order for u in the L^{2} norm.
(4) A REVIEW OF SOME OTHER MODERN METHODS
- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

TO SIMPLIFY A LItTLE : $A(x)=A$ (Le Potier ' ${ }^{\prime}$ 05-...) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^{*}}$ and $u_{\mathcal{L}^{*}}$ are given by

$$
u_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M} \mathcal{K}^{*}}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}}
$$

- Basic geometry properties :

$$
\begin{aligned}
\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{K}^{*}, \mathcal{L}^{*}} & =0, \\
\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}-\mathbf{n}_{\mathcal{L}^{*}, \mathcal{L}^{*}} & =0, \\
\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{K}, \mathcal{L}} & =0, \\
\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}-\mathbf{n}_{\mathcal{K}, \mathcal{L}} & =0,
\end{aligned}
$$

TO SIMPLIFY A LItTLE : $A(x)=A$ (Le Potier ' ${ }^{\prime}$ 05-...) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^{*}}$ and $u_{\mathcal{L}^{*}}$ are given by

$$
u_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M} \mathcal{K}^{*}}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}} .
$$

- We define one discrete gradient for each half-diamond

$$
\begin{aligned}
& \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}=C_{\mathcal{K}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}+u_{\mathcal{K}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right)\right) \\
& \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}=C_{\mathcal{L}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}+u_{\mathcal{L}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right)\right)
\end{aligned}
$$

To simplify a little : $A(x)=A$ (Le Potier ${ }^{\prime} 05-.$.) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^{*}}$ and $u_{\mathcal{L}^{*}}$ are given by

$$
u_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M} \mathcal{K}^{*}}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}} .
$$

- We define one discrete gradient for each half-diamond

$$
\begin{aligned}
& \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}=C_{\mathcal{K}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}+u_{\mathcal{K}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right)\right) \\
& \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}=C_{\mathcal{L}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}+u_{\mathcal{L}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right)\right)
\end{aligned}
$$

- We look for a (nonlinear) combination

$$
F_{\mathcal{K}, \mathcal{L}} \stackrel{\text { def }}{=}-\mu|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}-(1-\mu)|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}
$$

so that $F_{\mathcal{K} \mathcal{L}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$
$\mu C_{\mathcal{K}^{*}} u_{\mathcal{K}^{*}} A\left(\mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}+(1-\mu) C_{\mathcal{L}^{*}} u_{\mathcal{L}^{*}} A\left(\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}=0$.

To simplify a little : $A(x)=A$ (Le Potier ${ }^{\prime} 05-.$.) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^{*}}$ and $u_{\mathcal{L}^{*}}$ are given by

$$
u_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M} \mathcal{K}^{*}}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}} .
$$

- We define one discrete gradient for each half-diamond

$$
\begin{aligned}
& \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}=C_{\mathcal{K}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}+u_{\mathcal{K}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right)\right) \\
& \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}=C_{\mathcal{L}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}+u_{\mathcal{L}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right)\right)
\end{aligned}
$$

- We look for a (nonlinear) combination

$$
F_{\mathcal{K}, \mathcal{L}} \stackrel{\text { def }}{=}-\mu|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}-(1-\mu)|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}
$$

so that $F_{\mathcal{K} \mathcal{L}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$

$$
\mu C_{\mathcal{K}^{*}} u_{\mathcal{K}^{*}}-(1-\mu) C_{\mathcal{L}^{*}} u_{\mathcal{L}^{*}}=0
$$

To simplify a little : $A(x)=A$ (Le Potier ${ }^{\prime} 05-.$.) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^{*}}$ and $u_{\mathcal{L}^{*}}$ are given by

$$
u_{\mathcal{K}^{*}}=\sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M} \mathcal{K}^{*}}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}} .
$$

- We define one discrete gradient for each half-diamond

$$
\begin{aligned}
& \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}=C_{\mathcal{K}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}+u_{\mathcal{K}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right)\right) \\
& \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}=C_{\mathcal{L}^{*}}\left(-u_{\mathcal{L}} \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}-u_{\mathcal{K}} \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}+u_{\mathcal{L}^{*}}\left(\mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}}+\mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right)\right)
\end{aligned}
$$

- We look for a (nonlinear) combination

$$
F_{\mathcal{K}, \mathcal{L}} \stackrel{\text { def }}{=}-\mu|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{K}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}-(1-\mu)|\sigma|\left(A \nabla_{\mathcal{D}_{\mathcal{L}^{*}}} u^{\mathcal{T}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}
$$

so that $F_{\mathcal{K} \mathcal{L}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$

$$
\mu\left(u^{\tau}\right)=\frac{C_{\mathcal{L}^{*}} u_{\mathcal{L}^{*}}}{C_{\mathcal{K}^{*}} u_{\mathcal{K}^{*}}+C_{\mathcal{L}^{*}} u_{\mathcal{L}^{*}}}
$$

Summary :

- The numerical flux is written as a nonlinear two point flux

$$
F_{\mathcal{K}, \mathcal{L}}=\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{K}}-\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{L}}
$$

with

$$
\begin{aligned}
& \tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\mu\left(u^{\mathcal{\tau}}\right) C_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}+\left(1-\mu\left(u^{\mathcal{\tau}}\right)\right) C_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}}\right) \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}, \\
& \tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{\tau}}\right)=-\mu\left(u^{\mathcal{\tau}}\right) C_{\mathcal{K}^{*}} A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}-\left(1-\mu\left(u^{\mathcal{\tau}}\right)\right) C_{\mathcal{L}^{*}} A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}
\end{aligned}
$$

Summary :

- The numerical flux is written as a nonlinear two point flux

$$
F_{\mathcal{K}, \mathcal{L}}=\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{K}}-\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{L}}
$$

with

$$
\begin{aligned}
\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) & =C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}} \\
\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{\tau}}\right) & =-C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}}
\end{aligned}
$$

Summary :

(Le Potier '05) (Lipnikov et al '07)

- The numerical flux is written as a nonlinear two point flux

$$
F_{\mathcal{K}, \mathcal{L}}=\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{K}}-\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{L}}
$$

with

$$
\begin{aligned}
\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) & =C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}} \\
\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{\tau}}\right) & =-C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}}
\end{aligned}
$$

- We need now to show that, with suitable assumptions, we have

$$
u^{\mathcal{T}} \geq 0 \Longrightarrow \tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) \geq 0 \text { and } \tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right) \geq 0
$$

- The numerical flux is written as a nonlinear two point flux

$$
F_{\mathcal{K}, \mathcal{L}}=\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{K}}-\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)|\sigma| u_{\mathcal{L}}
$$

with

$$
\begin{aligned}
\tau_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) & =C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}} \\
\tau_{\mathcal{L}, \sigma}\left(u^{\mathcal{\tau}}\right) & =-C_{\mathcal{K}^{*}} C_{\mathcal{L}^{*}} \frac{u_{\mathcal{L}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)+u_{\mathcal{K}^{*}}\left(A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}}\right)}{u_{\mathcal{K}^{*}} C_{\mathcal{K}^{*}}+u_{\mathcal{L}^{*}} C_{\mathcal{L}^{*}}}
\end{aligned}
$$

- We need now to show that, with suitable assumptions, we have

$$
\begin{aligned}
& A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0, \quad A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0 \\
& A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0, \quad A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0
\end{aligned}
$$

To this end, we show that a suitable choice of the centers $x_{\mathcal{K}}$ exists, depending only on A.

We require $\left\{\begin{array}{l}A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0, \quad A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0, \\ A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0, \quad A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*} \cdot} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0 .\end{array}\right.$

We require $\left\{\begin{array}{l}A \mathbf{n}_{\mathcal{L}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0, \quad A \mathbf{n}_{\mathcal{L}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \geq 0, \\ A \mathbf{n}_{\mathcal{K}, \mathcal{K}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0, \quad A \mathbf{n}_{\mathcal{K}, \mathcal{L}^{*}} \cdot \mathbf{n}_{\mathcal{K}, \mathcal{L}} \leq 0 .\end{array}\right.$

Proposition

The above inequalities hold if we set

$$
x_{\mathcal{K}} \stackrel{\text { def }}{=} \frac{\left\|\mathbf{n}_{1}\right\|_{A} x_{1}+\left\|\mathbf{n}_{2}\right\|_{A} x_{2}+\left\|\mathbf{n}_{3}\right\|_{A} x_{3}}{\left\|\mathbf{n}_{1}\right\|_{A}+\left\|\mathbf{n}_{2}\right\|_{A}+\left\|\mathbf{n}_{3}\right\|_{A}}
$$

with

$$
\|\xi\|_{A}=\sqrt{A \xi \cdot \xi}, \quad \forall \xi \in \mathbb{R}^{2}
$$

Properties

- Existence of a solution of the nonlinear problem is not known.
- No convergence result because of a lack of coercitivty.
- In practice, there exists a nonlinear iterative solver that preserves positivity of the approximations all along iterations.
- The linearized system to be solved changes at each iteration and is not symmetric.
- With many efforts, the principle of the scheme can be generalised to more general polygonal meshes in the case where
- $A(x)$ is isotropic.
- The mesh is regular and the control volumes are star-shaped.
- Extension to 3D for tetrahedral meshes.

Slightly different approaches

- Nonlinear corrections of general linear schemes
(Burman-Ern,'04) (Le Potier, '10)
(Droniou-Le Potier, '11), (Cancès-Cathala-Le Potier, 13)
(4) A REVIEW OF SOME OTHER MODERN METHODS
- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

- A scalar unknown $u_{\mathcal{K}}$ for each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar fluxes unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ for each edge $\sigma \in \mathcal{E}$.
- They are related through conservativity relations

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Let $\mathbb{R}^{\mathcal{T}}$ (resp. $\mathbb{R}^{\mathcal{E}}$) be the set of cell-centered (resp. edge-centered) unknowns.

BASIC IDEA : Try to mimick properties of the continuous problem through the Green formula

$$
\int_{\mathcal{K}} A_{\mathcal{K}}^{-1}\left(A_{\mathcal{K}} \nabla u\right) \cdot \xi d x+\int_{\mathcal{K}} u(\operatorname{div} \xi) d x=\int_{\partial \mathcal{K}} u(\xi \cdot \boldsymbol{\nu}) d s
$$

- For any $F \in \mathbb{R}^{\mathcal{E}}$, we define a discrete
 divergence operator

$$
\operatorname{div}^{\mathcal{K}} F=\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \underbrace{|\sigma| F_{\mathcal{K}, \sigma}}_{\hat{\sum} \text { change of notation }}
$$

- We suppose given a "scalar product" $(\cdot, \cdot)_{A^{-1}, \mathcal{K}}$ on the set of edge unknowns supposed to approximate $\int_{\mathcal{K}} A_{\mathcal{K}}^{-1} F \cdot G d x$.

