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PROBLEM STATEMENT

• K arms (indexed by 1 6 i 6 K), time horizon n
• Random reward (gain) of arm i at time t: Gi,t

• Strategy / forecaster / algorithm: at each time t, select an arm It based on
the information available and an internal randomness, and observe the gain
GIt,t.
• Information available at time t: choices (Is)16s<t and gains (GIs,s)16s<t

observed before time t.

• Regret Rn = max
16i6K

n∑
t=1

Gi,t −
n∑

t=1

GIt,t = loss compared to sticking to the best

arm (which may depend on the realization of the gains)

• Pseudo-regret R̄n = max
16i6K

E

[
n∑

t=1

Gi,t

]
− E

[
n∑

t=1

GIt,t

]
= expected loss

compared to the best expected loss when sticking to a fixed arm

We always have R̄n 6 ERn. In the following, we study the pseudo-regret R̄n.

© Luc Lehéricy 3



Stochastic bandits
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STOCHASTIC BANDITS

• The arms are independent: the sequences (Gi,t)t>1, 1 6 i 6 K, are
independent.
• The distribution of the gains does not depend on time or on previous

rewards or events: given an arm i, the sequence (Gi,t)t>1 is a sequence of
i.i.d. random variables with distribution νi and mean µi.

In short: each arm is "blind" to the others and itself.

Write µ? = max16i6K µi , ∆i = µ? − µi , and Ni(t) =
∑t

s=1 1Is=i the number of
times the arm i has been selected before time t. Then

R̄n = nµ? − E
n∑

t=1

µIt,t

=
K∑
i=1

∆i E[Ni(n)].
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STOCHASTIC BANDITS - UPPER CONFIDENCE BOUND (UCB)

Assume the gains are sub-Gaussian1, i.e.2 there exists σ > 0 such that for all
x > 0, i and t,

max {P(Gi,t < −t),P(Gi,t > t)} 6 exp

(
− t2

2σ2

)
.

Example: random variables taking values in [0, 1] are sub-Gaussian with σ = 1/2.

Upper Confidence Bound (α) strategy

Let α > 1. For t from 0 to n− 1,
• Compute the estimated gain of arm i: µ̂i,t = 1

Ni(t)
∑t

s=1 Gi,s1Is=i

• Select It+1 ∈ arg max
16i6K

[
µ̂i,t +

√
α
2σ2 log t
Ni(t)

]
︸ ︷︷ ︸

upper bound of a confidence interval of level 1− t−α of µi

1An algorithm without this assumption is discussed in Bubeck & Cesa-Bianchi (2012).
2This is not the true definition of sub-Gaussianity, although it is equivalent up to modification of σ.
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Upper Confidence Bound strategy

Theorem: UCB(α) pseudo-regret

R̄n 6 log(n)
∑

i:∆i>0

8ασ2

∆i
+ cst(α)

K∑
i=1

∆i

Let mi,t =
√
α 2σ2 log t

Ni(t)
. With probability > 1− 2t−α, µ̂i,t ∈ [µi −mi,t, µi + mi,t].

Let i? be a best arm and i such that ∆i > 0. Assume that

1. mi,t <
∆i
2 ,

⇐ Ni(t) > 8ασ2 log t
∆2

i

2. µ̂i?,t + mi?,t > µ? and

(happens with proba > 1− t−α)

3. µ̂i,t 6 µi + mi,t.

(happens with proba > 1− t−α)

Then µ̂i,t + mi,t < µ? 6 µ̂i?,t + mi?,t , so It 6= i. Thus, It = i is possible only when
at least one of the above is false.

, hence

E[Ni(n)] 6
8ασ2 log n

∆2
i

+ E
n∑

t=1

1It=i11. true 6
8ασ2 log n

∆2
i

+
n∑

t=1

2t−α.

and finally use R̄n =
∑K

i=1 ∆i E[Ni(n)].
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STOCHASTIC BANDITS - LOWER BOUNDS

Let D be a set of probability measures on R. Any element ν = (ν1, . . . , νK) ∈ DK

is identified with the bandit problem with arm distributions given by ν , and the
corresponding probability measures and expectation are denoted Pν and Eν . We
write µ(νi) = EX∼νi [X] the expected gain of arm i under ν.

A strategy is uniformly fast convergent on D if for all ν ∈ DK , for all sub-optimal
arms i w.r.t. ν and for all α ∈ (0, 1], Eν [Ni(t)] = o(tα).

In the following, let ν = (ν1, . . . , νK) be a K-uple of probability measures and
assume the strategy is uniformly fast convergent on a set D.

Theorem: Lower bound for the pseudo-regret

For any sub-optimal arms i and any measures ν′i ∈ D such that µ(ν′i ) > maxj µ(νj),

lim inf
n→+∞

Eν [Ni(n)]

log(n)
>

1
KL(νi, ν

′
i )

where the Kullback Leibler divergence defined by KL(νi, ν
′
i ) = Eνi [log

dνi
dν′i

] is always
nonnegative and equals zero if and only if νi = ν′i .
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STOCHASTIC BANDITS - LOWER BOUNDS

When X is a random variable, write PX
ν the distribution of X under Pν .

