Obstruction flat rigidity of the standard CR 3-sphere

Peter Ebenfelt ${ }^{1}$
University of California at San Diego

December 6, 2021

Credits.

- Joint work with Sean Curry, Oklahoma State University.

Introduction.

- Let Ω be a bounded strictly pseudoconvex domain in $\mathbb{C}^{n}, n \geq 2$.
- Assume Ω has a smooth $\left(C^{\infty}\right)$ boundary $M=M^{2 n-1}:=\partial \Omega$.
- Consider the complex Monge-Ampère operator

$$
J(u):=(-1)^{n} \operatorname{det}\left(\begin{array}{cc}
u & u_{\bar{z}_{k}} \\
u_{z_{j}} & u_{z_{j} \bar{z}_{k}}
\end{array}\right)
$$

and the Dirichlet problem

$$
J(u)=1,\left.\quad u\right|_{M}=0
$$

- Solution produces a complete Kähler-Einstein metric in Ω :

$$
g_{j \bar{k}}:=-\partial^{2} / \partial z_{j} \partial \bar{z}_{k} \log H, \quad H=u^{-(n+1)} .
$$

- Cheng-Yau: \exists unique solution $u \geq 0$ in $C^{\infty}(\Omega) \cap C^{n+2-\epsilon}(\bar{\Omega})$.

Approximate Solutions and the Obstruction Function.

- Fefferman: $\exists r \in C^{\infty}(\bar{\Omega})$ such that

$$
J(r)=1+O\left(r^{n+1}\right),\left.\quad r\right|_{M}=0
$$

and r is unique $\bmod O\left(r^{n+2}\right)$.

- For any such Fefferman defining function r, we have

$$
J(r)=1+\mathcal{O} r^{n+1}+O\left(r^{n+2}\right), \quad \mathcal{O} \in C^{\infty}(M)
$$

- \mathcal{O} is called the obstruction function/density.
- Graham: \mathcal{O} is a local CR invariant. The Cheng-Yau solution is C^{∞}-smooth up to $U \subset M \Longleftrightarrow \mathcal{O}=0$ in $U \Longleftrightarrow \exists$ a Fefferman defining function r with $J(r)=1$ near U.
- A strictly pseudoconvex CR manifold M is obstruction flat if $\mathcal{O}=0$.

The unit ball in \mathbb{C}^{n}.

- In the unit ball \mathbb{B}^{n}, the Cheng-Yau solution is given by $u(z)=1-|z|^{2}$.
- Since $u \in C^{\infty}\left(\overline{\mathbb{B}^{n}}\right)$, it follows that the unit sphere $S^{2 n-1}$ is obstruction flat (i.e., $\mathcal{O}=0$).
- Since \mathcal{O} is a local CR invariant, any CR manifold M that is (locally) spherical is also obstruction flat.
- Converse is not true. A strictly pseudoconvex CR manifold can be obstruction flat on an open set U without being locally spherical.
- Q: Are there smoothly bounded strictly pseudoconvex domains in \mathbb{C}^{n} with obstruction flat but not spherical boundaries? Q': Compact strictly pseudoconvex CR manifolds more generally?
- In \mathbb{C}^{2}, the obstruction function \mathcal{O} coincides with the boundary trace of the log-term in the Bergman kernel.
- Strong Ramadanov Conjecture. No to \mathbf{Q} (in \mathbb{C}^{2}).

Obstruction flat CR manifolds of higher (≥ 5) dimension.

- Let $\left(M^{n}, g\right)$ be a compact Kähler manifold.
- Let $(L, h) \rightarrow M$ be a Hermitian line bundle whose curvature form $=$ the Kähler form ω_{g}. Let $\left(L^{*}, h^{*}\right)$ be its dual.
- The unit circle bundle $S\left(L^{*}\right)=\left\{v \in L^{*}: h^{*}(v, \bar{v})=1\right\}$ is a compact strictly pseudoconvex CR manifold of dimension $2 n+1$.
- $\operatorname{Ric}(g)$ induces an endomorphism $\operatorname{Ric} \mathrm{Op}(g): T M \rightarrow T M$.

Theorem 0 (E.-M. Xiao-H. Xu, in prep.)

If $\operatorname{RicOp}(g)$ has constant eigenvalues, then $S\left(L^{*}\right)$ is obstruction flat.

Remarks.

