

Numerical simulation of compressible two-phase flows

F. Petitpas SMASH Team - MARSEILLE

Flows zoology – Position of the topic

- Interface problems resolution
- Two-phase mixtures in mechanical equilibrium
- Non equilibrium two-phase mixtures
- General models

Single velocity flows / Interface problems

Evaporation front

Some words about discretisation scales

On the choice of the method

- Sharp interface methods
 - Lagrangian methods with moving meshes, ALE (Arbitrary Lagrangian Eulerian)
 Good for solid w

Good for solid weak deformation

Not adapted for fluids computation with extreme deformations

- □ Front tracking, VOF, Level Set
- Very impressive results

Generally non conservative regarding mass and energy Heavy numerical treatment

On the choice of the method

Diffuse interface methods

These methods authorize numerical diffusion of interfaces. This presents several advantages:

- □ Interfaces are not tracked or reconstructed, they are captured by the numerical scheme as artificial diffusion zone.
- □ By the way disappearance or apparition of interfaces are naturally obtained
- Conservative

On the choice of the model

- Euler equations with liquid-vapor Equation of state for evaporation problems Single phase model with equilibrium EOS (T,p,g,u)
 - Able to compute liquid-vapor mixtures at Thermodynamical equilibrium
 - But metastable states are omitted
 - Unable to treat liquid-gas interfaces
- Multi-phase models
 - 4-equation : Euler + mass equation
 - Thermal and mechanical equilibrium (T,p,u)
 - Largely use for gas mixtures where thermal equilibrium condition is not so restrictive
 - But unable to treat simple contact interface (interface condition of equal pressure and velocity are violated)
 - 5-equation : 4 equations + volume fraction equation (Kapila et al., 2001) Mechanical equilibrium (p,u)
 - Able to treat interfaces between non miscible fluids (liquid-gas)
 - Able to treat mixture evolving in mechanical equilibrium
 - □ 6-equation model
 - Velocity equilibrium (u)
 - □ 7-equation (Baer & Nunziato, 1986)
 - Total disequilibrium
 - Able to solve a large scale of problems
 - Difficult to solve numerically

Outline : The 5-equation model

- Topic 1 : Origins and properties of the 5-equation model
- Topic 2 : Numerical resolution
 - The Euler equations
 - **The 5-equation model**
- Topic 3 : Phase transition with the 5-equation model
- Topic 4 : Other extensions
 - Capillary effects
 - Compaction effects
 - □ Low Mach computing
 - Etc.

Topic 1 : Origins and properties of the 5-equation model

Starting point : origin of the 5-equation model (The 7-equation model)

Each phase obeys its own thermodynamics (pressure, density, internal energy) and has its own set of equations :

$$\begin{split} \frac{\partial \alpha_{k}}{\partial t} + \vec{\sigma}.\vec{\nabla}\alpha_{k} = \mu(P_{k} - P_{k}) \\ \frac{\partial \alpha_{k}\rho_{k}}{\partial t} + \vec{\nabla}.(\alpha_{k}\rho_{k}\vec{u}_{k}) = 0 \\ \frac{\partial \alpha_{k}\rho_{k}\vec{u}_{k}}{\partial t} + \vec{\nabla}.(\alpha_{k}(\rho_{k}\vec{u}_{k}\otimes\vec{u}_{k} + P_{k}\vec{I})) = P_{I}\vec{\nabla}\alpha_{k} + \lambda(\vec{u}_{k} - \vec{u}_{k}) \\ \frac{\partial \alpha_{k}\rho_{k}E_{k}}{\partial t} + \vec{\nabla}.(\alpha_{k}(\rho_{k}E_{k} + P_{k})\vec{u}_{k}) = P_{I}\vec{\sigma}.\vec{\nabla}\alpha_{k} - \mu P_{I}(P_{k} - P_{k}) + \lambda\vec{\sigma}.(\vec{u}_{k} - \vec{u}_{k}) \\ \vec{\sigma} = \vec{u}_{2} \quad \text{and} \quad P_{I} = P_{1} \qquad \text{Baer & Nunziato (1986)} \\ \vec{\sigma} = \frac{Z_{I}\vec{u}_{1} + Z_{2}\vec{u}_{2}}{Z_{1} + Z_{2}} \quad \text{and} \quad P_{I} = \frac{Z_{I}P_{2} + Z_{2}P_{I}}{Z_{I} + Z_{2}} \quad \begin{cases} \text{Saurel & al. (2003)} \\ \text{Chinnayya & al (2004)} \end{cases} \end{split}$$

