The Borel Map

Bernhard Lamel (Joint work with P. Cordaro \& G. Della Sala)

TEXAS A\&M UNIVERSITY AT QATAR Science

SCV, CR, and Dynamics
 Nice 2021

First of all, congratulations to Xiaojun-we miss you here!

A classical result

- $\mathcal{C}_{p}^{\infty}(\mathbb{R})$: germs of (complex valued) smooth functions at $p \in \mathbb{R}$
- $\mathbb{C}[[x-p]]$: formal power series ring in one variable x

Theorem

The Taylor expansion $\operatorname{map} \mathcal{C}_{p}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}[[x-p]]$ is onto.
The typical proof utilizes a bump function φ and realizes the formal Taylor series $\sum_{k} A_{j}(x-p)^{j}$ as the Taylor series of

$$
f(x)=\sum_{k} A_{j} \varphi\left(\lambda_{j} x\right)(x-p)^{j}
$$

for a sufficiently fast increasing series $\lambda_{j} \rightarrow \infty$.

Freezing PDEs and formal solutions

If we have a PDO $P=P\left(x, \partial_{x}\right)$ of order k with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
P\left(x, \partial_{x}\right)=\sum_{|\alpha|=1}^{k} P_{\alpha}(x) \partial_{x}^{\alpha}, \quad P_{\alpha} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

then we can "freeze" its coefficients at a point (say 0):

$$
\hat{P}\left(x, \partial_{x}\right)=\sum_{|\alpha|=1}^{k} \hat{P}_{\alpha}(x) \partial_{x}^{\alpha}, \quad \hat{P}_{\alpha}(x) \in \mathbb{C}[[x]]
$$

where $\hat{P}_{\alpha}(x)$ is the Taylor series of P_{α} at the origin.
A formal power series $A(x)$ is said to be a formal solution of P if

$$
P A=\sum_{|\alpha|=1}^{k} \hat{P}_{\alpha}(x)\left(\partial_{x}^{\alpha} A(x)\right)=0 \in \mathbb{C}[[x]]
$$

Formal and real solutions

Every solution u of P gives rise to the formal solution \hat{u} given by the Taylor series of u at the origin.

General Borel Question

Given a formal solution A of P, does there exist a solution u of P such that $\hat{u}=A$?

We refer to the map \mathfrak{b} associating to the solution u the formal solution \hat{u} as the Borel map of P.

Borel property

We say that P has the Borel property if \mathfrak{b} is onto.

Unique Continuation

P satisfies a (strong) unique continuation principle if and only if \mathfrak{b} is injective.

Failure of the Borel property

Consider a Levi-flat hypersurface M, and as a partial differential operator $\bar{\partial}_{b}$. Then one sees that the image of the Borel map is contained in $\mathbb{C}\{z\}[[w]]$, where z is a variable in the leaf of the Levi-foliation through 0 and w is a transverse variable.
In general, failure of the Borel property occurs if solutions of P have non-formal restrictions, like maximum theorems.
On the other hand unique continuation often happens if we have maximum theorems.

Another general question

What properties of P are encoded in properties of its Borel map?
First order linear equations: Algebraic and functional analytic methods available!

Locally integrable structures

We say that (M, \mathcal{V}), where $\mathcal{V} \subset \mathbb{C} T M$, is a locally integrable structure if for every $p \in M$ there exists a neighbourhood U of p and N complex-valued functions Z_{1}, \ldots, Z_{N} such that the $d Z_{j}$ are linearly independent and span $T^{\prime} M=\mathcal{V}^{\perp}$.

Theorem (The Baouendi-Treves Approximation Theorem)

For every p in M there exists a compact neighbourhood K of p such that every solution f of \mathcal{V} is a uniform limit of polynomials in basic solutions $Z=\left(Z_{1}, \ldots, Z_{N}\right)$ on K : For every $\varepsilon>0$ there exists $P_{\varepsilon} \in \mathbb{C}[Z]$ such that

$$
\left|f(x)-P_{\varepsilon}(Z(x))\right|<\varepsilon \quad \forall x \in K .
$$

Therefore, the sets $Z(K) \subset \mathbb{C}^{N}$ and their complex analytic properties have a strong relationship to solutions of locally integrable structures.

Hypocomplexity and unique continuation

We say that a locally integrable structure (M, \mathcal{V}) is hypocomplex at $p \in M$ if every germ of a solution u of \mathcal{V} is of the form $u=h \circ Z$ where h is a germ of a holomorphic function at $Z(p)$.