BASIC IDEA : Try to mimick properties of the continuous problem through the Green formula

$$
\int_{\mathcal{K}} A_{\mathcal{K}}^{-1}\left(A_{\mathcal{K}} \nabla u\right) \cdot \xi d x+\int_{\mathcal{K}} u(\operatorname{div} \xi) d x=\int_{\partial \mathcal{K}} u(\xi \cdot \boldsymbol{\nu}) d s
$$

- For any $F \in \mathbb{R}^{\mathcal{E}}$, we define a discrete
 divergence operator

$$
\operatorname{div}^{\mathcal{K}} F=\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \underbrace{|\sigma| F_{\mathcal{K}, \sigma}}_{\hat{\sum} \text { change of notation }}
$$

- We suppose given a "scalar product" $(\cdot, \cdot)_{A^{-1}, \mathcal{K}}$ on the set of edge unknowns supposed to approximate $\int_{\mathcal{K}} A_{\mathcal{K}}^{-1} F \cdot G d x$.
Assumptions
Coercivity : $\underline{C}|\mathcal{K}| \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}\left|F_{\mathcal{K}, \sigma}\right|^{2} \leq(F, F)_{A^{-1}, \mathcal{K}} \leq \bar{C}|\mathcal{K}| \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}\left|F_{\mathcal{K}, \sigma}\right|^{2}, \quad \forall \mathcal{K}$,
Consistency : $\left(\left(A_{\mathcal{K}} \nabla \varphi\right), G\right)_{A^{-1}, \mathcal{K}}+\int_{\mathcal{K}} \varphi \operatorname{div}^{\mathcal{K}} G d x$
$=\sum_{\sigma \in \mathcal{E}} G_{\mathcal{K}, \sigma}\left(\int_{\sigma} \varphi\right), \forall \mathcal{K}, \forall G \in \mathbb{R}^{\mathcal{E}}, \forall \varphi$ affine.

Global scalar products

$$
\begin{aligned}
(F, G)_{A^{-1}} & =\sum_{\mathcal{K}}(F, G)_{A^{-1}, \mathcal{K}} \\
(u, v) & =\sum_{\mathcal{K}}|\mathcal{K}| u_{\mathcal{K}} v_{\mathcal{K}}
\end{aligned}
$$

Approximate flux operator : $\Phi: u \in \mathbb{R}^{\mathcal{T}} \mapsto \Phi u \in \mathbb{R}^{\mathcal{E}} \approx(A \nabla u) \cdot \boldsymbol{\nu}$ defined by duality

$$
(G, \Phi u)_{A^{-1}}=-\left(u, \operatorname{div}^{\mathcal{K}} G\right), \quad \forall u \in \mathbb{R}_{0}^{\mathcal{T}}, \forall G \in \mathbb{R}^{\mathcal{E}}
$$

MFD SCHEME

Find $u \in \mathbb{R}^{\mathcal{T}}$ such that

$$
-\operatorname{div}^{\mathcal{K}}(\Phi u)=f_{\mathcal{K}}, \quad \forall \mathcal{K} .
$$

Summary

The main point remains to find suitable scalar products $(\cdot, \cdot)_{A^{-1}, \mathcal{K}}$ satisfying consistency and coercivity properties.

We look for

$$
(F, G)_{A^{-1}, \mathcal{K}} \stackrel{\text { def }}{=}\left(F_{\mathcal{K}, \sigma}\right)_{\sigma} M_{\mathcal{K}}\left(G_{\mathcal{K}, \sigma}\right)_{\sigma}
$$

with $M_{\mathcal{K}}$ is a $m \times m$ positive definite matrix.

Definitions

$$
R_{\mathcal{K}}=\left(\begin{array}{l}
\left|\sigma_{1}\right|^{t}\left(x_{\sigma_{1}}-x_{\mathcal{K}}\right) \\
\vdots \\
\left|\sigma_{m}\right|^{t}\left(x_{\sigma_{m}}-x_{\mathcal{K}}\right)
\end{array}\right), \quad N_{\mathcal{K}}=\left(\begin{array}{l}
{ }^{t} \boldsymbol{\nu}_{\sigma_{1}} \\
\vdots \\
{ }^{t} \boldsymbol{\nu}_{\sigma_{m}}
\end{array}\right) A_{\mathcal{K}}, \quad \text { of size } m \times 2
$$

Proposition

Conistency condition is equivalent to

$$
M_{\mathcal{K}} N_{\mathcal{K}}=R_{\mathcal{K}} \Longleftrightarrow M_{\mathcal{K}}=\frac{1}{|\mathcal{K}|} R_{\mathcal{K}} A_{\mathcal{K}}^{-1 t} R_{\mathcal{K}}+C_{\mathcal{K}} U_{\mathcal{K}}^{t} C_{\mathcal{K}}
$$

where $C_{\mathcal{K}}$ is a $m \times(m-2)$ matrix such that ${ }^{t} C_{\mathcal{K}} N_{\mathcal{K}}=0$ and $U_{\mathcal{K}}$ is any $(m-2) \times(m-2)$ positive definite matrix.

Properties

- Control volumes needs to be star-shaped with respect to their mass center.
- Total number of unknowns is the sum of the number of control volumes and the number of edges.
- The linear system to be solved is of saddle-point kind.
- Those schemes can be seen as a generalisations of mixed finite elements with suitable quadrature formulas.
- With reasonnable regularity assumptions on mesh families and on $x \mapsto A(x)$, one can show second order convergence in the L^{2} norm and first order convergence in the H^{1} norm.
- When $x \mapsto A(x)$ is discontinuous : no complete analysis up to now.
(4) A REVIEW OF SOME OTHER MODERN METHODS
- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion
(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Continuity of the approximation at the middle of each edge x_{σ}

$$
u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\sigma}-x_{\mathcal{L}}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Continuity of the approximation at the middle of each edge x_{σ}

$$
u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\sigma}-x_{\mathcal{L}}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma} .
$$

- A simple formula

$$
|\mathcal{K}| \xi=\int_{\mathcal{K}} \underbrace{\operatorname{div}\left(\left(x-x_{\mathcal{K}}\right) \otimes \xi\right)}_{=\xi} d x=\int_{\partial \mathcal{K}}(\xi \cdot \boldsymbol{\nu})\left(x-x_{\mathcal{K}}\right) d x, \quad \forall \xi \in \mathbb{R}^{2}
$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Continuity of the approximation at the middle of each edge x_{σ}

$$
u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\sigma}-x_{\mathcal{L}}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma} .
$$

- A simple formula

$$
|\mathcal{K}| \xi=\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(\xi \cdot \boldsymbol{\nu}_{\mathcal{K}, \sigma}\right)\left(x_{\sigma}-x_{\mathcal{K}}\right), \quad \forall \xi \in \mathbb{R}^{2}
$$

Idea: Apply this to $\xi=A \nabla u \ldots$
(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Continuity of the approximation at the middle of each edge x_{σ}

$$
u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\sigma}-x_{\mathcal{L}}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma} .
$$

- A simple formula

$$
|\mathcal{K}| A_{\mathcal{K}} \mathbf{v}_{\mathcal{K}}=-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown $u_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K}, \sigma}$ and $F_{\mathcal{L}, \sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$
F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0
$$

- Continuity of the approximation at the middle of each edge x_{σ}

$$
u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\sigma}-x_{\mathcal{L}}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma} .
$$

- A simple formula

$$
|\mathcal{K}| A_{\mathcal{K}} \mathbf{v}_{\mathcal{K}}=-\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Flux balance equation $\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}=|\mathcal{K}| f_{\mathcal{K}}$.

Properties

- We have 3 scalar unknowns by control volume and two (in fact one ...) by edge.
- For a conforming mesh made of triangles, no need of penalisation term. In the other cases, this term is need to ensure well-posedness of the scheme.
- No particular difficulties to deal with non-linear equations $-\operatorname{div}(\varphi(x, \nabla u))=f$.
- Convergence result for the solution $u^{\mathcal{T}}=\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and its gradient $\mathbf{v}^{\boldsymbol{\tau}}=\left(\mathbf{v}_{\mathcal{K}}\right)_{\mathcal{K}}$, for any mesh and any data.
- Poincare inequality.
- A priori estimate.
- Compactness.
- Convergence.
- For smooth solutions
- On general meshes : Theoretical error estimates in $O(\sqrt{\operatorname{size}(\mathcal{T})})$.
- On conforming triangle meshes : Error estimates in $O(\operatorname{size}(\mathcal{T}))$.

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Thus

$$
\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

where $B_{\mathcal{K}}$ is positive definite and depends only on the geometry of \mathcal{K} and $\nu_{\mathcal{K}}$.

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use
- Thus

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

$$
\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}} .
$$

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Thus

$$
\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

- Elimination of $u_{\mathcal{K}}$

$$
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}=|\mathcal{K}| f_{\mathcal{K}}
$$

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\begin{aligned}
& \mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right) \\
& \left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}} .
\end{aligned}
$$

- Thus
- Elimination of $u_{\mathcal{K}}$

$$
\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} c_{\mathcal{K}, \sigma}\left(u_{\sigma}-u_{\mathcal{K}}\right)=|\mathcal{K}| f_{\mathcal{K}}
$$

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Thus

$$
\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

- Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}}=b_{\mathcal{K}}+\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K}, \sigma} u_{\sigma}$.

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Thus

$$
\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

- Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}}=b_{\mathcal{K}}+\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K}, \sigma} u_{\sigma}$.

$$
\Rightarrow\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=C_{\mathcal{K}}\left(u_{\sigma}-u_{\sigma^{\prime}}\right)_{\sigma, \sigma^{\prime} \in \mathcal{E}_{\mathcal{K}}}+\left(G_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

Some remarks on this approach

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $\left(u_{\mathcal{K}}\right)_{\mathcal{K}}$ and $\left(v_{\mathcal{K}}\right)_{\mathcal{K}}$ in order to transform the system into a smaller and definite positive system.