Example of interface problem evolving to a two-velocity mixture

Simulation : Jacques Massoni, SMASH team

Asymptotic reduction of the 7-equation model

- Why it is interesting to use the 5-equation model instead of the 7-equation one ?
 - □ It is difficult to solve and implies heavy costs regarding CPU and memory.
 - It contains extra unuseful physics to treat interface problems (two velocities and two pressures)
 - Extra physical effects are difficult to introduce (as for example phase transition, capillary effects, etc.)

Asymptotic reduction by the Chapman-Enskog method :

 $\lambda, \mu = 1/\epsilon \rightarrow \infty$ Relaxation parameters tend to infinity

 $f = f^{o} + \epsilon f^{1}$ Each flow variable is supporting small variation around an equilibrium state

The diffuse interface model (5-equation model)

We will come back on thermodynamic closure in the following ...

This is a mechanical equilibrium but each phase remains in thermal disequilibrium 13

Physical meaning of the volume fraction equation

 $\rho_k c_k^2$ is the Bulk modulus of media k

It traduces the compressibility of a media

-Big when it is weakly compressible

-Small when it is strongly compressible

$$\begin{cases} \frac{d\alpha_1}{dt} = \alpha_1 \alpha_2 \left(\frac{\rho_2 c_2^2 - \rho_1 c_1^2}{\alpha_2 \rho_1 c_1^2 + \alpha_1 \rho_2 c_2^2} \right) \frac{\partial u}{\partial x} \\ \frac{\partial \alpha_1 \rho_1}{\partial t} = \alpha_1 \alpha_2 \left(\frac{\rho_2 c_2^2 - \rho_1 c_1^2}{\alpha_2 \rho_1 c_1^2 + \alpha_1 \rho_2 c_2^2} \right) \frac{\partial u}{\partial x} \\ \frac{\partial \alpha_1 \rho_1}{\partial t} + \frac{\partial \alpha_1 \rho_1 u}{\partial x} = 0 \\ \frac{\partial \alpha_2 \rho_2}{\partial t} + \frac{\partial \alpha_2 \rho_2 u}{\partial x} = 0 \\ \frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0 \\ \frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E + p) u}{\partial x} = 0 \end{cases}$$

Back to diffuse interface aptitude ...

- Diffusion is due to numerical treatment : Artificial diffusion
- By the way, an interface looks like a mixture zone : $\varepsilon < \alpha_k < 1 \varepsilon$
- The interface conditions of pressures and velocities equalities are automatically obtained !

Topic 2 : Numerical resolution considerations

- Basics for Euler conservative equations
- 5-equation model numerical resolution

Basics of numerical resolution for the Euler equations

- Euler equations:
 - $\partial \rho_{\pm div(\alpha \vec{u}) = 0}$ Mass balance Momentum balance
 - Total energy balance

......

$$\frac{\partial t}{\partial t} + \operatorname{div}(p\mathbf{u}) = 0$$
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \operatorname{grad}(\mathbf{P}) = 0$$
$$\frac{\partial \rho \mathbf{E}}{\partial t} + \operatorname{div}((\rho \mathbf{E} + \mathbf{P})\mathbf{u}) = 0$$

The simplification:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^{2} + P}{\partial x} = 0$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial u(\rho E + P)}{\partial x} = 0$$

$$\frac{\partial P}{\partial t} + \frac{\partial u(\rho E + P)}{\partial x} = 0$$

$$F = (\rho u, \rho u^{2} + P, u(\rho E + P))^{T}$$

Computational mesh

- The cell 'i' is bounded by inlet and outlet sections i-1/2 and i+1/2.
- The fluxes cross over these cell boundaries.
- The unknowns are computed at the cell center and are piecewise constant functions in the cell.

