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Abstract

Talagrand [1996. New concentration inequalities in product spaces. Invent. Math. 126 (3), 505–563], Ledoux [1996. On

Talagrand deviation inequalities for product measures. ESAIM: Probab. Statist. 1, 63–87], Massart [2000a. About the

constants in Talagrand’s concentration inequalities for empirical processes. Ann. Probab. 2 (28), 863–884], Rio [2002. Une

inégalité de Bennett pour les maxima de processus empiriques. Ann. Inst. H. Poincaré Probab. Statist. 38 (6), 1053–1057.

En l’honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov] and Bousquet [2002. A Bennett concentration

inequality and its application to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334 (6), 495–500] have

obtained exponential inequalities for suprema of empirical processes. These inequalities are sharp enough to build adaptive

estimation procedures Massart [2000b. Some applications of concentration inequalities. Ann. Fac. Sci. Toulouse Math. (6)

9 (2), 245–303]. The aim of this paper is to produce these kinds of inequalities when the empirical measure is replaced by a

counting process. To achieve this goal, we first compute the compensator of a suprema of integrals with respect to the

counting measure. We can then apply the classical inequalities which are already available for martingales Van de Geer

[1995. Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes.

Ann. Statist. 23 (5), 1779–1801].

r 2006 Elsevier B.V. All rights reserved.

MSC: 60E15; 60G55
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1. Introduction

Counting processes can model a large number of biomedical situations, (see Andersen et al., 1993). In all
these problems, the intensity of the process has to be estimated. If we want to use the penalized model selection
method of estimation developed by Birgé and Massart (see Birgé and Massart, 2001; Massart, 2000b for
instance), some very sharp exponential inequalities have to be available.

Birgé’s and Massart’s framework is usually the white noise model or the i.i.d. n-sample framework. There is
therefore a certain structure that produces concentration inequalities. More precisely, the inequalities
e front matter r 2006 Elsevier B.V. All rights reserved.
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developed by Talagrand (1996), Ledoux (1996), Massart (2000a), Rio (2002) and Bousquet (2002) consist of
exponential inequalities for suprema of countably many empirical processes.

For counting processes, we extensively use the martingale properties. There are already a lot of exponential
inequalities for martingales using the exponential semi-martingales approach (see Van de Geer, 1995;
Kallenberg, 1997, Theorem 23.17 for instance). We are hence left with the precise computation of the
compensator of a supremum of countably many integrals with respect to a counting process to obtain the
desired exponential inequalities.

In Section 2, we explain how to build the compensator of a supremum. We can then apply classical
exponential inequalities to this supremum, which is done in Section 3. In Section 4, we derive a more suitable
version for the statistical applications.
2. Compensator of the supremum

Let ðO;F;PÞ be a probability triple and ðFt; tX0Þ be a filtration satisfying the usual conditions (see
Kallenberg, 1997, p. 124 for the definition and use of the usual augmentation of a classical filtration). Let
ðNtÞtX0 be a counting process adapted to ðFt; tX0Þ and let ðLtÞtX0 be its compensator, i.e. the nondecreasing
predictable function such that ðMt ¼ Nt � LtÞtX0 is a martingale with respect to ðFt; tX0Þ (for precise
definitions, see for instance, Brémaud, 1981). Let T be some positive fixed time, eventually infinite. We
suppose in the whole paper the following assumption.

Assumption 1. The compensator ðLtÞtX0 is absolutely continuous and almost surely finite on ½0;T �.

Let fðHa;tÞtX0; a 2Ag be a countable family of predictable processes. We suppose them to be locally
bounded in t and uniformly bounded in a. Let ðZtÞtX0 be the process defined by

8tX0; Zt ¼ sup
a2A

Z t

0

Ha;s dMs

� �
. (1)

The process ðZtÞtX0 is therefore an adapted process with bounded variations. For all tpT , let ðTi; 1pipNtÞ

be the ordered jumps of N before t, for there is almost surely a finite number of these jumps. Indeed, it is a
consequence of the finiteness of the compensator (Assumption 1) and of Theorem II-8 (a) of Brémaud (1981).
Since the compensator is continuous (Assumption 1), the jumps of Z only happen when N jumps. We can
consequently write:

8tpT ; Zt ¼
X
Tipt

½ZTi
� ZTi�� þ Zt� � ZTnt

þ
X
Tipt

½ZTi� � ZTi�1
� a.e., (2)

where ZT0
¼ Z0 ¼ 0: (Zs� denotes the left limit of the process Z at time s).