- We define a new scalar unknown for each edge by

$$
u_{\sigma} \stackrel{\text { def }}{=} u_{\mathcal{K}}+\mathbf{v}_{\mathcal{K}} \cdot\left(x_{\mathcal{K}}-x_{\sigma}\right)-\nu_{\mathcal{K}}|\mathcal{K}| F_{\mathcal{K}, \sigma}=u_{\mathcal{L}}+\mathbf{v}_{\mathcal{L}} \cdot\left(x_{\mathcal{L}}-x_{\sigma}\right)-\nu_{\mathcal{L}}|\mathcal{L}| F_{\mathcal{L}, \sigma}
$$

- We use

$$
\mathbf{v}_{\mathcal{K}}=-\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma} A_{\mathcal{K}}^{-1}\left(x_{\sigma}-x_{\mathcal{K}}\right)
$$

- Thus

$$
\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}\left(u_{\sigma}-u_{\mathcal{K}}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

- Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}}=b_{\mathcal{K}}+\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K}, \sigma} u_{\sigma}$.

$$
\Rightarrow\left(F_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}=C_{\mathcal{K}}\left(u_{\sigma}-u_{\sigma^{\prime}}\right)_{\sigma, \sigma^{\prime} \in \mathcal{E}_{\mathcal{K}}}+\left(G_{\mathcal{K}, \sigma}\right)_{\sigma \in \mathcal{E}_{\mathcal{K}}}
$$

- $F_{\mathcal{K}, \sigma}+F_{\mathcal{L}, \sigma}=0 \Rightarrow$ One equation for each edge satisfied by $\left(u_{\sigma}\right)_{\sigma}$.
(4) A REVIEW OF SOME OTHER MODERN METHODS
- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1: Moderate Anisotropy
- Test \#3: Oblique flow
- Test \#4: Vertical fault
- Test \#5: Heterogeneous rotating anisotropy
- Conclusion

- Unknowns: cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ}.
- The set of edges is separated into two parts

$$
\mathcal{E}=\mathcal{E}_{B} \cup \mathcal{E}_{H} .
$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{B}$ are eliminated by a barycentric formula $u_{\sigma}=\sum_{\mathcal{K}} \gamma_{\mathcal{K}}^{\sigma} u_{\mathcal{K}}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{H}$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$
\begin{aligned}
|\mathcal{K}| \xi=\int_{\mathcal{K}} \nabla\left(\xi \cdot\left(x-x_{\mathcal{K}}\right)\right) d x= & \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \int_{\sigma}\left(\xi \cdot\left(x-x_{\mathcal{K}}\right)\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma} d x \\
= & \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(\xi \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma}
\end{aligned}
$$

- Unknowns : cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ}.
- The set of edges is separated into two parts

$$
\mathcal{E}=\mathcal{E}_{B} \cup \mathcal{E}_{H} .
$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{B}$ are eliminated by a barycentric formula $u_{\sigma}=\sum_{\mathcal{K}} \gamma_{\mathcal{K}}^{\sigma} u_{\mathcal{K}}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{H}$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$
|\mathcal{K}| \nabla u \approx \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(u\left(x_{\sigma}\right)-u\left(x_{\mathcal{K}}\right)\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma}
$$

- Unknowns : cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ}.
- The set of edges is separated into two parts

$$
\mathcal{E}=\mathcal{E}_{B} \cup \mathcal{E}_{H} .
$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{B}$ are eliminated by a barycentric formula $u_{\sigma}=\sum_{\mathcal{K}} \gamma_{\mathcal{K}}^{\sigma} u_{\mathcal{K}}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{H}$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$
\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(u_{\sigma}-u_{\mathcal{K}}\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma} .
$$

- Unknowns : cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ}.
- The set of edges is separated into two parts

$$
\mathcal{E}=\mathcal{E}_{B} \cup \mathcal{E}_{H} .
$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{B}$ are eliminated by a barycentric formula $u_{\sigma}=\sum_{\mathcal{K}} \gamma_{\mathcal{K}}^{\sigma} u_{\mathcal{K}}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{H}$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$
\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(u_{\sigma}-u_{\mathcal{K}}\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma}
$$

- Consistency error $R_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\frac{\underset{\sigma \in \mathcal{E}_{\mathcal{K}}}{ }}{d_{\mathcal{K}, \sigma}}\left(u_{\sigma}-u_{\mathcal{K}}-\nabla_{\mathcal{K}} u^{\mathcal{T}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)\right)$.

- Unknowns: cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ}.
- The set of edges is separated into two parts

$$
\mathcal{E}=\mathcal{E}_{B} \cup \mathcal{E}_{H}
$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{B}$ are eliminated by a barycentric formula $u_{\sigma}=\sum_{\mathcal{K}} \gamma_{\mathcal{K}}^{\sigma} u_{\mathcal{K}}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_{H}$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$
\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text { def }}{=} \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}|\sigma|\left(u_{\sigma}-u_{\mathcal{K}}\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma}
$$

- Consistency error $R_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\frac{\alpha_{\mathcal{K}}}{d_{\mathcal{K}, \sigma}}\left(u_{\sigma}-u_{\mathcal{K}}-\nabla_{\mathcal{K}} u^{\mathcal{T}} \cdot\left(x_{\sigma}-x_{\mathcal{K}}\right)\right)$.
- On each triangle ($=$ half-diamond) $\mathcal{D}_{\mathcal{K}, \sigma}$ we define a stabilised discrete gradient

$$
\nabla_{\mathcal{K}, \sigma} u^{\mathcal{T}}=\nabla_{\mathcal{K}} u^{\mathcal{T}}+R_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right) \boldsymbol{\nu}_{\mathcal{K}, \sigma}
$$

- The scheme is then written under variationnal form

$$
\int_{\Omega}\left(A(x) \nabla^{\tau} u^{\mathcal{T}}\right) \cdot \nabla^{\tau} v^{\mathcal{\tau}} d x=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{\tau}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

- The scheme is then written under variationnal form

$$
\int_{\Omega}\left(A(x) \nabla^{\tau} u^{\mathcal{T}}\right) \cdot \nabla^{\tau} v^{\mathcal{\tau}} d x=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{\tau}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

- However, we can write it under a more standard FV form

$$
\sum_{\mathcal{K}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)\left(v_{\mathcal{K}}-v_{\sigma}\right)=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{T}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

with $F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\sum_{\sigma^{\prime} \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}\left(u_{\mathcal{K}}-u_{\sigma^{\prime}}\right)$, and $\alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}$ depends on the data.

- The scheme is then written under variationnal form

$$
\int_{\Omega}\left(A(x) \nabla^{\tau} u^{\mathcal{T}}\right) \cdot \nabla^{\tau} v^{\mathcal{\tau}} d x=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{\top}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

- However, we can write it under a more standard FV form

$$
\sum_{\mathcal{K}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)\left(v_{\mathcal{K}}-v_{\sigma}\right)=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{T}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

with $F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\sum_{\sigma^{\prime} \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}\left(u_{\mathcal{K}}-u_{\sigma^{\prime}}\right)$, and $\alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}$ depends on the data.

- For edges $\sigma \in \mathcal{E}_{H}$, the unknown v_{σ} is a degree of freedom, thus

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)+F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)=0
$$

- For edges $\sigma \in \mathcal{E}_{B}$, this local consistency property does not hold anymore.
- The scheme is then written under variationnal form

$$
\int_{\Omega}\left(A(x) \nabla^{\tau} u^{\mathcal{T}}\right) \cdot \nabla^{\tau} v^{\mathcal{\tau}} d x=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{\top}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

- However, we can write it under a more standard FV form

$$
\sum_{\mathcal{K}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)\left(v_{\mathcal{K}}-v_{\sigma}\right)=\sum_{\mathcal{K}}|\mathcal{K}| v_{\mathcal{K}} f_{\mathcal{K}}, \quad \forall v^{\mathcal{T}}=\left(\left(v_{\mathcal{K}}\right)_{\mathcal{K}},\left(v_{\sigma}\right)_{\sigma}\right)
$$

with $F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)=\sum_{\sigma^{\prime} \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}\left(u_{\mathcal{K}}-u_{\sigma^{\prime}}\right)$, and $\alpha_{\mathcal{K}}^{\sigma, \sigma^{\prime}}$ depends on the data.

- For edges $\sigma \in \mathcal{E}_{H}$, the unknown v_{σ} is a degree of freedom, thus

$$
F_{\mathcal{K}, \sigma}\left(u^{\mathcal{T}}\right)+F_{\mathcal{L}, \sigma}\left(u^{\mathcal{T}}\right)=0
$$

- For edges $\sigma \in \mathcal{E}_{B}$, this local consistency property does not hold anymore.

Possible strategy to choose barycentric/hybrid edges

- We decide that $\sigma \in \mathcal{E}_{B}$, if the permeability tensor A is smooth near σ.
- We decide that $\sigma \in \mathcal{E}_{H}$, if A is discontinuous across σ in order to ensure a good accuracy and local conservativity.

Properties

- Barycentric/hybrid scheme adapted to the properties of the permeability tensor which is intermediate between standard FV and mixed FE methods.
- Local conservativity is only ensured on hybrid edges.
- Fully barycentric scheme :

Few unknowns / Large stencil / No local conservativity

- Fully hybrid scheme :

Many unknowns / Large stencil / Local conservativity

- In the barycentric case, the notion of local flux across edges is not really clear.
- The linear system to be solved is symmetric.
- Existence and uniqueness of the solution holds true without any assumption.
- Convergence theorem in the general case.
- Error estimate in $O(\operatorname{size}(\mathcal{T}))$ for u and ∇u in the case of a smooth isotropic permeability.
(Droniou-Eymard-Gallouët-Herbin '09)

Theorem (Simplified statement)

The three approaches

- Mimetic
- Mixed FV
- $S U C C E S$
are algebraically equivalent (for a suitable choice of the numerical parameters).

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference - Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion
http://www.latp.univ-mrs.fr/fvca5
Proceedings edited by Wiley
Ed. : Robert Eymard and Jean-Marc Hérard
- 19 contributions.
- 9 test cases.
- 10 different mesh families.
- Some properties/quantities to be compared :
- Number of unknowns / of non-zero entries of the matrix.
- Local conservativity or not.
- L^{∞} / L^{2} error for u and ∇u.
- Approximation error for fluxes at interfaces.
- Monotony / Discrete maximum principle.
- Total energy balance.

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference - Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

$$
-\operatorname{div}(A \nabla u)=f \operatorname{in} \Omega
$$

with $A=\left(\begin{array}{ll}1.5 & 0.5 \\ 0.5 & 1.5\end{array}\right)$ and $u(x, y)=16 x(1-x) y(1-y)$.

Mesh1

Test \#1 : Moderate anisotropy

L^{2} ERROR ON u (SECOND ORDER)

97/ 115

Mesh4_1

Mesh4_2

Minimum and maximum values of The approximate solution

	mesh 4_1		mesh 4_2	
	umin	umax	umin	umax
CMPFA	$9.95 \mathrm{E}-03$	$1.00 \mathrm{E}+00$	$2.73 \mathrm{E}-03$	$9.99 \mathrm{E}-01$
CVFE	$0.00 \mathrm{E}+00$	$8.43 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$9.14 \mathrm{E}-01$
DDFV	$1.33 \mathrm{E}-02$	$9.96 \mathrm{E}-01$	$3.63 \mathrm{E}-03$	$9.99 \mathrm{E}-01$
FEQ1	$0.00 \mathrm{E}+00$	$8.61 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$9.37 \mathrm{E}-01$
FVHYB	$2.14 \mathrm{E}-03$	$9.84 \mathrm{E}-01$	$7.16 \mathrm{E}-04$	$9.93 \mathrm{E}-01$
FVSYM	$7.34 \mathrm{E}-03$	$9.59 \mathrm{E}-01$	$2.33 \mathrm{E}-03$	$9.89 \mathrm{E}-01$
MFD	$6.64 \mathrm{E}-03$	$9.71 \mathrm{E}-01$	$1.50 \mathrm{E}-03$	$9.93 \mathrm{E}-01$
MFV	$1.08 \mathrm{E}-02$	$9.42 \mathrm{E}-01$	$3.34 \mathrm{E}-03$	$9.82 \mathrm{E}-01$
NMFV	$1.30 \mathrm{E}-02$	$1.11 \mathrm{E}+00$	$3.61 \mathrm{E}-03$	$1.04 \mathrm{E}+00$
SUSHI	$7.64 \mathrm{E}-03$	$8.88 \mathrm{E}-01$	$2.33 \mathrm{E}-03$	$9.61 \mathrm{E}-01$

$$
-\operatorname{div}(A \nabla u)=f \operatorname{in} \Omega
$$

with $A=\left(\begin{array}{ll}1.5 & 0.5 \\ 0.5 & 1.5\end{array}\right)$ and $u(x, y)=\sin ((1-x)(1-y))+(1-x)^{3}(1-y)^{2}$.