Numerical approximation

Integration on cell i over time :

The '*' superscript is for : Solution of the Riemann problem at cell boundary

The Flux F at cell boundaries has been supposed to be constant during integration time step

The Riemann problem

- The initial data are know at a given time and are constant on the right and left side.
- A discontinuity connects the two state.
- Question: How does the solution evolves at t>0 ?

The Riemann problem solution (advection)

In the (x,t) diagram

The solution is: 1s: $f(x/t) = \begin{cases} f_{i-1} & \text{if } x/t < u_{i-1/2} \\ f_{i} & \text{if } x/t > u_{i-1/2} \end{cases}$

$$f_{i-1}$$

$$x/t = u_{i-1/2}$$

$$x/t = u_{i-1/2}$$

$$x$$

22

For the linearized Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^{2} + P}{\partial x} = 0$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial u(\rho E + P)}{\partial x} = 0$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial u(\rho E + P)}{\partial x} = 0$$

$$A(W) = \begin{pmatrix} u & \rho & 0 \\ 0 & u & \frac{1}{\rho} \\ 0 & \rho c^{2} & u \end{pmatrix}$$
Plays the role of a propagation velocity

The eigenvalues of A are the waves speeds:

$$\lambda^+ = u + c$$
 , $\lambda^- = u - c$, $\lambda^0 = u$

The Riemann problem for linearized Euler equations

Solving the Riemann problem consist in determining the perturbed states W_L^* and W_R^* after waves propagation from the known states W_L and W_R .

The Riemann problem solution for linearized Euler equations

From this algebraic set of 6 equations the two intermediate states W_L^* and W_R^* are readily obtained.

Riemann problem solution

$$\mathbf{u}^* = \frac{\mathbf{p}_{\mathrm{L}} - \mathbf{p}_{\mathrm{R}} + \mathbf{Z}_{\mathrm{R}}\mathbf{u}_{\mathrm{R}} + \mathbf{Z}_{\mathrm{L}}\mathbf{u}_{\mathrm{L}}}{\mathbf{Z}_{\mathrm{R}} + \mathbf{Z}_{\mathrm{L}}}$$

$$p^{*} = \frac{Z_{R}p_{L} + Z_{L}p_{R} + Z_{R}Z_{L}(u_{L} - u_{R})}{Z_{R} + Z_{L}}$$

$$\rho_{R}^{*} = \rho_{R} + \frac{p^{*} - p_{R}}{c_{R}^{2}}$$
$$\rho_{L}^{*} = \rho_{L} + \frac{p^{*} - p_{L}}{c_{L}^{2}}$$

Example: shock tube

Exact solution (lines) / Computed results with Godunov (symbols)

Example – Supersonic flow around plane profil

Summary for Euler equations

- The Riemann problem solution is a local solution of the Euler equations between two discontinuous initial states.
- It is the cornerstone of all numerical schemes used in gas dynamics, shallow water and modern multiphase codes

- Recommended literature:
 - E.F. Toro (1997) Riemann solvers and numerical methods for fluid dynamics. Springer Verlag

The diffuse interface model (5-equation model)

We will come back on thermodynamic closure in the following ...