Reasoning by induction, it is straightforward to prove the following result, using the absolute continuity
and Corollary 6.18 of Lieb and Loss (1997).

Lemma 1. Assume A ¼ f1; . . . ; kg to be finite and ordered. Let i be a positive integer. Let v be a real number in

�Ti�1;Ti½. Then under Assumption 1, Zv � ZTi�1
¼ �

R v

Ti�1
Hâs� ;s dLs; where âs� is the first index where Zs� is

attained.

We have deliberately taken the left limit to prove the forthcoming proposition. Of course, we could have
taken Hâs;s, for this is equal to Hâs� ;s on the intervals between the jumps of N.

Using this lemma we get the following result.

Proposition 1. Let T be a fixed positive number. Let ðZtÞtX0 be defined by (1). Under Assumption 1, if A is finite,
then

80ptpT ; Zt ¼

Z t

0

DZðsÞdNs �

Z t

0

Hâs� ;s dLs a:s:;
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where

DZðsÞ ¼ sup
a2A

Ha;s þ

Z s�

0

Ha;u dMu

� �
� sup

a2A

Z s�

0

Ha;u dMu

� �
.

The compensator of ðZt^T ÞtX0 is then defined by

8tX0; At ¼

Z t^T

0

½DZðsÞ �Hâs�;s�dLs.

If A is countable, the compensator of ðZt^T ÞtX0, ðAtÞtX0 exists, is nonnegative, nondecreasing and

80ptpT ; Zt � At ¼

Z t

0

DZðsÞdMs.

Proof. Let us first assume that A is finite. The first integral in Zt is exactly the first sum on the right-hand side
of (2). In the second sum on the right-hand side of (2), all the differences are between two consecutive jumps
and we can use the previous lemma. Moreover, DZðsÞ introduced in the proposition is predictable. The
compensator is then obvious. As DZ �Hâs� ;s is nonnegative and L nondecreasing, A is nonnegative
nondecreasing.

If A is just countable, A is an increasing union of finite sets Bn. Let us denote by Zn the supremum over Bn

instead of A. As, for all n, Bn is finite, Zn satisfies the first part of the proposition. But, for all tpT , the
predictable process Zn

t �
R t

0 DZnðsÞdNs converges almost surely to X t ¼ Zt �
R t

0 DZðsÞdNs. The process
ðX tÞtX0 is consequently predictable. As a result, the process ðAtÞtX0, defined by At ¼

R t

0 DZðsÞdLs þ X t, is the
compensator of ðZt^T ÞtX0 and it stays nonnegative and nondecreasing as a limit of nonnegative nondecreasing
functions. &

3. Exponential inequalities for supremum

We first present some well-known facts about exponential inequalities for martingales in our particular
framework.

Let ðHtÞtX0 be a locally bounded predictable process and ðZtÞtX0 be defined by Zt ¼
R t

0 Hs dMs for all tX0.
Let f be defined by fðuÞ ¼ eu � u� 1 for all u. Let

8tX0; Et ¼ exp lZt �

Z t

0

fðlHsÞdLs

� �
.

Let T be a positive real number. Let I be an interval such that for all l in I,
R T

0 elHs dLs is almost surely finite.
Under Assumption 1, a consequence of Theorem VI-2 of Brémaud (1981) is that ðEt^T ÞtX0 is a super-
martingale and that for all stopping time t (tpT), EðEtÞ is less than 1. This implies that for all l in I,

8e40; P sup
½0;T �

ZtXe

 !
pe�le exp

Z T

0

fðlHsÞdLs

����
����
1

.