Test \#1 : Moderate anisotropy

100/ 115

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference - Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

$$
-\operatorname{div}(A \nabla u)=0 \text { in } \Omega
$$

with $A=R_{\theta}\left(\begin{array}{cc}1 & 0 \\ 0 & 10^{-3}\end{array}\right) R_{\theta}^{-1}, \theta=40^{\circ}$
The boundary data \bar{u} is continuous and piecewise affine on $\partial \Omega$:
$\bar{u}(x, y)= \begin{cases}1 & \text { on }(0, .2) \times\{0 .\} \cup\{0 .\} \times(0, .2) \\ 0 & \text { on }(.8,1 .) \times\{1 .\} \cup\{1 .\} \times(.8,1 .) \\ \frac{1}{2} & \text { on }((.3,1 .) \times\{0\} \cup\{0\} \times(.3,1 .) \\ \frac{1}{2} & \text { on }(0 ., .7) \times\{1 .\} \cup\{1 .\} \times(0 ., 0.7)\end{cases}$

Minimum and maximum values of the approximate solution

	umin_i	umax_i	i
CMPFA	$6.90 \mathrm{E}-02$	$9.31 \mathrm{E}-01$	1
	$9.83 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	7
CVFE	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1
	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	7
DDFV	$\mathbf{- 4 . 7 2 \mathrm { E } - 0 3}$	$1.00 \mathrm{E}+00$	1
	$\mathbf{- 5 . 3 1 E - 0 4}$	$1.00 \mathrm{E}+00$	7
FEQ1	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1
	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	7
FVHYB	$\mathbf{- 1 . 7 5 E - 0 1}$	$1.17 \mathrm{E}+00$	1
	$\mathbf{- 1 . 0 0 \mathrm { E } - 0 3}$	$1.00 \mathrm{E}+00$	6
FVSYM	$6.85 \mathrm{E}-02$	$9.32 \mathrm{E}-01$	1
	$4.92 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	8
MFD	$7.56 \mathrm{E}-02$	$9.24 \mathrm{E}-01$	1
	$8.01 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	8
MFE	$3.12 \mathrm{E}-02$	$9.69 \mathrm{E}-01$	1
	$5.08 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	8
MFV	$1.22 \mathrm{E}-02$	$8.78 \mathrm{E}-01$	1
	$7.92 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	7
NMFV	$1.11 \mathrm{e}-01$	$8.88 \mathrm{e}-01$	1
	$1.28 \mathrm{E}-03$	$9.99 \mathrm{E}-01$	7
SUSHI	$6.03 \mathrm{E}-02$	$9.40 \mathrm{E}-01$	1
	$8.52 \mathrm{E}-04$	$9.99 \mathrm{E}-01$	7

The energies

	ener1	eren	i
CMPFA	N/A	N/A	
	N/A	N/A	
CVFE	$2.24 \mathrm{E}-01$	$8.42 \mathrm{E}-02$	1
	$2.42 \mathrm{E}-01$	$3.33 \mathrm{E}-03$	7
DDFV	$2.14 \mathrm{E}-01$	$9.60 \mathrm{E}-02$	1
	$2.42 \mathrm{E}-01$	$7.11 \mathrm{E}-06$	7
FEQ1	$2.21 \mathrm{E}-01$	$3.67 \mathrm{E}-01$	1
	$2.44 \mathrm{E}-01$	$3.17 \mathrm{E}-02$	7
FVHYB	$2.13 \mathrm{E}-01$	$2.55 \mathrm{E}-01$	1
	$2.42 \mathrm{E}-01$	$8.19 \mathrm{E}-03$	6
FVSYM	$2.20 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	1
	$2.42 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	8
MFD	$1.91 \mathrm{E}-01$	$1.87 \mathrm{E}-14$	1
	$2.42 \mathrm{E}-01$	$3.70 \mathrm{E}-14$	8
MFE	$1.25 \mathrm{E}-01$	$2.46 \mathrm{E}-02$	1
	$2.41 \mathrm{E}-01$	$2.91 \mathrm{E}-03$	8
MFV	$4.85 \mathrm{E}-01$	$8.23 \mathrm{E}-07$	1
	$2.42 \mathrm{E}-01$	$9.74 \mathrm{E}-06$	7
NMFV	$2.33 \mathrm{e}-01$	$1.45 \mathrm{e}-01$	1
	$2.45 \mathrm{E}-01$	$1.94 \mathrm{E}-02$	7
SUSHI	$2.25 \mathrm{E}-01$	$3.01 \mathrm{E}-01$	1
	$2.43 \mathrm{E}-01$	$1.28 \mathrm{E}-02$	7

Volume energy

$$
\text { ener } 1 \approx \int_{\Omega} A \nabla u \cdot \nabla u d x
$$

Boundary energy

$$
\text { ener } 2 \approx \int_{\partial \Omega} A \nabla u \cdot \boldsymbol{\nu} d x
$$

For the continuous solution we have

$$
\text { eren } 1=\text { eren } 2
$$

We compute, at the discrete level, the error

$$
\text { eren }=\text { ener } 1-\text { ener } 2
$$

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference - Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3: Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

and $\bar{u}(x, y)=1-x$.

mesh5

MAXIMUM PRINCIPLE

- Satisfied by all the methods presented here.

Values of the energies

	ener1 mesh5	eren mesh5	ener1 mesh5_ref	eren mesh5_ref
CVFE	45.9	$1.04 \mathrm{E}-02$	43.3	$6.25 \mathrm{E}-04$
DDFV	42.1	$3.65 \mathrm{E}-02$	43.2	$1.27 \mathrm{E}-03$
FVHYB	41.4	$6.12 \mathrm{E}-02$	$/$	$/$
MFD-BLS	33.9	$7.93 \mathrm{E}-14$	43.2	$2.84 \mathrm{E}-12$
MFD	31.4	$1.16 \mathrm{E}-12$	43.2	$4.71 \mathrm{E}-14$
MFV	49.9	$4.21 \mathrm{E}-05$	43.2	$1.88 \mathrm{E}-05$
NMFV	$/$	$/$	43.2	$5.92 \mathrm{E}-04$
SUSHI	39.1	$6.67 \mathrm{E}-02$	43.1	$8.88 \mathrm{E}-04$

Boundary fluxes approximation

Flux across $\{x=0\}: \int_{\partial \Omega \cap\{x=0\}}^{A \nabla u} \underset{\nu}{ } \underset{\nu}{ }$,

	flux0 mesh5	flux0 mesh5_ref	flux1 mesh5	flux1 mesh5_ref	fluy0 mesh5	fluy0 mesh5_ref	fluy1 mesh5
CMPFA	-45.2	$\mathbf{- 4 2 . 1}$	46.1	$\mathbf{4 4 . 4}$	-0.95	-2.33	$4.84 \mathrm{E}-04$
CVFE	-46.6	$\mathbf{- 4 2 . 2}$	48.5	$\mathbf{4 4 . 5}$	0.87	-2.25	$8.02 \mathrm{E}-04$
DDFV	-40.0	$\mathbf{- 4 2 . 1}$	41.8	$\mathbf{4 4 . 4}$	-1.81	-2.33	$9.08 \mathrm{E}-04$
FEQ1	$/$	$\mathbf{- 4 2 . 2}$	$/$	$\mathbf{4 4 . 5}$	$/$	-2.16	$/$
FVHYB	-44.3	$/$	46.3	$/$	0.49	$/$	$1.55 \mathrm{E}-04$
MFD	-29.7	$\mathbf{- 4 2 . 1}$	34.1	44.4	-4.37	$\mathbf{- 2 . 3 3}$	$1.01 \mathrm{E}-03$
MFV	-44.0	$\mathbf{- 4 2 . 1}$	50.3	44.4	-8.03	-2.33	$1.72 \mathrm{E}+00$
NMFV	$\mathbf{- 4 3 . 2}$	$\mathbf{- 4 2 . 1}$	$\mathbf{4 4 . 5}$	$\mathbf{4 4 . 4}$	-1.23	$\mathbf{- 2 . 3 3}$	$2.32 \mathrm{E}-04$
SUSHI	$\mathbf{- 4 0 . 9}$	$\mathbf{- 4 2 . 1}$	$\mathbf{4 3 . 1}$	$\mathbf{4 4 . 4}$	$\mathbf{- 2 . 2 1}$	$\mathbf{- 2 . 3 3}$	$6.94 \mathrm{E}-04$

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference - Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3: Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

$$
-\operatorname{div}(A \nabla u)=f \operatorname{in} \Omega
$$

with

$$
A=\frac{1}{\left(x^{2}+y^{2}\right)}\left(\begin{array}{cc}
10^{-3} x^{2}+y^{2} & \left(10^{-3}-1\right) x y \\
\left(10^{-3}-1\right) x y & x^{2}+10^{-3} y^{2}
\end{array}\right)
$$

and $u(x, y)=\sin \pi x \sin \pi y$.

L^{2} ERROR ON u (SECOND ORDER)

and on ∇u (FIRST AND SECOND ORDER)

Test \#5 : Heterogeneous rotating anisotropy

SOME SCHEMES DO NOT SATISFY THE DISCRETE MAXIMUM PRINCIPLE

	umin	umax
CMPFA	$\mathbf{- 1 . 0 6 E - 0 1}$	$\mathbf{1 . 0 9 E}+00$
FEQ1	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}+00$
FVHYB	$\mathbf{- 1 . 9 2 \mathrm { E } + 0 1}$	$5.38 \mathrm{E}+00$
FVSYM	$\mathbf{- 8 . 6 7 E - 0 1}$	$\mathbf{2 . 5 7 E}+00$
MFE	$\mathbf{- 1 . 6 2 E}+00$	$1.90 \mathrm{E}+01$

4 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes
(5) Comparisons : Benchmark from the FVCA 5 conference
- Presentation
- Test \#1 : Moderate Anisotropy
- Test \#3 : Oblique flow
- Test \#4 : Vertical fault
- Test \#5 : Heterogeneous rotating anisotropy
- Conclusion

How to choose a scheme ?

- Do I really need to use a general mesh (non conforming, distorded, ...)?
- Do I need to ensure monotony/nonnegativity?
- Do I need an accurate approximation of the gradient of u, of the fluxes?
- Do I need an accurate approximation of the energies?
- Is there any other equation that is coupled with the elliptic system under study?
- In this case, what are the constraints related to this coupling? to an existing code?
- Do I really need theorems?