This is a mechanical equilibrium but each phase remains in thermal disequilibrium $_{30}$

Numerical resolutions: issues

1) Volume fraction positivity: How to treat the non-conservative term in the volume fraction equation when shocks or strong rarefaction waves are present ?

$$\frac{\partial \alpha_1}{\partial t} + \vec{u}.\vec{\nabla}\alpha_1 = \frac{(\rho_2 c_2^2 - \rho_1 c_1^2)}{\frac{\rho_1 c_1^2}{\alpha_1} + \frac{\rho_2 c_2^2}{\alpha_2}} \vec{\nabla}.\vec{u}$$

Difficulty to guarantee that $0 < \alpha_1 < 1$

2) The volume fraction varies across acoustic waves: Riemann solver difficult to construct.

6+1-equation model

Previous difficulties are circumvented using a pressure non-equilibrium model

$$\frac{\partial \alpha_1}{\partial t} + u \frac{\partial \alpha_1}{\partial x} = \mu(p_1 - p_2)$$

$$\frac{\partial \alpha_1 p_1}{\partial t} + \frac{\partial \alpha_1 p_1 u}{\partial x} = 0$$

$$\frac{\partial \alpha_2 p_2}{\partial t} + \frac{\partial \alpha_2 p_2 u}{\partial x} = 0$$

$$\frac{\partial p u}{\partial t} + \frac{\partial p u^2 + (\alpha_1 p_1 + \alpha_2 p_2)}{\partial x} = 0$$

$$\frac{\partial \alpha_1 p_1 e_1}{\partial t} + \frac{\partial \alpha_1 p_1 e_1 u}{\partial t} + \alpha_1 p_1 \frac{\partial u}{\partial x} = -p_1 \mu(p_1 - p_2)$$

$$\frac{\partial \alpha_2 p_2 e_2}{\partial t} + \frac{\partial \alpha_2 p_2 e_2 u}{\partial t} + \alpha_2 p_2 \frac{\partial u}{\partial x} = p_1 \mu(p_1 - p_2)$$

 $\rho = \alpha_1 \rho_1 + \alpha_2 \rho_2$ $\rho \mathbf{E} = \alpha_1 \rho_1 \mathbf{E}_1 + \alpha_2 \rho_2 \mathbf{E}_2$

• The pressure equilibrium 5-equation model is obtained from this 6-equation model in the asymptotic limit of stiff pressure relaxation coefficient,

• The speed of sound is monotonic,

$$c_{\rm f}^2 = Y_1 \, c_1^2 + Y_2 \, c_2^2$$

• The volume fraction is constant through right- and left-facing waves when relaxation effects are absent ($\mu=0$).

6 equations + 1 redundant equation (coming from the summation of energies): $\frac{\partial \rho(Y_1 e_1 + Y_2 e_2 + \frac{1}{2}u^2)}{\partial t} + \frac{\partial u \left(\rho(Y_1 e_1 + Y_2 e_2 + \frac{1}{2}u^2) + (\alpha_1 p_1 + \alpha_2 p_2)\right)}{\partial x} = 0$

3-step methods

- a) The (6+1)-equation model is solved without relaxation effects: Godunov-type scheme,
- b) Stiff pressure relaxation procedure,
- c) Energies reset (in order to ensure energy conservation)

The 5-equation model is solved

1st step: Godunov-type scheme

 Without relaxation terms, the 6+1 equation model becomes:

$\frac{\partial \alpha_1}{\partial t} + u \frac{\partial \alpha_1}{\partial x} = 0$
$\frac{\partial \alpha_1 \rho_1}{\partial t} + \frac{\partial \alpha_1 \rho_1 u}{\partial x} = 0$
$\frac{\partial \alpha_2 \rho_2}{\partial t} + \frac{\partial \alpha_2 \rho_2 u}{\partial x} = 0$
$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2 + (\alpha_1 p_1 + \alpha_2 p_2)}{\partial x} = 0$
$\frac{\partial \alpha_1 \rho_1 e_1}{\partial t} + \frac{\partial \alpha_1 \rho_1 e_1 u}{\partial t} + \alpha_1 p_1 \frac{\partial u}{\partial x} = 0$
$\frac{\partial \alpha_2 \rho_2 e_2}{\partial t} + \frac{\partial \alpha_2 \rho_2 e_2 u}{\partial t} + \alpha_2 p_2 \frac{\partial u}{\partial x} = 0$