The next result is a consequence of the previous inequality. It could also be seen as an application to this
special framework of Van de Geer (1995) except that the absolute values are inside the integral in (3) when
applying van de Geer’s results.

Proposition 2. Let ðZtÞtX0 be the process:

8tX0; Zt ¼

Z t

0

Hs dMs,

where ðHtÞtX0 is a predictable process. Let T be a positive real number. If there exist c and v positive constants,
such that

8kX2;

Z T

0

Hk
s dLs

����
����pck�2v

k!

2
, (3)
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then under Assumption 1,

8uX0; P sup
½0;T �

ZtX

ffiffiffiffiffiffiffi
2vu
p

þ cu

 !
p expð�uÞ.

There exists a simpler form when ðHtÞtX0 is bounded. This form is well known; it can be found in Shorack
and Wellner (1986), for instance.

Corollary 1. With the notations of Proposition 2, if there exist b and v positive constants such that, on ½0;T �,
ðHtÞtX0 has values in ½�b; b� andZ T

0

H2
s dLs

����
����pv

then under Assumption 1,

8uX0; P sup
½0;T �

ZtX

ffiffiffiffiffiffiffi
2vu
p

þ
b

3
u

 !
p expð�uÞ.

In Section 2, we have written the centered supremum, ðZt � AtÞ0ptpT , as an integral of a predictable process
with respect to the centered counting measure. To find concentration inequalities for the supremum, it is now
sufficient to apply the previous results to Hs ¼ DZðsÞ.

Theorem 1. Let ðNtÞtX0 be a counting process satisfying Assumption 1. Let fðHa;tÞtX0; a 2Ag be a countable

family of predictable processes. Let

8tX0; Zt ¼ sup
a2A

Z t

0

Ha;s dMs

� �
.

Let T be a positive real number. Let ðAtÞtX0 be the compensator of the process ðZt^T ÞtX0, defined by Proposition

1.
(a) If there exist positive constants b and v such that the Ha’s have values in ½�b; b� on ½0;T � and such thatR T

0 supa2A ½H
2
a;s�dLspv, then

8uX0; P sup
½0;T �
ðZt � AtÞX

ffiffiffiffiffiffiffi
2vu
p

þ
1

3
bu

 !
p expð�uÞ.

(b) If there exist positive constants c and v, such that

8kX2;

Z T

0

sup
a2A
jHa;sj

k dLs

� �
pck�2v

k!

2

then

8uX0; P sup
½0;T �
ðZt � AtÞX

ffiffiffiffiffiffiffi
2vu
p

þ cu

 !
p expð�uÞ.

Let us compare this result to the inequalities successively obtained by Talagrand (1996), Ledoux (1996),
Massart (2000a), Rio (2002) and Bousquet (2002) by looking at the counting process as an empirical measure
and at the compensator as an expectation. At first glance, it seems that this new inequality is in some sense
stronger: we can manage random (predictable) functions and one has also a ‘‘moment’’ version (see (b)), which
does not assume an absolute bound on the family of functions to integrate (or to sum in the i.i.d. framework).
One can remark that a ‘‘moment’’ version of Talagrand’s inequality in the i.i.d framework has recently been
proved (Massart, 2005). The presence of the sup½0;T � is just a refinement due to the martingale structure but this
does not affect the orders of magnitude.
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However, we lose something important with respect to Talagrand’s inequality. Let us compare in each case
what is usually called the ‘‘variance term’’, v. In Talagrand’s inequality, v can be seen as

v ¼ sup
a2A

Var

Z
Ha dPn

� �
,

where the Ha’s are here deterministic functions and where dPn is the empirical measure. The supremum is
outside the integral. But in Theorem 1(a), it lies inside the integral and it is consequently of bigger order.