THE END

Advertisement

The International Symposium of Finite Volumes for Complex Applications
FVCA VII, Berlin, Germany, June 16-20, 2014
http://www.wias-berlin.de/fvca7

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^{2}$ be any unitary vector. For any $x \in \Omega$ let $y(x)$ be the projection of x onto $\partial \Omega$ in the direction ξ.
- For any $\sigma \in \mathcal{E}$, we set

$$
\chi_{\sigma}(x, y)= \begin{cases}1 & \text { if }[x, y] \cap \sigma \neq \emptyset \\ 0 & \text { if }[x, y] \cap \sigma=\emptyset\end{cases}
$$

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^{2}$ be any unitary vector. For any $x \in \Omega$ let $y(x)$ be the projection of x onto $\partial \Omega$ in the direction ξ.
- For any $\sigma \in \mathcal{E}$, we set

$$
\chi_{\sigma}(x, y)= \begin{cases}1 & \text { if }[x, y] \cap \sigma \neq \emptyset \\ 0 & \text { if }[x, y] \cap \sigma=\emptyset\end{cases}
$$

- Let us define the set

$$
\begin{array}{r}
\tilde{\Omega}=\{x \in \Omega, \quad[x, y(x)] \text { does not contain any vertex of the mesh } \\
\text { and any edge of the mesh }\} .
\end{array}
$$

Observe that $\tilde{\Omega}^{c}$ has a zero Lebesgue measure in Ω.

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^{2}$ be any unitary vector. For any $x \in \Omega$ let $y(x)$ be the projection of x onto $\partial \Omega$ in the direction ξ.
- For any $\sigma \in \mathcal{E}$, we set

$$
\chi_{\sigma}(x, y)= \begin{cases}1 & \text { if }[x, y] \cap \sigma \neq \emptyset \\ 0 & \text { if }[x, y] \cap \sigma=\emptyset\end{cases}
$$

- Let us define the set

$$
\begin{array}{r}
\tilde{\Omega}=\{x \in \Omega, \quad[x, y(x)] \text { does not contain any vertex of the mesh } \\
\text { and any edge of the mesh }\} .
\end{array}
$$

Observe that $\tilde{\Omega}^{c}$ has a zero Lebesgue measure in Ω.

- Let us take $\mathcal{K} \in \mathcal{T}$ and $x \in \mathcal{K} \cap \tilde{\Omega}$.

By following the segment $[x, y(x)]$ from x to $y(x)$, we encounter a finite number of control volumes denoted by $\left(\mathcal{K}_{i}\right)_{1 \leq i \leq m}$ with $\mathcal{K}_{1}=\mathcal{K}$ and \mathcal{K}_{m} is a boundary control volume.

Proof of the Poincaré inequality

- We write a telescoping sum

$$
\begin{aligned}
& u_{\mathcal{K}}=u_{\mathcal{K}_{1}}=\sum_{i=1}^{m-1}\left(u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right)+u_{\mathcal{K}_{m}} \\
& \left|u_{\mathcal{K}}\right| \leq \sum_{i=1}^{m-1}\left|u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right|+\left|0-u_{\mathcal{K}_{m}}\right|
\end{aligned}
$$

- Thus, we get

$$
\left|u_{\mathcal{K}}\right| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right| \chi_{\sigma}(x, y(x))
$$

Proof of the Poincaré inequality

- We write a telescoping sum

$$
\begin{aligned}
& u_{\mathcal{K}}=u_{\mathcal{K}_{1}}=\sum_{i=1}^{m-1}\left(u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right)+u_{\mathcal{K}_{m}} \\
& \left|u_{\mathcal{K}}\right| \leq \sum_{i=1}^{m-1}\left|u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right|+\left|0-u_{\mathcal{K}_{m}}\right|
\end{aligned}
$$

- Thus, we get

$$
\left|u_{\mathcal{K}}\right| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} \sqrt{c_{\sigma}} \frac{1}{\sqrt{c_{\sigma}}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right| \chi_{\sigma}(x, y(x))
$$

with $c_{\sigma}=\left|\boldsymbol{\nu}_{\sigma} \cdot \xi\right|$ (which is non zero, since $x \in \tilde{\Omega}$).

Proof of the Poincaré inequality

- We write a telescoping sum

$$
\begin{aligned}
& u_{\mathcal{K}}=u_{\mathcal{K}_{1}}=\sum_{i=1}^{m-1}\left(u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right)+u_{\mathcal{K}_{m}} \\
& \left|u_{\mathcal{K}}\right| \leq \sum_{i=1}^{m-1}\left|u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right|+\left|0-u_{\mathcal{K}_{m}}\right|
\end{aligned}
$$

- Thus, we get

$$
\left|u_{\mathcal{K}}\right| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} \sqrt{c_{\sigma}} \frac{1}{\sqrt{c_{\sigma}}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right| \chi_{\sigma}(x, y(x))
$$

- We use Cauchy-Schwarz inequality

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right)
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right)
$$

First term estimate Let $\tilde{\sigma} \in \mathcal{E}_{\text {ext }}$ be such that $y(x) \in \tilde{\sigma}$.

$$
\sum_{i=1}^{m-1}\left(x_{\mathcal{K}_{i}}-x_{\mathcal{K}_{i+1}}\right)+x_{\mathcal{K}_{m}}-x_{\tilde{\sigma}}=x_{\mathcal{K}}-x_{\tilde{\sigma}}
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right)
$$

First term estimate Let $\tilde{\sigma} \in \mathcal{E}_{\text {ext }}$ be such that $y(x) \in \tilde{\sigma}$.

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right)
$$

First term estimate Let $\tilde{\sigma} \in \mathcal{E}_{\text {ext }}$ be such that $y(x) \in \tilde{\sigma}$.

$$
-\sum_{i=1}^{m-1} \underbrace{d_{\mathcal{K}_{i} \mathcal{K}_{i+1}}}_{d_{\sigma}} \underbrace{\boldsymbol{\nu}_{\mathcal{K}_{i} \mathcal{K}_{i+1}}} \cdot \xi=c_{\sigma}-d_{\mathcal{K}_{m} \tilde{\sigma}} \boldsymbol{\nu}_{\mathcal{K}_{m} \tilde{\sigma}} \cdot \xi=\left(x_{\mathcal{K}}-x_{\tilde{\sigma}}\right) \cdot \xi
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right)
$$

First term estimate Let $\tilde{\sigma} \in \mathcal{E}_{\text {ext }}$ be such that $y(x) \in \tilde{\sigma}$.

$$
\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))=\left|\left(x_{\mathcal{K}}-x_{\tilde{\sigma}}\right) \cdot \xi\right| \leq \operatorname{diam}(\Omega)
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \mathcal{K} \in \mathcal{T}, \forall x \in \mathcal{K} \cap \tilde{\Omega} .
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \mathcal{K} \in \mathcal{T}, \forall x \in \mathcal{K} \cap \tilde{\Omega} .
$$

We integrate this formula on $\mathcal{K} \cap \tilde{\Omega}$ with respect to x, then we sum over $\mathcal{K} \in \mathcal{T}$

$$
\sum_{\mathcal{K} \in \mathcal{T}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2}\left(\int_{\Omega} \chi_{\sigma}(x, y(x)) d x\right),
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \mathcal{K} \in \mathcal{T}, \forall x \in \mathcal{K} \cap \tilde{\Omega} .
$$

We integrate this formula on $\mathcal{\mathcal { K }} \cap \tilde{\Omega}$ with respect to x, then we sum over $\mathcal{K} \in \mathcal{T}$

$$
\sum_{\mathcal{K} \in \mathcal{T}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2}\left(\int_{\Omega} \chi_{\sigma}(x, y(x)) d x\right),
$$

Estimate of each integral

$$
\int_{\Omega} \chi_{\sigma}(x, y(x)) d x \leq \operatorname{diam}(\Omega)|\sigma| c_{\sigma}
$$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \mathcal{K} \in \mathcal{T}, \forall x \in \mathcal{K} \cap \tilde{\Omega} .
$$

We integrate this formula on $\mathcal{\mathcal { K }} \cap \tilde{\Omega}$ with respect to x, then we sum over $\mathcal{K} \in \mathcal{T}$

$$
\sum_{\mathcal{K} \in \mathcal{T}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau}\right)\right|^{2}\left(\int_{\Omega} \chi_{\sigma}(x, y(x)) d x\right),
$$

Estimate of each integral

$$
\int_{\Omega} \chi_{\sigma}(x, y(x)) d x \leq \operatorname{diam}(\Omega)|\sigma| c_{\sigma}
$$

Conclusion

$$
\left\|u^{\mathcal{T}}\right\|_{L^{2}}^{2}=\sum_{\mathcal{K} \in \mathcal{T}}\left|\mathcal{K}\left\|\left.u_{\mathcal{K}}\right|^{2} \leq \operatorname{diam}(\Omega)^{2} \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\sigma}\left|D_{\sigma}\left(u^{\mathcal{T}}\right)\right|^{2}=\operatorname{diam}(\Omega)^{2}\right\| u^{\mathcal{T}} \|_{1, \mathcal{T}}^{2}\right.
$$

4 Back

- Let $u^{n} \in L^{2}\left(\mathbb{R}^{2}\right)$ be the extension by 0 of $u^{\tau_{n}} \in L^{2}(\Omega)$.
- In order to use the Kolmogorov theorem we need a translation estimate

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}} \xrightarrow[\eta \rightarrow 0]{ } 0, \quad \text { unif. with respect to } n .
$$

- Let $u^{n} \in L^{2}\left(\mathbb{R}^{2}\right)$ be the extension by 0 of $u^{\mathcal{T}_{n}} \in L^{2}(\Omega)$.
- In order to use the Kolmogorov theorem we need a translation estimate

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}} \xrightarrow[\eta \rightarrow 0]{ } 0, \quad \text { unif. with respect to } n
$$

- Let $\eta \in \mathbb{R}^{2} \backslash\{0\}$. A standard computation (telescoping sum) leads to

$$
\left|u^{n}(x+\eta)-u^{n}(x)\right| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma}\left|D_{\sigma}\left(u^{\tau_{n}}\right)\right| \chi_{\sigma}(x, x+\eta)
$$

then by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\left|u^{n}(x+\eta)-u^{n}(x)\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}}\right. & \left.\chi_{\sigma}(x, x+\eta) d_{\sigma} c_{\sigma}\right) \\
& \times\left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\tau, n}\right)\right|^{2}\right),
\end{aligned}
$$

with $c_{\sigma}=\left|\boldsymbol{\nu}_{\sigma} \cdot \frac{\eta}{|\eta|}\right|$.

$$
\begin{aligned}
&\left|u^{n}(x+\eta)-u^{n}(x)\right|^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) d_{\sigma} c_{\sigma}\right) \\
& \times\left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\right)
\end{aligned}
$$

with $c_{\sigma}=\left|\boldsymbol{\nu} \cdot \frac{\eta}{|\eta|}\right|$.
Estimate of The first TERM

- Without loss of generalities we assume that $[x, x+\eta] \subset \Omega$.
- Let $\mathcal{K}, \mathcal{L} \in \mathcal{T}$ be such that $x \in \mathcal{K}$ and $x+\eta \in \mathcal{L}$. Thus, we have