An advection equation

+ A non conservative one

$$\frac{\partial \alpha_1 \rho_1 e_1}{\partial t} + \frac{\partial \alpha_1 \rho_1 e_1 u}{\partial t} + \alpha_1 p_1 \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial \alpha_2 \rho_2 e_2}{\partial t} + \frac{\partial \alpha_2 \rho_2 e_2 u}{\partial t} + \alpha_2 p_2 \frac{\partial u}{\partial x} = 0$$

1st step: Godunov-type scheme

Godunov scheme for advection equation

+ Godunov scheme for conservative equations

+ A non conventional scheme for non conservative internal energies equations

Riemann solver

Riemann problem solution

$$u^{*} = \frac{p_{L} - p_{R} + Z_{R}u_{R} + Z_{L}u_{L}}{Z_{R} + Z_{L}}$$

$$p^{*} = \frac{Z_{R}p_{L} + Z_{L}p_{R} + Z_{R}Z_{L}(u_{L} - u_{R})}{Z_{R} + Z_{L}}$$

$$\alpha^{*}_{kL} = \alpha_{kL}$$

$$\alpha^{*}_{kR} = \alpha_{kR}$$

$$s^{*}_{kR} = s_{kR}$$

$$s^{*}_{kL} = s_{kL}$$
Solution

with

 $p = \alpha_1 p_1 + \alpha_2 p_2$ $\rho = \alpha_1 \rho_1 + \alpha_2 \rho_2$ $Z = \rho c$ $c_f^2 = Y_1 c_1^2 + Y_2 c_2^2$

2nd step: Pressure relaxation

Already solved by the 1st step

2nd step: Pressure relaxation

$$\frac{\partial \alpha_{1}}{\partial t} = \mu(p_{1} - p_{2})$$

$$\frac{\partial \alpha_{1}\rho_{1}e_{1}}{\partial t} = -p_{I}\mu(p_{1} - p_{2})$$

$$\frac{\partial \alpha_{2}\rho_{2}e_{2}}{\partial t} = p_{I}\mu(p_{1} - p_{2})$$

$$\sum_{k} \Rightarrow Y_{1}e_{1} - Y_{1}e_{1}^{0} + Y_{2}e_{2} - Y_{2}e_{2}^{0} + \hat{p}_{11}(Y_{1}v_{1} - Y_{1}v_{1}^{0}) + \hat{p}_{12}(Y_{2}v_{2} - Y_{2}v_{2}^{0}) = 0$$

$$e - e^{0} + (\hat{p}_{11} - \hat{p}_{12})(Y_{1}v_{1} - Y_{1}v_{1}^{0}) = 0 \qquad \qquad \hat{p}_{11} = \hat{p}_{12} = \hat{p}_{12}$$

Using mass equations

Possible choice
$$\hat{p}_I = p$$

Entropy inequality is verified

2nd step: Pressure relaxation

Using EOS :

$$\begin{array}{c} e_{1}(p, v_{1}) - e_{1}^{0}(p_{1}^{0}, v_{1}^{0}) + p(v_{1} - v_{1}^{0}) = 0 \\ e_{2}(p, v_{2}) - e_{2}^{0}(p_{2}^{0}, v_{2}^{0}) + p(v_{2} - v_{2}^{0}) = 0 \end{array} \right\}$$

$$\begin{array}{c} v_{1} = v_{1}(p) \\ v_{2} = v_{2}(p) \end{array} \right\}$$

Closure relation: $\alpha_1 + \alpha_2 = 1 \iff (\alpha \rho)_1^0 v_1(p) + (\alpha \rho)_2^0 v_2(p) = 1$

