On regularity of $\overline{\partial}$ solutions on a_q domains with C^2 boundary in complex manifolds

Xianghong Gong

University of Wisconsin-Madison

Conference on SCV, CR geometry and Dynamics (Dec 6-10,2021) on the occasion of **Chair Montel** award (Nice) to Xiaojun Huang

We study the regularity of $\overline{\partial}$ equation

$$\overline{\partial}u = f$$
, on D

where f is a $\overline{\partial}$ -closed (0,q)-form and D is a relatively compact C^2 domain in a complex manifold X.

We can consider a slightly more general situation, where f is E-valued (0, q)-forms for a holomorphic vector bundle E on X.

Main assumption.

 ∂D has a_q property: If D is defined by $\rho < 0$, its Levi-form $L\rho$ has at least (q + 1) negative eigenvalues, or at least (n - q) positive eigenvalues on ∂D .

In general the equation may not be solvable if we don't impose further conditions on D.

A minimum requirement: $\overline{\partial}u = f$ has a solution $u \in L^2_{loc}(D)$.

After work of Morrey (1958) and Kohn (1963, 64) on strictly pseudoconvex domains, Hörmander developed L^2 theory for a_q domains with C^3 boundary. a_q property is also called Z(q) property for which the basic estimate hold for (0, q) forms.

1962: Grauert used strict pseudoconvexity for neighborhood of negative normal line bundle of C to establish the formal principle for such neighborhoods of C.

1966: a_2 property was used by Griffiths to obtained "finite jet" determination of germs of neighborhoods of C in the normal direction.

1977: Hamilton used a_2 property to study the stability of small deformation of the complex structure on an a_2 domain D is a complex manifold.

Our goal is to keep minimum smoothness requirement on ∂D while seeking higher order regularity of a solution u.

Here is a short version of our results:

q = 1: We show the existence of the solutions on the closure of the domain that gain 1/2 derivative when the given (0, 1) form $f \in \Lambda^r(\overline{D})$ with r > 1.

q > 1: The same regularity result for the solutions is achieved for (0,q) for f, when the boundary is either sufficiently smooth or has (n-q) positive Levi eigenvalues.

Here $\Lambda^a = C^{k,\alpha}$ for $k \in \mathbb{N}$ and $0 < \alpha < 1$. By $u \in \Lambda^1(\mathbb{R}^N)$ we mean $|u(x+y) + u(x-y) - 2u(x)| \le A|y|$

for all $x, y \in \mathbf{R}^N$.

We will prove the following.

Theorem (q = 1 or strictly (n - q)-convex boundary)

Let $a \in (1, \infty)$ and $1 \leq q \leq n$. Let D be an a_q domain with C^2 boundary in X. If $\overline{\partial} u = f$ has an L^2 solution u_0 , there is a linear solution operator $u = H_q f$ so that

$$|H_q f|_{\Lambda^{a+1/2}(\overline{D})} \le C_a(D)|f|_{\Lambda^a(\overline{D})}.$$

In our proof, it is important that $\overline{\partial} f = 0$.

Early results by G. and Shi-Yao.

Basic estimate: Morrey for (0, 1)-forms; Kohn for (0, q) forms.

 $\overline{\partial}$ solutions of gaining 1/2 derivative for C^k forms f was proved by Siu for (0, 1)-forms. And the same results for (0, q)-forms was proved by Lieb-Range for all q > 0, when D is in \mathbb{C}^n and $\partial D \in C^{k+2}$.

We will first prove the following.

Theorem $(q \ge 1 \text{ and } a_q \text{ domains})$

Let $a \in (1, \infty)$. Let D be an a_q domain with $\Lambda^{a+5/2}$ boundary in X. If $\overline{\partial}u = f$ has an L^2 solution u_0 , there is a linear solution operator $u = H_q f$ so that $|H_q f|_{\Lambda^{a+1/2}(\overline{D})} \leq C|f|_{\Lambda^a(\overline{D})}.$

Again, we require $\overline{\partial}$ -closedness of f to construct H_q and estimate $H_q f$.