Let Xt = (I1,GI1,1, . . . , It,GIt,t) be the sequence of arms selected and gains
observed.

Fundamental inequality (Garivier et al., 2019)

For all ν, ν′ ∈ D, for all σ(Xt)-measurable random variable Z taking values in [0, 1],

K∑
i=1

Eν [Ni(t)]KL(νi, ν
′
i ) = KL(PXt

ν ,P
Xt
ν′ ) > kl(Eν [Z],Eν′ [Z])

where kl(p, q) = p log p
q + (1− p) log 1−p

1−q .

The right-most inequality (admitted) holds for any distribution. Z ∈ [0, 1] matters!

Informally, the KL divergence is how different the distributions look. Here the
only visible difference is through the pulled armed: at time s, the difference
"increases" by how different the distributions of the current arm are: KL(νIs , ν

′
Is).

Then Eν
[∑t

s=1 KL(νIs , ν
′
Is)
]

=
∑K

i=1 Eν [Ni(t)]KL(νi, ν
′
i ).
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FIRST EQUALITY

Chain rule:

KL(PXt
ν ,PXt

ν′)

= Eν [KL(P
It,GIt,t|Xt−1
ν ,P

It,GIt,t|Xt−1
ν′ )] + KL(PXt−1

ν ,PXt−1
ν′ )

= Eν

[
K∑
i=1

Pν(It = i|Xt)

∫
g
pν(GIt,t = g|It = i,Xt) log

Pν(It = i|Xt)pν(GIt,t = g|It = i,Xt)

Pν′(It = i|Xt)pν′(GIt,t = g|It = i,Xt)

]
+ KL(PXt−1

ν ,PXt−1
ν′ )

= Eν

[
K∑
i=1

Pν(It = i|Xt)

∫
g
pν(Gi,t = g) log

pν(Gi,t = g)

pν′(Gi,t = g)

]
+ KL(PXt−1

ν ,PXt−1
ν′ )

since the algorithm choosing It only takes the past Xt into account, not ν:
Pν(It = i|Xt) = Pν′(It = i|Xt), and the gains of an arm are independent from the
past.

(...) = Eν

[
K∑
i=1

1It=iKL(νi, ν
′
i )

]
+ KL(PXt−1

ν ,PXt−1
ν′ )

= Eν

[
K∑
i=1

Ni(t)

]
KL(νi, ν

′
i ).
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STOCHASTIC BANDITS - LOWER BOUNDS

Fundamental inequality (Garivier et al., 2019)

For all ν, ν′ ∈ DK , for all σ(Xt)-measurable random variable Z taking values in [0, 1],

K∑
i=1

Eν [Ni(t)]KL(νi, ν
′
i ) > kl(Eν [Z],Eν′ [Z]).

Take Z = Ni(t)/t, this is indeed σ(Xt)-measurable and in [0, 1].

Also use kl(p, q) = p log
1
q︸ ︷︷ ︸

>0

+(1− p) log
1

1− q
+ p log p + (1− p) log(1− p)︸ ︷︷ ︸

=kl(p,1/2)−log 2>− log 2

,

so that kl(Eν [Z],Eν′ [Z]) >

(
1− Eν [Ni(t)]

t

)
log

t
t− Eν′ [Ni(t)]

− log 2.

Let i be a non-optimal arm. Take ν′ = (. . . , νi−1, ν
′
i , νi+1, . . . ) where µ(ν′i ) > µ?.

Uniformly fast convergent: ∀α > 0,Eν [Ni(t)] = o(tα) and Eν′ [Ni(t)] = t− o(tα):

Eν [Ni(t)]KL(νi, ν
′
i ) > kl(Eν [Z],Eν′ [Z]) > (1− o(1)) log

t
o(tα)

− log 2 ⇒ log t.
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STOCHASTIC BANDITS - CONCLUSION

Theorem: UCB(α) pseudo-regret

When the gains are σ-sub-Gaussian,

lim sup
R̄n

log(n)
6

∑
i:∆i>0

8ασ2

∆i
.

Theorem: Lower bound for the pseudo-regret

For any strategy,

lim inf
n→+∞

R̄n

log(n)
>

∑
i:∆i>0

∆i

infν′i :µ(ν′i )>maxj µj
KL(νi, ν

′
i )
.