This phenomenon has already been underlined by Samson (2000). He recovers Talagrand’s inequality for
F-mixing, apart from this exchange between the supremum and the sum. For the Poisson processes, Wu
(2000) and Houdré and Privault (2002) use martingales approach to derive exponential inequalities for very
general functionals of the process. When we apply these inequalities to the supremum, this exchange also appears
in the variance term. To have supremum on the left-hand side in the Poisson case (Reynaud-Bouret, 2003), we
need some techniques using the infinitely divisible property of the Poisson process. Consequently, it seems that the
exchange between supremum and sum (or integral) can only be done when there exists an independence property
in the framework. For general counting processes, we have not been able to prove such results.

4. Statistical applications

Let us now describe the statistical framework for which these inequalities are made and let us give another
corollary which is ready to be used in practice.

4.1. Statistical background

These exponential inequalities are useful to provide exponential deviations for the following w2-type
statistics. Let T be a fixed positive real number and let fhl; l 2 mg be a finite family of predictable processes.
We set

w2T ¼
X
l2m

Z T

0

hlðtÞdMt

� �2

. (4)

This quantity naturally appears if we estimate the signal s by penalized model selection in the white noise
framework (see Birgé and Massart, 2001). One has a model i.e. a finite dimensional linear subspace with
orthonormal basis fjl; l 2 mg for the classical scalar product on ½0;T �. The classical projection estimator on
this subspace satisfies that the L2-distance between the least-square estimator and the true orthogonal
projection of s, jjsm � ŝmjj

2, is a w2T given by (4), with jl instead of hl (i.e. deterministic functions) and with
dW , the white noise, instead of dM. In this case, this quantity obeys a real w2-distribution. The deviations of
this quantity have to be controlled to prove the adaptive properties of the model selection procedure. In the
white noise framework, they use the exponential inequalities available for w2-distributions.

If we estimate the density s from a n-sample by penalized model selection, we can still consider the same
model as before. As previously, the least-square estimator, ŝm, is an unbias estimation of the classical
projection, sm. The distance jjsm � ŝmjj

2 is also a w2-type statistics where hl ¼ jl, i.e. an orthonormal
deterministic basis of the model for the classical scalar product. In this case, dM is replaced by the centered
empirical measure. In this context, Birgé and Massart use Talagrand’s inequality to provide control on the
w2-type statistics (Birgé and Massart, 1997).

If we estimate the intensity s of a Poisson process N by penalized model selection, we can keep the same
procedure and notations. The distance jjsm � ŝmjj

2 is still a w2-type statistics where dM is the centered Poisson
process, and where fhl ¼ jl; l 2 mg represents an orthonormal deterministic family of L2ð½0;T �; dtÞ. In this
case, we can use the concentration inequality of Reynaud-Bouret (2003) (see Proposition 3) to control these
distances, which gives the same order of magnitude as Talagrand’s inequality in the n-sample framework.

Generalizing the Poisson process, we can be interested by the Aalen multiplicative intensity model where the
compensator of ðNtÞtX0 satisfies dLt ¼ Y tsðtÞdt, with a predictable and known process ðY tÞtX0. For instance
the right-censoring model (see Andersen et al., 1993, for a complete description) has an Aalen multiplicative
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intensity. We can estimate the deterministic function s using the observations of the processes N and Y by
penalized model selection (see Reynaud-Bouret, 2002). In this case, we are using a random scalar productR t

0
f ðsÞgðsÞY s ds instead of the classical one. In this context, we cannot exactly use the same model as before but

we can use predictable hl’s. Indeed, if fjl; l 2 mg is an orthonormal family of L2ð½0; 1�;dtÞ (typically
histograms or Fourier basis), fhl ¼ jl=

ffiffiffiffi
Y
p

; l 2 mg becomes an orthonormal predictable family for the
random product (when Y t is positive). The subspace generated by the hl’s is the used model.

Our aim is now to provide for wT an exponential inequality which is ready to be used for the statistical
applications.
4.2. An inequality which is ready for immediate application

In order to provide a concentration inequality for w2T , we can remark that

8tX0; wt ¼ supP
l2m

a2l¼1

Z t

0

X
l2m

alhlðsÞ

 !
dMs (5)

is the square root of w2t . We can consequently use Theorem 1 on a countable dense subset of the unit ball of
Rm. But as we do not know in practice the compensator of wt, we may prefer comparing it to

ffiffiffiffiffiffi
Ct

p
where

8tX0; Ct ¼
X
l2m

Z t

0

hlðsÞ
2 dLs, (6)

is the compensator of w2t . This leads to the forthcoming result.