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) d_{\sigma} c_{\sigma} & =\left|\left(x_{\mathcal{L}}-x_{\mathcal{K}}\right) \cdot \frac{\eta}{|\eta|}\right| \leq\left|x_{\mathcal{L}}-x_{\mathcal{K}}\right| \\
& \leq\left|x_{\mathcal{L}}-(x+\eta)\right|+|(x+\eta)-x|+\left|x-x_{\mathcal{K}}\right| \\
& \leq|\eta|+2 \operatorname{size}\left(\mathcal{T}_{n}\right)
\end{aligned}
$$

- We integrate with respect to $x \in \mathbb{R}^{2}$

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}}^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\left(\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x\right)
$$

$$
\left|u^{n}(x+\eta)-u^{n}(x)\right|^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}}\left(\chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\right)
$$

- We integrate with respect to $x \in \mathbb{R}^{2}$

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}}^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\left(\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x\right)
$$

$$
\left|u^{n}(x+\eta)-u^{n}(x)\right|^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}}\left(\chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{\tau}, n}\right)\right|^{2}\right)
$$

- We integrate with respect to $x \in \mathbb{R}^{2}$

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}}^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\left(\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x\right)
$$

- Computation of the integral

$$
\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x=|\eta||\sigma| c_{\sigma}
$$

$$
\left|u^{n}(x+\eta)-u^{n}(x)\right|^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}}\left(\chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{T}, n}\right)\right|^{2}\right)
$$

- We integrate with respect to $x \in \mathbb{R}^{2}$
$\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}}^{2} \leq C\left(|\eta|+\operatorname{size}\left(\mathcal{T}_{n}\right)\right) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}}\left|D_{\sigma}\left(u^{\mathcal{\tau}, n}\right)\right|^{2}\left(\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x\right)$
- Computation of the integral

$$
\int_{\mathbb{R}^{2}} \chi_{\sigma}(x, x+\eta) d x=|\eta||\sigma| c_{\sigma}
$$

Conclusion

$$
\left\|u^{n}(\cdot+\eta)-u^{n}\right\|_{L^{2}}^{2} \leq C|\eta|(|\eta|+\underbrace{\operatorname{size}\left(\mathcal{T}_{n}\right)}_{\leq \operatorname{diam}(\Omega)}) \underbrace{\left\|u^{\mathcal{T}_{n}}\right\|_{1, \mathcal{T}_{n}}^{2}}_{\text {bounded }} .
$$

Kolmogoroff $\Rightarrow \exists$ a subsequence $u^{\varphi(n)} \longrightarrow u \in L^{2}\left(\mathbb{R}^{2}\right)$ with $u=0$ outside Ω.

- By assumption, we have

$$
\sup _{n}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right\|_{L^{2}}<+\infty
$$

- There exists $G \in\left(L^{2}(\Omega)\right)^{2}$ such that (up to a subsequence) we have

$$
\nabla^{\tau} \varphi(n) u^{\tau_{\varphi(n)}} \underset{n \rightarrow \infty}{ } G, \text { in } L^{2}(\Omega)^{2}
$$

We want to show that $u \in H_{0}^{1}(\Omega)$ and $\nabla u=G$.

- By assumption, we have

$$
\sup _{n}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right\|_{L^{2}}<+\infty
$$

- There exists $G \in\left(L^{2}(\Omega)\right)^{2}$ such that (up to a subsequence) we have

$$
\nabla^{\mathcal{T}} \varphi(n) u^{\mathcal{T}} \varphi(n) \underset{n \rightarrow \infty}{ } G, \quad \text { in } L^{2}(\Omega)^{2}
$$

We want to show that $u \in H_{0}^{1}(\Omega)$ and $\nabla u=G$.

- Let $\Phi \in\left(\mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)\right)^{2}$ (we do not assume that $\Phi=0$ on $\partial \Omega$)

$$
I_{n} \stackrel{\text { def }}{=} \int_{\Omega} u^{\mathcal{T}_{n}}(\operatorname{div} \Phi) d x \underset{n \rightarrow \infty}{ } \int_{\Omega} u(\operatorname{div} \Phi) d x
$$

- By assumption, we have

$$
\sup _{n}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right\|_{L^{2}}<+\infty
$$

- There exists $G \in\left(L^{2}(\Omega)\right)^{2}$ such that (up to a subsequence) we have

$$
\nabla^{\mathcal{T}} \varphi(n) u^{\mathcal{T}} \varphi(n) \underset{n \rightarrow \infty}{ } G, \quad \text { in } L^{2}(\Omega)^{2}
$$

We want to show that $u \in H_{0}^{1}(\Omega)$ and $\nabla u=G$.

- Let $\Phi \in\left(\mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)\right)^{2}$ (we do not assume that $\Phi=0$ on $\partial \Omega$)

$$
I_{n} \stackrel{\text { def }}{=} \int_{\Omega} u^{\mathcal{T}_{n}}(\operatorname{div} \Phi) d x \underset{n \rightarrow \infty}{ } \int_{\Omega} u(\operatorname{div} \Phi) d x
$$

- We also have

$$
I_{n}=\sum_{\mathcal{K} \in \mathcal{T}_{n}} u_{\mathcal{K}}^{n}\left(\int_{\mathcal{K}} \operatorname{div} \Phi d x\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}} u_{\mathcal{K}}^{n} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}}\left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\mathcal{K} \sigma} d x\right)
$$

- We sum over the edges in the mesh

$$
I_{n}=\sum_{\sigma \in \mathcal{E}_{\text {int }}}\left(u_{\mathcal{K}}^{n}-u_{\mathcal{L}}^{n}\right)\left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+\sum_{\sigma \in \mathcal{E}_{\text {ext }}}\left(u_{\mathcal{K}}^{n}-0\right)\left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\mathcal{K} \sigma}\right) .
$$

- We sum over the edges in the mesh

$$
I_{n}=\sum_{\sigma \in \mathcal{E}_{\text {int }}}\left(u_{\mathcal{K}}^{n}-u_{\mathcal{L}}^{n}\right) \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} \cdot\left(\int_{\sigma} \Phi\right)+\sum_{\sigma \in \mathcal{E}_{\text {ext }}}\left(u_{\mathcal{K}}^{n}-0\right) \boldsymbol{\nu}_{\kappa \sigma} \cdot\left(\int_{\sigma} \Phi\right) .
$$

- We sum over the edges in the mesh

$$
\begin{aligned}
I_{n}=\sum_{\sigma \in \mathcal{E}_{i n t}} \frac{|\sigma| d_{\mathcal{K} \mathcal{L}}}{d} & \left(d \frac{u_{\kappa}^{n}-u_{\mathcal{L}}^{n}}{d_{\mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right) \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right) \\
& +\sum_{\sigma \in \mathcal{E}_{e x t}} \frac{|\sigma| d_{\mathcal{K} \sigma}}{d}\left(d \frac{u_{\mathcal{K}}^{n}-0}{d_{\kappa \sigma}} \boldsymbol{\nu}_{\kappa \sigma}\right) \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right) .
\end{aligned}
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\tau_{n}} u^{\tau_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right) .
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{\tau}_{n}} u^{\mathcal{\tau}_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)
$$

- Since Φ is \mathcal{C}^{∞}

$$
\forall \sigma \in \mathcal{E},\left|\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)-\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)\right| \leq C\|\nabla \Phi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)
$$

- Since Φ is \mathcal{C}^{∞}

$$
\forall \sigma \in \mathcal{E},\left|\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)-\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)\right| \leq C\|\nabla \Phi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
$$

- Since $\left(\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right)_{n}$ is bounded in L^{2}, we have

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{\tau}_{n}} \cdot\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)+O_{\Phi}\left(\operatorname{size}\left(\mathcal{T}_{n}\right)\right)
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{\tau}_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)
$$

- Since Φ is \mathcal{C}^{∞}

$$
\forall \sigma \in \mathcal{E},\left|\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)-\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)\right| \leq C\|\nabla \Phi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
$$

- Since $\left(\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right)_{n}$ is bounded in L^{2}, we have

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}} \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \int_{\mathcal{D}} \Phi+O_{\Phi}\left(\operatorname{size}\left(\mathcal{T}_{n}\right)\right)
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{\tau}_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)
$$

- Since Φ is \mathcal{C}^{∞}

$$
\forall \sigma \in \mathcal{E},\left|\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)-\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)\right| \leq C\|\nabla \Phi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
$$

- Since $\left(\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right)_{n}$ is bounded in L^{2}, we have

$$
I_{n}=-\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \Phi d x+O_{\Phi}\left(\operatorname{size}\left(\mathcal{T}_{n}\right)\right)
$$

- We sum over the edges in the mesh

$$
I_{n}=-\sum_{\sigma \in \mathcal{E}}|\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)
$$

- Since Φ is \mathcal{C}^{∞}

$$
\forall \sigma \in \mathcal{E},\left|\left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right)-\left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right)\right| \leq C\|\nabla \Phi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
$$

- Since $\left(\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right)_{n}$ is bounded in L^{2}, we have

$$
I_{n}=-\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \Phi d x+O_{\Phi}\left(\operatorname{size}\left(\mathcal{T}_{n}\right)\right)
$$

- Conclusion, for any $\Phi \in\left(\mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)\right)^{2}$, we have

$$
I_{n} \xrightarrow[n \rightarrow \infty]{ }-\int_{\Omega} G \cdot \Phi d x, \text { and } I_{n} \xrightarrow[n \rightarrow \infty]{ } \int_{\Omega} u \operatorname{div} \Phi d x
$$

Energy estimate

$$
\forall n \geq 0, \quad\left\|u^{\mathcal{T}_{n}}\right\|_{1, \mathcal{T}_{n}} \leq \operatorname{diam}(\Omega)\|f\|_{L^{2}}
$$

Convergence proof of TPFA

Energy estimate

$$
\forall n \geq 0, \quad\left\|u^{\mathcal{\tau}_{n}}\right\|_{1, \mathcal{T}_{n}} \leq \operatorname{diam}(\Omega)\|f\|_{L^{2}}
$$

Compactness theorem \Rightarrow There exists $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
u^{\mathcal{T}} \varphi(n) \underset{n \rightarrow \infty}{\longrightarrow} u \text { in } L^{2}(\Omega) \\
\nabla^{\mathcal{T}} \varphi(n) u^{\mathcal{T}} \varphi(n) \underset{n \rightarrow \infty}{ } \nabla u \operatorname{in}\left(L^{2}(\Omega)\right)^{2} .
\end{gathered}
$$

Convergence proof of TPFA

Energy estimate

$$
\forall n \geq 0, \quad\left\|u^{\mathcal{\tau}_{n}}\right\|_{1, \mathcal{T}_{n}} \leq \operatorname{diam}(\Omega)\|f\|_{L^{2}}
$$

Compactness theorem \Rightarrow There exists $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
u^{\mathcal{T}} \varphi(n) \xrightarrow[n \rightarrow \infty]{ } u \operatorname{in} L^{2}(\Omega) \\
\nabla^{\mathcal{T}} \varphi(n) u^{\mathcal{T}} \varphi(n) \underset{n \rightarrow \infty}{ } \nabla u \operatorname{in}\left(L^{2}(\Omega)\right)^{2}
\end{gathered}
$$

It REMAINS TO CHECK THAT

$$
u \text { solves }-\Delta u=f
$$

that is

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

\rightsquigarrow By standard uniqueness arguments, the convergence holds for the whole sequence $\left(u^{\mathcal{T}_{n}}\right)_{n}$.