The bounds match (pseudo-regret ∝ log(n)) up to a constant that can be very
large (take Bernoulli r.v. with parameters tending to 0 or 1). Variants of UCB may
improve the upper bound in other situations.
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"All-seeing" adversarial bandits
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"ALL-SEEING" ADVERSARIAL BANDITS

• The environment is a player: at each time step, the environment decides
what the new gains are depending on "the past" (see third point) and an
internal randomness. In particular, no "nice" assumption can be made on
the environment: the sequences (Gi,t)t>1, 1 6 i 6 K, are no longer
independent, the distribution of the gains may depend on time.
• The environment and the forecaster select an arm and choose the gains at

the same time: the environment may not use the current move of the
forecaster to decide the gains.
• The environment may adapt to the past moves of the forecaster: (Gi,t)16i6K

may depend on (Is)s<t, in addition to (Gi,s)16i6K,s<t.

⇒ Two competing players. Goal: minimize the pseudo-regret without knowledge
of the environment, that is minimize

sup
environment

R̄n = sup
environment

{
max
16i6K

E

[
n∑

t=1

Gi,t

]
− E

[
n∑

t=1

GIt,t

]}
.

Is it possible to have sub-linear pseudo-regret?
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"ALL-SEEING" ADVERSARIAL BANDITS

When minimizing sup
environment

R̄n , consider the worst possible environment given

our strategy: the environment knows the forecaster’s strategy.

Given the environment also knows the past moves of the players as well as the
gains, it has as much information as the player and hence knows the probability
distribution of the next selected arm.

Consider the following environment:

• Start by giving gain g ∈ (0, 1) to all arms as long as the forecaster has not
switched arms since the start.
• If at some point the forecaster had a probability non-zero to switch arm,

keep giving gain g to the arm with lowest probability of being selected and 0
to the other arms.

Result: if the strategy is non-constant, the average gain per time step after the
first switch will always be no larger than g/2, compared to g if the strategy was
constant: linear pseudo-regret.

If the strategy is constant, then an environment that rewards g to the selected
arm and 1 to a different arm has linear pseudo-regret.
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Adversarial bandits
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ADVERSARIAL BANDITS

• The environment is a player: at each time step, the environment decides
what the new gains are depending on "the past" (see third point) and an
internal randomness. In particular, no "nice" assumption can be made on
the environment: the sequences (Gi,t)t>1, 1 6 i 6 K, are no longer
independent, the distribution of the gains may depend on time.
• The environment and the forecaster select an arm and choose the gains at

the same time: the environment may not use the current move of the
forecaster to decide the gains.
• The environment can not see the moves of the forecaster: conditionally to

(Gi,s)16i6K,s<t , (Gi,t)16i6K is independent of (Is)s6t.

Similar to expert aggregation, in which the forecaster observes all gains after
having chosen instead of just the chosen one.
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ADVERSARIAL BANDITS - UPPER BOUNDS

Assume the rewards take value in [0, 1], and define the losses as `i,t = 1− Gi,t.

Exponential weight for Exploration and Exploitation strategy (Exp3)

Let (ηt)t>1 be a nonincreasing sequence of positive numbers.
Let p1 be the uniform distribution over {1, . . . ,K} and L̃1,0 = 0 for all 1 6 i 6 K.
For each t = 1, . . . , n,

1. Draw It ∼ pt ,
2. For each i, update the estimated cumulated loss of arm i:

L̃i,t = L̃i,t−1 +
`i,t

pi,t
1It=i︸ ︷︷ ︸

estimated loss ˜̀i,t : E[ ˜̀i,t]=`i,t

3. Update the probability distribution: pi,t+1 =
exp(−ηt+1L̃i,t)∑
k exp(−ηt+1L̃k,t)
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ADVERSARIAL BANDITS - UPPER BOUNDS

Results from Bubeck et al., Section 3.

Theorem: Exp3 upper bounds

When running Exp3 with...

ηt =

√
2 log K
nK

(known time horizon), pseudo regret R̄n 6
√

2nK log K,

ηt =

√
log K
tK

(unknown time horizon), pseudo regret R̄n 6 2
√

nK log K.

Holds for any environment!

High probability bounds for the regret are also available for a variant of Exp3, of
the form: with probability at least 1− δ,

Rn 6 5.15
√

nK log K +

√
nK

log K
log

1
δ
,

and

R̄n 6 ERn 6 5.15
√

nK log K +

√
nK

log K
.
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ADVERSARIAL BANDITS - LOWER BOUNDS

Let ε > 0. Consider a stochastic bandit with reward distributions ν such that
ν1 = B( 1

2 + ε) and νi = B( 1
2 ) for i 6= 1.

In order to distinguish a B( 1
2 ) and a B( 1

2 + ε), the forecaster needs a number N
of observations that satisfies KL(B( 1

2 ),B( 1
2 + ε)) > 1/N, that is ε2 > 1/N when ε

is small.

Since before identifying the best arm the strategy is essentially random,
N = n/K, so that ε =

√
K/n. The pseudo-regret is then of order

(n− n/K︸︷︷︸
number of times the correct arm is selected

)× ε '
√
nK

Theorem: minimax lower bound

inf
strategy

sup
stochastic bandit

with Bernoulli rewards

R̄n >
1
20

√
nK.

Matches the upper bounds up to a
√

log K factor.
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Thank you!
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