Theorem (Characterization of Hypocomplexity)

TFAE:
(1) (M, \mathcal{V}) is hypocomplex at p;
(2) For every (small) compact neighbourhood $K \subset \subset M$ of p, the polynomially convex hull of $Z(K)$ is a neigbourhood of $Z(p)$;
(3) For every (small) compact neighbourhood $K \subset \subset M$ of p, the rationally convex hull of $Z(K)$ is a neigbourhood of $Z(p)$.

Hypcomplexity \Longrightarrow Unique continuation property.
In corank 1 structures, the two properties are in fact equivalent (Math. Ann. 2020)

The algebra $A^{\infty}(K)$

For $K \subset \mathbb{C}_{Z}^{N}$, the algebra $A^{\infty}(K)$ contains all "functions" which have the property that they are approximated in all of their derivatives by holomorphic polynomials. Formally:
Consider the set of formal power series $\mathcal{C}(K)[[Z]]]$ with coefficients which are continuous functions on K.
Then $\mathcal{O}\left(\mathbb{C}^{N}\right)$ embeds into $\mathcal{C}(K)[[X]]$ by the algebra homomorphism

$$
\left.h(Z) \mapsto \sum_{\alpha \in \mathbb{N}^{N}} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} h}{\partial Z^{\alpha}}\right|_{K} X^{\alpha} .
$$

$A^{\infty}(K)$ is defined to be the closure of the image of this homomorphism under the seminorm system

$$
p_{k}\left(\sum A_{\alpha}(Z) X^{\alpha}\right)=\sum_{|\alpha| \leq K} \sup _{K \in K}\left|A_{\alpha}(Z)\right|, \quad k \in \mathbb{N} .
$$

For flexibility

It is sometime necessary and interesting to work with "relative" versions of $A^{\infty}(K)$. We define $A^{\infty}(K ; L)$ to be the closure of $\mathcal{O}(L)$ in $\mathcal{C}(K)[[X]]$ as before. Then by Oka-Weil:
$A^{\infty}(K, \widehat{K})=A^{\infty}(K) \quad \widehat{K}$ polynomially convex hull of $K ;$
$A^{\infty}\left(K, \widehat{K}_{R}\right)=R^{\infty}(K) \quad \widehat{K}_{R}$ rationally convex hull of K.

The spectrum

The spectrum of $A^{\infty}(K)$ is the polynomial hull of K. More generally, one can identify the spectrum of $A^{\infty}(K, L)$ with the limit of the spectra $\sigma(K, U)$ of the Banach algebras $A(K, U)$, where U ranges over the neighbourhoods of L. In particular, if L has a Stein neighbourhood basis, then the spectrum of $A^{\infty}(K, L)$ is

$$
\widehat{K}_{L}=\bigcap_{\Omega \supset L} \widehat{K}_{\Omega}
$$

The Borel map of K

We assume from now on that $0 \in K$.

Definition

The continuous algebra homomorphism

$$
\mathfrak{b}: A^{\infty}(K, L) \rightarrow \mathbb{C}[[X]], \quad \sum A_{\alpha}(Z) X^{\alpha} \mapsto \sum A_{\alpha}(0) X^{\alpha}
$$

is called the Borel map of K relative to L (at the origin).

An algebraic property

Since $\mathbb{C}[[X]]$ is a local ring and (unless K is a point) $A^{\infty}(K, L)$ is not local, the Borel map is never an isomorphism of algebras.

An example

Consider $K \subset \mathbb{C}_{(z, w)}^{2}$ defined by

$$
K=\{|z|<1, w \in[0,1]\} .
$$

Then

$$
\mathfrak{b}\left(A^{\infty}(K)\right) \cong \mathfrak{b}\left(A^{\infty}(\Delta)\right) \otimes \mathbb{C}[[w]] .
$$

(Non)surjectivity of the Borel map

Proposition (Non-surjectivity and Cauchy estimates)

\mathfrak{b} is not surjective if and only if there exists a sequence of polynomials P_{j} of degree at least j, and a constant m such that

$$
(*):\left|P_{j}(\partial) f(0)\right| \leq p_{m}(f)=\sum_{|\alpha| \leq k} \sup _{Z \in K}\left|\frac{\partial^{|\alpha|} f}{\partial Z^{\alpha}}\right|, \quad \forall f \in \mathcal{O}(L)
$$

Proof: \mathfrak{b} is not a homomorphism, so \mathfrak{b}^{t} is not weakly continuous.

Proposition (Complex Structure implies non-surjectivity)

Assume that there is a complex disc passing through 0 contained in \widehat{K}_{L}. Then \mathfrak{b} is not surjective.