Convergence proof of TPFA

$$
\mathbb{P}^{\mathcal{T}} \varphi \stackrel{\text { def }}{=}\left(\varphi\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

Discrete integration by parts with $v^{\mathcal{T}}=\mathbb{P}^{\mathcal{T}} \varphi$

$$
\sum_{\sigma \in \mathcal{E}_{i n t}} d_{\sigma}|\sigma| D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}_{n}}\right) \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} \varphi\left(x_{\mathcal{K}}\right)
$$

Remark : For n large enough, the boundary terms vanish.

Convergence proof of TPFA

$$
\mathbb{P}^{\mathcal{T}} \varphi \stackrel{\text { def }}{=}\left(\varphi\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

Discrete integration by parts with $v^{\mathcal{T}}=\mathbb{P}^{\mathcal{T}} \varphi$

$$
\sum_{\sigma \in \mathcal{E}_{i n t}} d_{\sigma}|\sigma| D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{\tau}_{n}}\right) \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} \varphi\left(x_{\mathcal{K}}\right)
$$

Remark : For n large enough, the boundary terms vanish.
Definition of the discrete gradient

$$
\sum_{\sigma \in \mathcal{E}_{i n t}} \underbrace{\frac{d_{\sigma}|\sigma|}{d}}_{=|\mathcal{D}|} \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\tau_{n}} \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} \varphi\left(x_{\mathcal{K}}\right)
$$

$$
\mathbb{P}^{\mathcal{T}} \varphi \stackrel{\text { def }}{=}\left(\varphi\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

DISCRETE INTEGRATION BY PARTS WITH $v^{\mathcal{T}}=\mathbb{P}^{\mathcal{T}} \varphi$

$$
\sum_{\sigma \in \mathcal{E}_{i n t}} d_{\sigma}|\sigma| D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}_{n}}\right) \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} \varphi\left(x_{\mathcal{K}}\right)
$$

Remark : For n large enough, the boundary terms vanish.
Definition of the discrete gradient

$$
\sum_{\sigma \in \mathcal{E}_{\text {int }}} \int_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}} \int_{\mathcal{K}} f(x) \varphi\left(x_{\mathcal{K}}\right) d x
$$

$$
\mathbb{P}^{\mathcal{T}} \varphi \stackrel{\text { def }}{=}\left(\varphi\left(x_{\mathcal{K}}\right)\right)_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

Discrete integration by parts with $v^{\mathcal{T}}=\mathbb{P}^{\mathcal{T}} \varphi$

$$
\sum_{\sigma \in \mathcal{E}_{i n t}} d_{\sigma}|\sigma| D_{\mathcal{K} \mathcal{L}}\left(u^{\mathcal{T}_{n}}\right) \cdot\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} \varphi\left(x_{\mathcal{K}}\right)
$$

Remark : For n large enough, the boundary terms vanish.
Definition of the discrete gradient

$$
\begin{aligned}
& \sum_{\sigma \in \mathcal{E}_{\text {int }}} \int_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\tau_{n}} \cdot(\nabla \varphi(x)+\underbrace{\left(\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}-\left(\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right) \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)}_{\stackrel{\text { def }}{=} R_{1}^{n}(x)}) d x \\
&=\sum_{\mathcal{K} \in \mathcal{T}} \int_{\mathcal{K}} f(x)(\varphi(x)+\underbrace{\left(\varphi\left(x_{\mathcal{K}}\right)-\varphi(x)\right)}_{\stackrel{\text { def }}{=} R_{2}^{n}(x)}) d x
\end{aligned}
$$

Summary

$$
\begin{aligned}
\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \nabla \varphi(x) d x & -\int_{\Omega} f(x) \varphi(x) d x \\
& =-\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot R_{1}^{n}(x) d x+\int_{\Omega} f(x) R_{2}^{n}(x) d x
\end{aligned}
$$

Summary

$$
\begin{aligned}
\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \nabla \varphi(x) d x & -\int_{\Omega} f(x) \varphi(x) d x \\
& =-\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot R_{1}^{n}(x) d x+\int_{\Omega} f(x) R_{2}^{n}(x) d x
\end{aligned}
$$

Remainders estimates Recall that φ is smooth

$$
\begin{gathered}
\left|R_{1}^{n}(x)\right|=\left|\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}-\left(\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right) \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right| \leq C\left\|D^{2} \varphi\right\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right) \\
\left|R_{2}^{n}(x)\right|=\left|\varphi\left(x_{\mathcal{K}}\right)-\varphi(x)\right| \leq\|D \varphi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
\end{gathered}
$$

Summary

$$
\begin{aligned}
\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot \nabla \varphi(x) d x & -\int_{\Omega} f(x) \varphi(x) d x \\
& =-\int_{\Omega} \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \cdot R_{1}^{n}(x) d x+\int_{\Omega} f(x) R_{2}^{n}(x) d x
\end{aligned}
$$

Remainders estimates Recall that φ is smooth

$$
\begin{gathered}
\left|R_{1}^{n}(x)\right|=\left|\frac{\varphi\left(x_{\mathcal{L}}\right)-\varphi\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}-\left(\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right) \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right| \leq C\left\|D^{2} \varphi\right\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right) \\
\left|R_{2}^{n}(x)\right|=\left|\varphi\left(x_{\mathcal{K}}\right)-\varphi(x)\right| \leq\|D \varphi\|_{\infty} \operatorname{size}\left(\mathcal{T}_{n}\right)
\end{gathered}
$$

We can pass to the limit

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

Observe that, (\star) still holds for any $\varphi \in H_{0}^{1}(\Omega)$.

Convergence proof of TPFA

Strong convergence of the gradient does not hold Using the discrete integration by parts, we get

$$
\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma|\left|D_{\sigma}\left(u^{\mathcal{T}_{n}}\right)\right|^{2}=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} u_{\mathcal{K}}^{n}=\int_{\Omega} f(x) u^{\mathcal{T}_{n}}(x) d x
$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}=d D_{\sigma}\left(u^{\mathcal{T}_{n}}\right) \boldsymbol{\nu}_{\sigma}$, we deduce

$$
\frac{1}{d} \sum_{\sigma \in \mathcal{E}} \underbrace{\frac{d_{\sigma}|\sigma|}{d}}_{=|\mathcal{D}|}\left|\nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right|^{2}=\int_{\Omega} f(x) u^{\mathcal{T}_{n}}(x) d x
$$

Convergence proof of TPFA

Strong convergence of the gradient does not hold Using the discrete integration by parts, we get

$$
\sum_{\sigma \in \mathcal{E}} d_{\sigma}|\sigma|\left|D_{\sigma}\left(u^{\mathcal{T}_{n}}\right)\right|^{2}=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} u_{\mathcal{K}}^{n}=\int_{\Omega} f(x) u^{\mathcal{T}_{n}}(x) d x
$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}=d D_{\sigma}\left(u^{\mathcal{T}_{n}}\right) \boldsymbol{\nu}_{\sigma}$, we deduce

$$
\frac{1}{d}\left\|\nabla^{\mathcal{\tau}_{n}} u^{\mathcal{\tau}_{n}}\right\|_{L^{2}}^{2}=\int_{\Omega} f(x) u^{\mathcal{\tau}_{n}}(x) d x
$$

Convergence proof of TPFA

Strong convergence of the gradient does not hold Using the discrete integration by parts, we get

$$
\sum_{\sigma \in \mathcal{E}} d_{\sigma}\left|\sigma \| D_{\sigma}\left(u^{\mathcal{T}_{n}}\right)\right|^{2}=\sum_{\mathcal{K} \in \mathcal{T}_{n}}|\mathcal{K}| f_{\mathcal{K}} u_{\mathcal{K}}^{n}=\int_{\Omega} f(x) u^{\mathcal{T}_{n}}(x) d x
$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}=d D_{\sigma}\left(u^{\mathcal{T}_{n}}\right) \boldsymbol{\nu}_{\sigma}$, we deduce

$$
\frac{1}{d}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right\|_{L^{2}}^{2}=\int_{\Omega} f(x) u^{\mathcal{T}_{n}}(x) d x
$$

We pass to the limit in the right-hand side term to get

$$
\lim _{n \rightarrow \infty}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{\tau}_{n}}\right\|_{L^{2}}^{2}=d \int_{\Omega} f(x) u(x) d x=d\|\nabla u\|_{L^{2}}^{2}
$$

\rightsquigarrow For $u \neq 0$ and $d \geq 2$, we do not have strong convergence of the gradients.

4 Back

Consistency proof for TPFA

$$
R_{\sigma}(u)=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x .
$$

- Taylor formulas for $u \in \mathcal{C}^{2}$ and $x \in \sigma$

$$
\begin{aligned}
& u\left(x_{\mathcal{L}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{L}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t, \\
& u\left(x_{\mathcal{K}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{K}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{K}}-x\right)\right) \cdot\left(x_{\mathcal{K}}-x\right)^{2} d t .
\end{aligned}
$$

$$
R_{\sigma}(u)=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x .
$$

- Taylor formulas for $u \in \mathcal{C}^{2}$ and $x \in \sigma$

$$
\begin{aligned}
& u\left(x_{\mathcal{L}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{L}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t \\
& u\left(x_{\mathcal{K}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{K}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{K}}-x\right)\right) \cdot\left(x_{\mathcal{K}}-x\right)^{2} d t
\end{aligned}
$$

- By subtraction, and using that $x_{\mathcal{L}}-x_{\mathcal{K}}=d_{\mathcal{K} \mathcal{L}} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}$,

$$
\begin{gathered}
u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)=d_{\mathcal{K} \mathcal{L}} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t \\
-\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{K}}-x\right)\right) \cdot\left(x_{\mathcal{K}}-x\right)^{2} d t
\end{gathered}
$$

$$
R_{\sigma}(u)=\frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

- Taylor formulas for $u \in \mathcal{C}^{2}$ and $x \in \sigma$

$$
\begin{aligned}
& u\left(x_{\mathcal{L}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{L}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t \\
& u\left(x_{\mathcal{K}}\right)=u(x)+\nabla u(x) \cdot\left(x_{\mathcal{K}}-x\right)+\int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{K}}-x\right)\right) \cdot\left(x_{\mathcal{K}}-x\right)^{2} d t
\end{aligned}
$$

- Conclusion

$$
\begin{aligned}
R_{\sigma}(u)= & \underbrace{\frac{1}{d_{\mathcal{K} \mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t d x}_{=T_{1}} \\
& -\underbrace{\frac{1}{d_{\mathcal{L} \mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{K}}-x\right)\right) \cdot\left(x_{\mathcal{K}}-x\right)^{2} d t d x}_{=T_{2}}
\end{aligned}
$$

$$
T_{1}=\frac{1}{d_{\mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t d x .
$$

$$
T_{1}=\frac{1}{d_{\mathcal{K}}|\sigma|} \int_{\sigma} \int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t d x .
$$