Corollary 2. Let T be a fixed positive real number. Let wT be defined by (4). Then, for any positive number u, with

probability larger than 1� 2e�u,

wT �
ffiffiffiffiffiffiffi
CT

p
p3

ffiffiffiffiffiffiffi
2vu
p

þ bu,

where
�
 CT is defined by (6),

�
 v ¼ jjCT jj1; andP

�
 8spT ; l2m h2

lðsÞpb2:
Proof. Let uX0. First, we can interpret wt as a supremum (see (5)). Moreover, let B be a countable dense
subset of the unit ball of Rm. We can say that

wt ¼ sup
a2B

Z t

0

X
l2m

alhlðsÞ

 !
dMs.

We can therefore apply Proposition 1(a) with Ha ¼
P

l2malhl. We obtain that ðwt^T ÞtX0 has a compensator
ðAtÞtX0 and that

P sup
½0;T �
ðwt � AtÞX

ffiffiffiffiffiffiffi
2vu
p

þ
b

3
u

 !
pe�u.

We can replace the Ha by �Ha to obtain that

P sup
½0;T �
jwt � AtjX

ffiffiffiffiffiffiffi
2vu
p

þ
b

3
u

 !
p2e�u.
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Let BT ¼ sup½0;T �jwt � Atj. Now we must compare ðAtÞtX0 and ðCtÞtX0. One has for all tpT :

w2t � A2
t ¼ ðwt � AtÞ

2
þ 2Atðwt � AtÞ

¼ ðwt � AtÞ
2
þ 2

Z t

0

ðws� � As�ÞdAs þ 2

Z t

0

As dðws � AsÞ.

But the compensator of the first term is
R t

0ðDwÞ
2
ðsÞdLs and the last term is a martingale. Moreover, ðAtÞtX0 is

predictable. We can therefore take the compensator of the previous expression to obtain:

Ct � A2
t ¼

Z t

0

ðDwÞ2ðsÞdLs þ 2

Z t

0

ðws� � As�ÞdAs.

Consequently, we have:

wt �
ffiffiffiffiffiffi
Ct

p
¼ wt � At þ At �

ffiffiffiffiffiffi
Ct

p
¼ wt � At �

Ct � A2
t

At þ
ffiffiffiffiffiffi
Ct

p

¼ wt � At �

R t

0ðDwÞ
2
ðsÞdLs þ 2

R t

0ðws� � As�ÞdAs

At þ
ffiffiffiffiffiffi
Ct

p .

As ðAtÞtX0 is nonnegative and nondecreasing, we obtain that wt �
ffiffiffiffiffiffi
Ct

p
p3BT , for all tpT , which implies the

result. &

4.3. Orders of magnitude

Let us now emphasize the difference between Talagrand’s inequality and ours. To do so, let us rewrite
Corollary 2 of Reynaud-Bouret (2003), which is the complete equivalent of Talagrand’s inequality in the
Poisson framework, and which is consequently closer to the general framework of counting processes:

Proposition 3. Let N be a Poisson process on ðX;XÞ with finite mean measure n. Let fca; a 2 Ag be a countable

family of functions with values in ½�b; b�. One considers

Z ¼ sup
a2A

Z
X

caðxÞðdNx � dnxÞ

����
���� and v0 ¼ sup

a2A

Z
X

c2
aðxÞdnx.

Then

8e40; 8uX0; P ZXð1þ eÞEðZÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kv0u

p
þ kðeÞbu

� 	
p expð�uÞ,

where k ¼ 6 and kðeÞ ¼ 1:25þ 32=e.

This inequality has exactly the same orders of magnitude as Talagrand’s inequality in the i.i.d. framework:
the supremum lays outside the integral in the variance term v0.