- The condition on $\operatorname{Ric} \mathrm{Op}(g)$ holds if, e.g., (M, g) is Kähler-Einstein.
- If $n \geq 2$, then $S\left(L^{*}\right)$ is spherical $\Longleftrightarrow M$ is Bochner flat. These are classified in a explicit list of compact quotients of Hermitian symmetric spaces. \Longrightarrow Yes to \mathbf{Q}^{\prime}.
- If $n=1$, then $S\left(L^{*}\right)$ obstruction flat $\Longrightarrow S\left(L^{*}\right)$ spherical.

Obstruction flat rigidity of the unit sphere in \mathbb{C}^{2}.

Theorem 1 (Curry-E., 2019)

Let $\Omega \subset \mathbb{C}^{2}$ be a bounded domain with a smooth strictly pseudoconvex boundary $M=\partial \Omega$ and assume that M has an approximate* infinitesimal symmetry. If M is obstruction flat, then M is spherical.

As a result, we obtain obstruction flat rigidity of the unit sphere in \mathbb{C}^{2} with respect to deformations inside \mathbb{C}^{2}. Note that most deformations of the standard CR 3-sphere are not embeddable.

Corollary 1 (Curry-E., 2019)

Let $\Omega \subset \mathbb{C}^{2}$ be a bounded domain with a smooth strictly pseudoconvex boundary $M=\partial \Omega$ and assume that M is a small* deformation of the unit sphere. If M is obstruction flat, then Ω is biholomorphic to \mathbb{B}^{2}.

- The analogous result in \mathbb{C}^{n} with $n \geq 3$ is due to Hirachi (2019). Note that, in this case, there is no difference between embeddable and non-embeddable deformations.

Main topic of this talk.

- Obstruction flat rigidity of the standard CR 3-sphere under general deformations of the CR structure?
- When the CR structure is non-embeddable, the interpretation as the obstruction problem for the Cheng-Yau solution is no longer valid but the question can be thought of as an analogous obstruction problem in conformal geometry on the 4-dimensional Fefferman space.
- The obstruction flat equation corresponds to the Bach flat equation (equations of motion) in conformal gravity on the Fefferman space.

CR structures on the 3 -sphere S^{3}.

- Let $\left(S^{3}, H, J_{0}\right)$ denote the standard CR 3 -sphere, identified with $\partial \mathbb{B}^{2} \subset \mathbb{C}^{2}$ and equipped with the (1,0)-vector field $Z_{1}=\bar{w} \partial / \partial z-\bar{z} \partial / \partial w$ tangent to $\partial \mathbb{B}^{2}$.
- We shall keep the contact structure $\left(S^{3}, H\right)$ with contact form $\theta=-i(\bar{z} d z+\bar{w} d w)$ fixed and deform the CR structure on $\left(S^{3}, H\right)$.
- Any* CR structure on S^{3} is equivalent to $\left(S^{3}, H, J_{\varphi}\right)$ given $\varphi_{1}{ }^{\overline{1}} \in C^{\infty}\left(S^{3}\right)$ via

$$
Z_{1}^{\varphi}=Z_{1}+\varphi_{1}{ }^{\overline{1}} Z_{\overline{1}} \quad\left(Z_{\overline{1}}=\overline{Z_{1}}\right)
$$

- The equation $\mathcal{O}=0$ is a 6 th order nonlinear PDE for $\varphi=\varphi_{1}{ }^{\overline{1}}$.

Spherical harmonics, a slice theorem, and embeddability.

- Denote the space of spherical harmonics of bidegree (p, q) by $H_{p, q}$. These form eigenspaces for the sub-Laplacian $\Delta_{b}=Z_{1} Z_{\overline{1}}+Z_{\overline{1}} Z_{1}$ and give an orthogonal decomposition of $L^{2}\left(S^{3}\right)$.
- Given a deformation tensor $\varphi=\varphi_{1}{ }^{\overline{1}}$, consider its spherical harmonic decomposition $\varphi=\sum_{p, q} \varphi_{p, q}$ and define $\mathfrak{D}_{0}^{\perp}=\left\{\varphi: \varphi_{p, q}=0\right.$ if $\left.q \geq 2\right\}$;
$\mathfrak{D}_{B E}^{\prime}=\left\{\varphi: \varphi_{p, q}=0\right.$ if $\left.q<p+4, \operatorname{Im}\left(Z_{\overline{1}}\right)^{2} \varphi_{p, p+4}=0\right\}$.

Theorem 2 (Slice and Embeddability Theorem; Curry-E., 2020)

Any CR structure on S^{3} sufficiently close to $\left(S^{3}, H, J_{0}\right)$ is equivalent to $\left(S^{3}, H, J_{\varphi}\right)$ with $\varphi \in \mathfrak{D}_{B E}^{\prime} \oplus \mathfrak{D}_{0}^{\perp}$ and φ is unique up to the action of Aut ${ }_{C R}\left(S^{3}, H, J_{0}\right)$. The structure is embeddable $\Longleftrightarrow \varphi \in \mathfrak{D}_{B E}^{\prime}$.