The above two theorems were conjectured by Henkin-Leiterer. They proved a local result for 1/2 estimate when $f \in C^0$ by using a local homotopy formula.

Results for strictly pseudoconvex domains

- Sup norm estimates (Grauert-Lieb and Lieb)
- $C^{1/2-0}$ -estimate (Kerzman); $C^{1/2}$ estimate (Henkin-Romanov)
- $C^{k+1/2}$ estimate: (0,1) forms (Siu); (0,q) forms (Lieb-Range). Lieb-Range constructed a new solution operator $u = H_q f$.
- Gong: Strictly pseudoconvex C^2 domains in \mathbb{C}^n for $\Lambda^{a+1/2}$ estimates for homotopy operators H_q, H_{q+1} in

$$f = \overline{\partial} H_q f + H_{q+1} \overline{\partial} f.$$

When f is a $\overline{\partial}$ closed (0, 1)-form, $\partial D \in C^{\infty}$ and $a \in (0, \infty)$, the result for $\overline{\partial}$ solutions is due to Phong-Stein for \mathbf{C}^2 and Greiner-Stein for \mathbf{C}^n .

• G.-Lanzani: $\Lambda^{a+1/2}$ estimates for *strongly* C-linear convex domain with $C^{1,1}$ boundary:

$$|\rho_{\zeta} \cdot (\zeta - z)| \ge c|\zeta - z|^2, \quad \zeta \in \partial D, \quad z \in \overline{D}.$$

• Shi: Gain almost 1/2-derivative for weighted L^p Sobolev spaces for strictly pseudoconvex domains with C^2 boundary.

Ziming Shi and Liding Yao (2021):

If D is a strictly pseudoconvex domain with C^{k+3} boundary, then $\overline{\partial} u = f$ admits $H^{s+1/2,p}$ solutions u for $f \in H^{s,p}$, when

-k + 1/p < s < 0, 1 ,*i.e.*s is negative!

This is the first result since L^2 theory for boundary regularity of solutions in the distribution sense.

Open Problem for q > 1. Let $D \in X$ be an (q+1) concave domain with C^2 boundary. Let $f = \overline{\partial} u_0$ be continuous on \overline{D} with $u_0 \in L^2(D)$. Does there exist $u \in \Lambda_{1/2}(\overline{D})$ such that $\overline{\partial} u = f$ in D?

Recall that for strictly pseudoconvex domains with C^2 boundary in \mathbb{C}^n . The answer is affirmative (Henkin-Romanov). Here the issue is $\partial D \in C^2$. If $\partial D \in C^3$, an affirmative answer is obtained by Henkin-Leiterer for *local* solutions.

Main ingredients in our approach.

1. We will find local solutions with exact regularity near each boundary point of ∂D by constructing local homotopy formula

$$f = \overline{\partial} H_q f + H_{q+1} \overline{\partial} f.$$

2. Use these local solutions and Grauert's bumping method to achieve

$$f = \overline{\partial}u_1 + \tilde{f}$$

where $u_1 \in \Lambda^{r+1/2}(\overline{D})$ and $\tilde{f} \in \Lambda^a(\tilde{D})$ remains $\overline{\partial}$ -closed on a larger domain \tilde{D} .

3. By the stability of L^2 solutions for a_q domains, which is due to Hörmander, we know that \tilde{f} is still solvable in L^2 space.

4. We can show that Kohn's canonical solution $\tilde{u}, \overline{\partial}\tilde{u} = \tilde{f}$, is in $\Lambda_{loc}^{r+1}(\tilde{D})$, by adapting a method of Kerzman.

A local homotopy formula for strictly pseudoconvex C^2 domains in \mathbb{C}^n constructed by using a method of Lieb-Range

The local homotopy formula has the form

$$H_q\varphi(z) = \int_{\mathbf{C}^n} \Omega^0_{0,q-1}(z,\zeta) \wedge E\varphi(\zeta) + \int_{\mathbf{C}^n \setminus D} \Omega^{01}_{0,q-1}(z,\zeta) \wedge [\overline{\partial}, E]\varphi(\zeta)$$

An important feature in the above homotopy operator is the commutator $[\overline{\partial}, E]$. We have

$$[\overline{\partial}, E]\varphi|_D = 0.$$

So the second term is C^{∞} in D.