Let us compare this result to Proposition 2 applied to Poisson processes. Actually one can see Poisson
processes as a special case of counting processes with Aalen multiplicative intensity. Let us look at the case
where s is a constant equal to 1, Y is a constant equal to n and T equals 1 (i.e. dn ¼ n ds is the mean measure of
the Poisson process). This is the case for the aggregated process built from the sum of n independent
identically distributed homogeneous Poisson processes on ½0; 1� with intensity 1.

Suppose the model (see Section 4.1) is the set of histograms constructed on a regular partition m of ½0; 1�.
The basis is therefore deterministic and of the form

ffiffiffiffiffiffiffiffiffiffiffiffi
ðD=nÞ

p
1I where D is the number of intervals in m.

If we apply Corollary 2 of Reynaud-Bouret (2003) on ½0; 1�, to

w ¼ supP
I2m

a2
I
¼1

Z 1

0

X
I2m

aI

ffiffiffiffi
D

n

r
1I ðdNs � ndsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I2m

D

n
NI �

n

D

� 	2s
,
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where NI is the number of jumps of the process in the interval I, we obtain that

8e40; 8uX0; P wXð1þ eÞ
ffiffiffiffi
D
p
þ

ffiffiffiffiffiffiffiffi
2ku
p

þ kðeÞ

ffiffiffiffi
D

n

r
u

 !
p exp�u. (7)

But, if we apply Proposition 2, we obtain that

8uX0; P wX
ffiffiffiffi
D
p
þ 3

ffiffiffiffiffiffiffiffiffi
2Du
p

þ

ffiffiffiffi
D

n

r
u

 !
p2 exp�u. (8)

The variance term (the factor of
ffiffiffi
u
p

) in (8) is bigger than the corresponding term in (7). It has the same
order as the expectation ð

ffiffiffiffi
D
p
Þ. The parameter D is indeed potentially as large as n for proper models, n tending

to infinity. Consequently, (7) gives an order of magnitude of
ffiffiffiffi
D
p

when (8) gives an order of magnitude offfiffiffiffiffiffiffi
Du
p

. In this sense, inequality (7) is better than (8).
But for more general Aalen multiplicative intensity processes, Y is no longer constant: it often decreases and

it can become very small. In the right-censoring model, Y t is equal to 1 when t tends to 1, but Y 0 equals n, the
number of observations when t ¼ 0. In this case, the third linear term becomes of order u

ffiffiffiffi
D
p

. Hence we would
not change the order of magnitude given by this inequality for processes with Aalen multiplicative intensity,
even if we were able to improve the behavior of the quadratic term in the general case.

5. Conclusion

We have proved an inequality that generalizes Talagrand’s inequality in the n-sample framework, apart
from the increase of the quadratic term. This is especially useful to prove the adaptive properties of the
penalized model selection procedure when we are dealing with counting processes which are more intricate
than Poisson processes, like the processes with Aalen multiplicative intensity.
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1053–1057 En l’honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov.

Samson, P.-M., 2000. Concentration of measure inequalities for Markov chains and f-mixing processes. Ann. Probab. 28 (1), 416–461.

Shorack, G., Wellner, J., 1986. Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics.

Talagrand, M., 1996. New concentration inequalities in product spaces. Invent. Math. 126 (3), 505–563.

Van de Geer, S., 1995. Exponential inequalities for martingales, with application to maximum likelihood estimation for counting

processes. Ann. Statist. 23 (5), 1779–1801.

Wu, L., 2000. A new modified logarithmic Sobolev inequality for Poisson point process and several applications. P.T.R.F. 118 (3),

427–438.

http://www.math.u-psud.fr/~massart/
http://www.math.u-psud.fr/~massart/

	Compensator and exponential inequalities for some suprema of counting processes
	Introduction
	Compensator of the supremum
	Exponential inequalities for supremum
	Statistical applications
	Statistical background
	An inequality which is ready for immediate application
	Orders of magnitude

	Conclusion
	References


