Université Nice-Sophia Antipolis

SMEMP302 - ECUE Probabilitic computational methods, 2023-2024
Sylvain Rubenthaler (https://math.unice.fr/~~rubentha/)

Home Project

We are interested in the following SDE (dimension 1)

$$
\begin{equation*}
X_{t}=W_{t}-\int_{0}^{t} X_{s}^{3} d s \tag{0.1}
\end{equation*}
$$

$\left(\left(W_{t}\right)\right.$ is a standard Brownian motion). We admit that this equation has a unique solution $\left(X_{t}\right)_{t \in[0, T]}$ on the interval $[0, T](T>0)$ and that this solution satisfies $\mathbb{E}\left(\sup _{t \in[0, T]}\left|X_{t}\right|^{4}\right)<+\infty$. We write $\left(\bar{X}_{t}^{N}\right)_{0 \leq t \leq T}$ for the continuous Euler scheme associated to Equation (0.1), with stepsize T / N. The discretization steps are $0, t_{1}=T / N, t_{2}=2 T / N, \ldots$ We define the event :

$$
A_{N}=\left\{\left|W_{t_{1}}\right| \geq \frac{3 N}{T}, \sup _{1 \leq k \leq N-1}\left|W_{t_{k+1}}-W_{t_{k}}\right| \leq 1\right\}
$$

(1) Show that $\mathbb{P}\left(A_{N}\right) \geq \mathbb{P}\left(\left|W_{t_{1}}\right| \geq 3 N / T\right) \mathbb{P}\left(\sup _{t \in[0, T]}\left|W_{t}\right| \leq 1 / 2\right)$.
(2) By observing that for all $x>0$,

$$
\frac{e^{-x^{2} / 2}}{x}=\int_{x}^{+\infty}\left(1+\frac{1}{y^{2}}\right) e^{-y^{2} / 2} d y
$$

show that

$$
\int_{x}^{+\infty} e^{-y^{2} / 2} d y \geq \frac{x e^{-x^{2} / 2}}{1+x^{2}}
$$

(3) Show that

$$
\mathbb{P}\left(A_{N}\right) \geq \mathbb{P}\left(\sup _{t \in[0, T]}\left|W_{t}\right| \leq 1 / 2\right) \times \frac{6(N T)^{3 / 2}}{T^{3}+9 N^{3}} \times \frac{e^{-9 N^{3} /\left(2 T^{3}\right)}}{\sqrt{2 \pi}}
$$

(4) Show that, for $\omega \in A_{N}$, if $k \geq 1$,

$$
\left|\bar{X}_{t_{k}}^{N}(\omega)\right| \geq 1 \Rightarrow\left|\bar{X}_{t_{k+1}}^{N}(\omega)\right| \geq\left|\bar{X}_{t_{k}}^{N}(\omega)\right|^{2}\left(\frac{T}{N}\left|\bar{X}_{t_{k}}^{N}(\omega)\right|-2\right)
$$

(5) Show that, if $N \geq T / 3$, for $\omega \in A_{N}, \forall k \in\{1, \ldots, N\}$,

$$
\left|\bar{X}_{t_{k}}^{N}(\omega)\right| \geq\left(\frac{3 N}{T}\right)^{2^{k-1}}
$$

(6) Show that $\lim _{N \rightarrow+\infty} \mathbb{E}\left(\left|\bar{X}_{T}^{N}\right|\right)=+\infty$.
(7) Find $\lim _{N \rightarrow+\infty} \mathbb{E}\left(\left|\bar{X}_{T}^{N}-X_{T}\right|\right)$ and $\lim _{N \rightarrow+\infty} \mathbb{E}\left(\sup _{t \in[0, T]}\left|\bar{X}_{t}^{N}-X_{t}\right|\right)$.
(8) Observing that the law of \bar{X}_{T}^{N} is symmetric, show that, for $K>0$,

$$
\mathbb{E}\left(\left(\bar{X}_{T}^{N}-K\right)^{+}\right) \geq \frac{1}{2} \mathbb{E}\left(\left|\bar{X}_{T}^{N}\right|\right)-K
$$

(9) Show that $\mathbb{E}\left(\left(\bar{X}_{T}^{N}-K\right)^{+}\right)$does not converge towards $\mathbb{E}\left(\left(X_{T}-K\right)^{+}\right)$when $N \rightarrow+\infty$.
(10) Write a python function that compute \bar{X}_{T}^{N} for a given N (take $T=10$).
(11) Write a python function that compute a Monte-Carlo approximation of $\mathbb{E}\left(\left|\bar{X}_{T}^{N}\right|\right)$ with a sum of M terms, for given N, M.
(12) BONUS QUESTION (more difficult) : Write a program in python that will illustrate the result of question 6. Do not forget to include confidence interval in a potential graphic.