Jensen inequality

$$
\left|T_{1}\right|^{2} \leq \frac{1}{d_{\mathcal{K} \mathcal{L}}^{2}|\sigma|} \int_{\sigma} \int_{0}^{1}|1-t|^{2}\left|D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right)\right|^{2}\left|x_{\mathcal{L}}-x\right|^{4} d t d x .
$$

$$
T_{1}=\frac{1}{d_{\mathcal{K} \mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1}(1-t) D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right) \cdot\left(x_{\mathcal{L}}-x\right)^{2} d t d x
$$

JEnsen inequality

$$
\left|T_{1}\right|^{2} \leq \frac{1}{d_{\mathcal{K} \mathcal{L}}^{2}|\sigma|} \int_{\sigma} \int_{0}^{1}|1-t|^{2}\left|D^{2} u\left(x+t\left(x_{\mathcal{L}}-x\right)\right)\right|^{2}\left|x_{\mathcal{L}}-x\right|^{4} d t d x
$$

Change of variables

$$
(t, x) \in[0,1] \times \sigma \mapsto y=x+t\left(x_{\mathcal{L}}-x\right) \in \mathcal{D}_{\mathcal{L}} .
$$

The Jacobian determinant is $(1-t)\left(x_{\mathcal{L}}-x\right) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}=(1-t) d_{\mathcal{L} \sigma}$.

$$
\left|T_{1}\right|^{2} \leq \frac{\mathrm{d}_{\mathcal{D}}^{4}}{d_{\mathcal{K} \mathcal{L}}^{2} d_{\mathcal{L}, \sigma}|\sigma|} \int_{\mathcal{D}_{\mathcal{L}}}\left|D^{2} u(y)\right|^{2} d y \leq C(\operatorname{reg}(\mathcal{T})) \frac{\operatorname{size}(\mathcal{T})^{2}}{|\mathcal{D}|} \int_{\mathcal{D}}\left|D^{2} u(y)\right|^{2} d y
$$

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total Flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of The total Flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

TAYLOR FORMULAS around $x \in \sigma$
WARNING : u is not globally smooth but $u_{\mid \mathcal{K}}$ and $u_{\mid \mathcal{L}}$ are smooth.

$$
\begin{aligned}
& u\left(x_{\mathcal{K}}\right)=u(x)+\nabla u_{\left.\right|_{\mathcal{K}}}(x) \cdot\left(x_{\mathcal{K}}-x\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right) \\
& u\left(x_{\mathcal{L}}\right)=u(x)+\nabla u_{\left.\right|_{\mathcal{L}}}(x) \cdot\left(x_{\mathcal{L}}-x\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
\end{aligned}
$$

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

TAYLOR FORMULAS around $x \in \sigma$

$$
\begin{gathered}
u\left(x_{\mathcal{K}}\right)=u(x)+\nabla u_{\mid \mathcal{K}}(x) \cdot\left(-d_{\mathcal{K} \sigma} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+x_{\sigma}-x\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right) \\
u\left(x_{\mathcal{L}}\right)=u(x)+\nabla u_{\mid \mathcal{L}}(x) \cdot\left(d_{\mathcal{L} \sigma} \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+x_{\sigma}-x\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
\end{gathered}
$$

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

TAYLOR FORMULAS around $x \in \sigma$

$$
u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)=d_{\mathcal{L} \sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+d_{\mathcal{K} \sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}+O\left(\operatorname{size}(\mathcal{T})^{2}\right)
$$

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

TAYLOR FORMULAS around $x \in \sigma$
$u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)=\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}\left(k_{\mathcal{L}} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}\left(k_{\mathcal{K}} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right)$.

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total flux
$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x$.
TAYLOR FORMULAS around $x \in \sigma$
$u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)=\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}\left(k_{\mathcal{L}} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}\left(k_{\mathcal{K}} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right)$.
We integrate on σ
$|\sigma|\left(u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)\right)=\left(\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}+\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}\right) \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x+O\left(\operatorname{size}(\mathcal{T})^{3}\right)$.

$$
R_{\sigma}(u)=\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{K}^{\prime}}}{k_{\mathcal{K}}}+\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}-\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

"Continuity" of the total flux

$$
\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x \stackrel{\text { def }}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x=k_{\mathcal{L}} \int_{\sigma} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x
$$

TAYLOR FORMULAS around $x \in \sigma$
$u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)=\frac{d_{\mathcal{L} \sigma}}{k_{\mathcal{L}}}\left(k_{\mathcal{L}} \nabla u_{\mid \mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}\left(k_{\mathcal{K}} \nabla u_{\mid \mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}}\right)+O\left(\operatorname{size}(\mathcal{T})^{2}\right)$.
We integrate on σ

$$
\frac{d_{\mathcal{K} \mathcal{L}}}{\frac{d_{\mathcal{L}_{\sigma}}}{k_{\mathcal{L}}}+\frac{d_{\mathcal{K} \sigma}}{k_{\mathcal{K}}}} \frac{u\left(x_{\mathcal{L}}\right)-u\left(x_{\mathcal{K}}\right)}{d_{\mathcal{K} \mathcal{L}}}=\frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K} \mathcal{L}} d x+O(\operatorname{size}(\mathcal{T}))
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\left|u_{\mathcal{K}}\right|^{2}=\left|u_{\mathcal{K}_{1}}\right|^{2}=\sum_{i=1}^{m-1}\left(\left|u_{\mathcal{K}_{i}}\right|^{2}-\left|u_{\mathcal{K}_{i+1}}\right|^{2}\right)+\left|u_{\mathcal{K}_{m}}\right|^{2}
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\left|u_{\mathcal{K}}\right|^{2} \leq\left(\sum_{i=1}^{m-1}\left|u_{\mathcal{K}_{i}}-u_{\mathcal{K}_{i+1}}\right|\left(\left|u_{\mathcal{K}_{i}}\right|+\left|u_{\mathcal{K}_{i+1}}\right|\right)\right)+\left|u_{\mathcal{K}_{m}}\right|^{2}
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2} \leq \sum_{\sigma=\mathcal{K} \mid \mathcal{L} \in \mathcal{E}}\left|u_{\mathcal{K}}-u_{\mathcal{L}}\right|\left(\left|u_{\mathcal{K}}\right|+\left|u_{\mathcal{L}}\right|\right) \underbrace{\left(\int_{\Omega} \chi_{\sigma}(x, y(x)) d x\right)}_{\leq|\sigma|}
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2} \leq \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|\left(\left|u_{\mathcal{K}}\right|+\left|u_{\mathcal{L}}\right|\right)
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2} \leq\left(\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right)\right)^{\frac{1}{2}}
$$

- Regularity of the mesh

$$
|\mathcal{D}|=\frac{1}{2}\left(\sin \alpha_{\mathcal{D}}\right)|\sigma| d_{\mathcal{K} \mathcal{L}} \Rightarrow|\sigma| d_{\mathcal{K} \mathcal{L}} \leq C(\operatorname{reg}(\mathcal{T}))|\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}
$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and $y(x)$ the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ.
- Telescoping sum for $|u|^{2}$

$$
\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2} \leq\left(\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right)\right)^{\frac{1}{2}}
$$

- To conclude, we need to prove that

$$
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \leq C\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2}+C \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}
$$

We want To show

$$
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \leq C\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2}+C \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}
$$

We want To show

$$
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \leq C\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2}+C \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}
$$

- We first write

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) & =\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{K} \sigma}+d_{\mathcal{L} \sigma}\right)\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \\
& =\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{K} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{K} \sigma}\left|u_{\mathcal{L}}\right|^{2}+d_{\mathcal{L} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{L} \sigma}\left|u_{\mathcal{L}}\right|^{2}\right) \\
& \leq C \sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2}+\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{L} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{K} \sigma}\left|u_{\mathcal{L}}\right|^{2}\right)
\end{aligned}
$$

We want To show

$$
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \leq C\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2}+C \sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left|\frac{u_{\mathcal{K}}-u_{\mathcal{L}}}{d_{\mathcal{K} \mathcal{L}}}\right|^{2}
$$

- We first write

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{E}}|\sigma| d_{\mathcal{K} \mathcal{L}}\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) & =\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{K} \sigma}+d_{\mathcal{L} \sigma}\right)\left(\left|u_{\mathcal{K}}\right|^{2}+\left|u_{\mathcal{L}}\right|^{2}\right) \\
& =\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{K} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{K} \sigma}\left|u_{\mathcal{L}}\right|^{2}+d_{\mathcal{L} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{L} \sigma}\left|u_{\mathcal{L}}\right|^{2}\right) \\
& \leq C \sum_{\mathcal{K} \in \mathfrak{M}}|\mathcal{K}|\left|u_{\mathcal{K}}\right|^{2}+\sum_{\sigma \in \mathcal{E}}|\sigma|\left(d_{\mathcal{L} \sigma}\left|u_{\mathcal{K}}\right|^{2}+d_{\mathcal{K} \sigma}\left|u_{\mathcal{L}}\right|^{2}\right)
\end{aligned}
$$

- For the blue terms, we notice now that

$$
d_{\mathcal{L} \sigma}\left|u_{\mathcal{K}}\right|^{2} \leq \begin{cases}2^{2} d_{\mathcal{L} \sigma}\left|u_{\mathcal{L}}\right|^{2}, & \text { for }\left|u_{\mathcal{K}}\right| \leq 2\left|u_{\mathcal{L}}\right| \\ 2^{2} d_{\mathcal{L} \sigma}\left|u_{\mathcal{L}}-u_{\mathcal{K}}\right|^{2}, & \text { for }\left|u_{\mathcal{K}}\right|>2\left|u_{\mathcal{L}}\right|\end{cases}
$$

Energy estimates

$$
\sup _{n}\left\|u^{\mathcal{\tau}_{n}}\right\|_{1, \mathcal{T}_{n}}=\sup _{n}\left\|\nabla^{\mathcal{T}_{n}} u^{\mathcal{\tau}_{n}}\right\|_{L^{2}} \leq C(\Omega, f)
$$

Compactness
Theorem (WEAK- L^{2} COMPACTNESS THEOREM)
There exists $u \in H_{0}^{1}(\Omega)$ such that (up to a subsequence!)

$$
\begin{gathered}
u^{\mathfrak{M}_{n}} \xrightarrow[n \rightarrow \infty]{ } u \text { in } L^{2}(\Omega), \\
u^{\mathfrak{M}_{n}^{*}} \xrightarrow[n \rightarrow \infty]{ } u \text { in } L^{2}(\Omega), \\
\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} \xrightarrow[n \rightarrow \infty]{ } \nabla u \text { in }\left(L^{2}(\Omega)\right)^{2} .
\end{gathered}
$$

Observe that $u^{\mathfrak{M}_{n}}$ and $u^{\mathfrak{M}_{n}^{*}}$ converge towards the same limit.
Passing to the limit in the scheme

Strong convergence of gradients

We pass to the limit in the formula

$$
2 \int_{\Omega}\left(A(x) \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}, \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}\right) d x=\int_{\Omega} f(x) u^{\mathfrak{M} n_{n}} d x+\int_{\Omega} f(x) u^{\mathfrak{M}_{n}^{*}} d x
$$