Zero function to solve

$$f(p) = (\alpha \rho)_{1}^{0} v_{1}(p) + (\alpha \rho)_{2}^{0} v_{2}(p) - 1$$

Then, we determine: $p \rightarrow v_k(p) \rightarrow \alpha_k = (\alpha \rho)_k v_k$

3th step: Internal energy reset

- We have in the 2^{nd} step determined: p, v_k, α_k
- We forget the relaxed pressure but keep volume fractions:

$p \rightarrow \alpha_k$

It is then possible to determine mixture pressure by the mixture EOS. By this way, energy conservation is ensured:

$$p_{\text{new}}(\rho, e, \alpha_1, \alpha_2) = \frac{\rho e - \left(\frac{\alpha_1 \gamma_1 p_{\infty 1}}{\gamma_1 - 1} + \frac{\alpha_2 \gamma_2 p_{\infty 2}}{\gamma_2 - 1}\right)}{\frac{\alpha_1}{\gamma_1 - 1} + \frac{\alpha_2}{\gamma_2 - 1}}$$

Phasic EOS permits to reset internal energies:

$$\mathbf{e}_{k} = \mathbf{e}_{k}(\mathbf{p}_{new}, \boldsymbol{\alpha}_{k}\boldsymbol{\rho}_{k}, \boldsymbol{\alpha}_{k})$$

Résultats 2D - Expériences IUSTI (Layes, Jourdan, Houas)

3D example : Missile impact on a metal plate

Topic 3 : Phase transition with the 5-equation model

Why is the 5-equation model a good candidate for phase transition?

46

Phase transition modeling

1) Mass transfer modifies mass equations:

$$\frac{\partial \alpha_1 \rho_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) = \dot{m}_1 = \rho \dot{Y}_1$$
$$\frac{\partial \alpha_2 \rho_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) = -\dot{m}_1 = -\rho \dot{Y}_1$$

Avec
$$\dot{Y}_1 = \frac{dY_1}{dt} = \frac{d}{dt} \left(\frac{\alpha_1 \rho_1}{\rho} \right)$$

2) Volume fractions change during phase transition:

$$\frac{\mathrm{d}\alpha_{1}}{\mathrm{d}t} = \mathrm{K}\mathrm{div}(\vec{u}) + \mathrm{A}\mathrm{Q}_{1} + \frac{\dot{\mathrm{m}}_{1}}{\rho_{\mathrm{I}}}$$

This « interfacial » density has to be determined in order to close the model.

Two-phase model for interface problems with phase transition

Kinetic parameters : ν , H = $\begin{cases}
+\infty \text{ at interfaces (thermodynamical equilibrium)} \\
0 \text{ elsewhere (metastable state)}
\end{cases}$

Thermodynamic closure

Assumption : Each fluid is governed by the stiffened gas EOS:

Other useful forms for the SG EOS :

$$h(T) = \gamma C_v T + q$$

$$s(p,T) = C_v \ln \frac{T^{\gamma}}{(p+p_{\infty})^{\gamma-1}} + q'$$

$$g(p,T) = (\gamma C_v - q')T - C_v T \ln \frac{T^{\gamma}}{(p+p_{\infty})^{\gamma-1}} + q$$

For each fluid EOS : 5 parameters to determine : γ , P_{∞} , C_V , q, q'

Saturation curves for liquid water and vapor water

Le Métayer et al., Int. Journal of Thermal Sciences, 2004

Saurel, Petitpas & Abgrall, JFM, 2008

High speed motion under water

Topic 4 : Some possible extensions

- Capillary effects (Perigaud & Saurel, 2005)
- Detonation (Petitpas et al. 2009)
- Gravity, heat conduction, viscosity, turbulence, etc.

Detonation problems

Russian experiences done for the DGA

Ebullition crisis simulation

Many physical ingredients are required

Bubble growth