We now deal with the boundary term illustrated for a simpler situation:

Proposition

Let $\partial D \in C^2$ be strictly convex. Let

$$Kf(z) = \int_{\xi \in \mathcal{U} \setminus D} \frac{A(\partial_{\zeta}^2 r, \zeta, z)(\overline{\zeta}_i - \overline{z}_i)}{(r_{\zeta} \cdot (z - \zeta))^{n-m} |\zeta - z|^{2m}} [\partial, E] f \, dV(\zeta), \quad \forall z \in D$$

where $0 \le m < n$. Let a > 1. Then

$$\|Kf\|_{\overline{D};a+1/2} \le C \|f\|_{\mathcal{U};a}.$$

Proof. We need a non-trivial fact: When $\partial D \in Lip$ and $f \in C^{\infty}(D)$ then $Kf \in \Lambda^b(\overline{D})$ if

$$|\partial^k Kf(z)| \le A \operatorname{dist}(z, \partial D)^{b-k}, \quad k = [b] + 1.$$

The above argument can be modified near q convex boundary points via local homotopy formula and we can still introduce commutator $[\overline{\partial}, E]$ to get rid of boundary integral.

Notice that for the proof to work for $\rho \in C^2$. It is important that $\partial_{\zeta}^2 r$ does not depend on z, i.e. it is C^{∞} in z.

This feature is *lost* when the boundary become concave. In the concave case, we must replace $\partial_{\zeta}^2 \rho$ by $\partial_z^2 \rho$. In fact, we can write the integral as

$$Kf(z) = \partial_z^2 \rho \int_{\xi \in \mathcal{U} \setminus D} \frac{\overline{\zeta}_i - \overline{z}_i}{(\rho_{\zeta} \cdot (z - \zeta))^{n-m} |\zeta - z|^{2m}} [\partial, E] f \, dV(\zeta), \quad \forall z \in D$$

Clearly Kf(z) cannot have higher order regularity up to boundary when $\rho \in C^2$!

What is special about (0, 1) forms f? – An application of Hartogs' theorem to the $\overline{\partial}$ problem

When f is a (0, 1) form,

$$\overline{\partial} u_1 = f = \overline{\partial} u_2$$

implies that $u_2 - u_1$ is holomorphic. When ∂D is 1-concave, the $u_2 - u_1$ is holomorphic in a domain containing \overline{D} by Hartogs' theorem.

Therefore, u_2 , u_1 have the same regularity.

How to use concavity?

Applying Nash-Moser method, we can show the following.

Theorem $(q > 1 \text{ and } a_q \text{ domains})$

Let D be an a_q domain with C^2 boundary in X. If $\overline{\partial} u = f$ has an L^2 solution u_0 and $f \in C^{\infty}(\overline{D})$, there exists a solution $u \in C^{\infty}(\overline{D})$ to $\overline{\partial} u = f$.

This time, we will not use support domains. We can use a sequence of smooth domains D_j approximate D from inside. On each D_j we find solution u_j for $\overline{\partial} u_j = f$. Then using Nash-Moser smoothing operator $S_{t_j}u_j$ and then apply cutoff functions $\chi_j S_{t_j}u_j$ and then iterate the procedure:

$$\overline{\partial} u_{j+1} = f - \partial(\chi_j S_{t_j} u_j).$$

We can construct a genuine solution u that is smooth (C^{∞}) on \overline{D} .

A counter-example (Sibony): There is a smooth pseudoconvex domain (that is not finite type) such that $\overline{\partial}u = f$ has no Λ^r solution u for some $f \in \Lambda^r$.

An open problem: If D is C^2 pseudoconvex domain in \mathbb{C}^n , can $\overline{\partial} u = f$ have $C^{\infty}(\overline{D})$ solution when $f \in C^{\infty}(\overline{D})$?

Thank you for your attention!