Proof: If $g(\zeta)$ is the disc, use

$$
P_{j}(\partial) f(0)=\left.\frac{d^{k}}{d \zeta^{k}}\right|_{\zeta=0} f \circ g .
$$

Peaking and surjectivity

If K has a suitable peak function then the Borel map of K is surjective. However, there is a weaker property which also implies surjectivity.

Peaking families

We say that $\left\{u_{\alpha, \varepsilon}: \alpha \in \mathbb{N}^{N}, \varepsilon \in\left[0, \varepsilon_{\alpha}\right)\right\} \subset \mathcal{O}(L)$ is a peaking family if either

$$
p_{|\alpha|-1}\left(u_{\alpha, \varepsilon}\right)<C_{\alpha}, \quad \frac{\partial^{|\alpha|} u_{\alpha, \varepsilon}}{\partial Z^{\alpha}}(0) \rightarrow \infty(\varepsilon \rightarrow 0)
$$

or

$$
p_{|\alpha|-1}\left(u_{\alpha, \varepsilon}\right) \rightarrow 0(\varepsilon \rightarrow 0), \quad \frac{\partial^{|\alpha|} u_{\alpha, \varepsilon}}{\partial Z^{\alpha}}(0)=1
$$

One can define partial peaking families in an analogous way.

Proposition

Existence of a peaking family implies surjectivity of the Borel map.

Sufficient condition for surjectivity

Define

$$
\mathcal{N}(K, L)=\left\{f^{\prime}(0): f \in \mathcal{O}(L) \backslash\{0\},\left.\operatorname{Re} f\right|_{K} \leq 0\right\} \subset \mathbb{C}^{N} .
$$

One checks that every family of polynomials P_{j} appearing in (*) necessarily satisfies

$$
\tilde{P}_{j}(v)=0, \quad \forall v \in \mathcal{N}(K, L)
$$

where \tilde{P}_{j} is the highest degree homogeneous part of P_{j}. So:

Proposition

If $\mathcal{N}(K, L)$ is large enough (i.e. contains a maximally real set for example), then the Borel map is surjective.

Corollary

If K is a convex polyhedron, and 0 is a vertex (or the face through 0 does not contain a complex line), then the Borel map of K is surjective.

Excursion: One dimension

The one-dimensional case is quite clean, and one gets a good intuition of what to avoid when trying to answer questions about the injectivity of the Borel map in higher dimensions.

Theorem (JFA, 2020)

If $K \subset \mathbb{C}$ is subanalytic and $0 \in K$, then the following dichotomy holds:
(1) 0 is in the interior of K and the Borel map is injective;
(2) 0 is on the boundary of K and the Borel map is surjective.

Here the Borel map is with respect to the rationally convex hull (i.e. K).
One can explore a range of "milder" conditions on K, but one runs into (typical) topological problems. In particular, the one-dimensional theorem also holds if K is non-spiraling or if K is path-bounded.

Open Mapping Property

Another somewhat mysterious property of solutions of first order equations is when they happen to all be open. It's closely related to the maximum principle.

Theorem

Let $K \subset L \subset \mathbb{C}^{N}$, with K and L compact, $0 \in K$, and assume that L is connected and subanalytic. Assume also that \mathfrak{b} is injective. If $h \in \mathcal{O}(L)$ vanishes at the origin and if L is not contained in the zero set of h then $h(L)$ is a neighborhood of the origin in the complex plane.

The proof utilizes the one-dimensional result to construct a peaking family from a non-open map.

Last words

Theorem

If $K \subset \mathbb{C}^{N}$ is convex and subanalytic, and $0 \in K$, then the following dichotomy holds:
(1) 0 is in the interior of K and the Borel map is injective;
(2) 0 is on the boundary of K and the Borel map is surjective.

Actually, we can say quite a bit more in the convex setting: If \mathfrak{b} is neither surjective nor injective, then the image of the Borel map can be thought of as splitting into a tensor product of "holomorphic" factors corresponding to complex varieties in the boundary of K and "formal" factors corresponding to the other directions.

Conjecture

If K is subanalytic and polynomially/rationally convex, then the Borel map is injective if and only if K is a neighbourhood of 0 .

Thank you for your attention!

Thanks to the organizers!

The local organizing committee has done a tremendous job accomodating different timezones, schedules, and weather restrictions.

Thanks to the fantastic
Laurent, Stephanie, and Zhiyan.

Thanks to the organizers!

The local organizing committee has done a tremendous job accomodating different timezones, schedules, and weather restrictions.

Thanks to the fantastic
Laurent, Stephanie, and Zhiyan.