- Credits: Cheng-Lee, Burns-Epstein, Bland, Lempert.
- Separate slide.

Obstruction flat rigidity of the standard CR 3-sphere under general deformations.

Theorem 3 (Obstruction Flat Rigity; Curry-E., 2020)

The standard CR 3-sphere is rigid under obstruction flat deformations.
l.e., \exists an open neighborhood \mathcal{U} of CR structures on S^{3} near the standard CR 3-sphere $\left(S^{3}, H, J_{0}\right)$ such that any obstruction flat CR structure in \mathcal{U} is equivalent to $\left(S^{3}, H, J_{0}\right)$.

By Theorem 2, it suffices to prove the following PDE result.
Theorem 4 (Curry-E., 2020)
There is an open neighborhood \mathcal{V} of 0 in $\mathfrak{D}_{B E}^{\prime} \oplus \mathfrak{D}_{0}^{\perp}$ such that

$$
\mathcal{O}(\varphi)=0 \Longleftrightarrow \varphi=0
$$

\mathcal{V} given by norm in the Folland-Stein space $H_{F S}^{3}$.

Main idea and outline of proof of Theorem 4.

Fix the standard contact form θ on $\left(S^{3}, H\right) \rightarrow$ pseudohermitian structures on $\left(S^{3}, H, J_{\varphi}\right)$. The map (6th order PDO) $\varphi \mapsto \mathcal{O}$ can be broken up as

$$
\varphi \longrightarrow Q_{11}, A_{11}, \nabla \longrightarrow \mathcal{O}=\nabla^{1} \nabla^{1} Q_{11}-i A^{11} Q_{11}
$$

where $\varphi \mapsto Q=Q_{11}$ is a 4th order PDO. The proof hinges on a carefully analysis of the linearized operators $D Q$ and $D \mathcal{O}$ as well as exploiting certain homogeneities of the nonlinear parts. Assume $\exists \varphi^{(k)}=\epsilon_{k} \hat{\varphi}^{(k)}$ such that $\left\|\hat{\varphi}^{(k)}\right\|_{H_{F S}^{3}}=1, \epsilon_{k} \rightarrow 0$, and $\mathcal{O}^{(k)}=0$. Write $\hat{\varphi}^{(k)}=\hat{\varphi}_{\mathfrak{D}_{B E}}^{(k)}+\hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}$.
(1) Show $\left\|\hat{\varphi}_{\mathfrak{D}_{B E}}^{(k)}\right\|_{H_{F S}^{3}}=O\left(\epsilon_{k}^{1 / 2}\right) \rightarrow 0$. This is tricky. Even though we understand the linear part of $\mathcal{O}^{(k)}=0$, the nonlinear terms involve up to 6 derivatives and we are only controlling the $H_{F S}^{3}$-norm.
(2) Integrate the equation $\mathcal{O}^{(k)}=0$ and use (1):

$$
0=\int_{S^{3}} \mathcal{O}^{(k)} \theta \wedge d \theta=\ldots=\epsilon_{k}^{2} \int_{S^{3}} D Q\left(\hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}\right) \cdot i \overline{\nabla_{0} \hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}} \theta \wedge d \theta+O\left(\epsilon_{k}^{5 / 2}\right)
$$

Main idea of proof continued.

(2) It follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{S^{3}} D Q\left(\hat{\varphi}_{\mathfrak{D}_{0}^{\frac{1}{0}}}^{(k)}\right) \cdot i \overline{\nabla_{0} \hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}} \theta \wedge d \theta=\lim _{k \rightarrow \infty} \frac{1}{\epsilon_{k}^{2}} \int_{S^{3}} \mathcal{O}^{(k)} \theta \wedge d \theta=0 \tag{1}
\end{equation*}
$$

(3) Next, one shows that

$$
\begin{equation*}
\int_{S^{3}} D Q\left(\hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}\right) \cdot i \overline{\nabla_{0} \hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}} \theta \wedge d \theta \geq C\left\|\hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}\right\|_{H_{F S}^{3}} . \tag{2}
\end{equation*}
$$

(4) Part (1) implies that $\left\|\hat{\varphi}_{\mathfrak{Q}_{0}^{\perp}}^{(k)}\right\|_{H_{F S}^{3}} \rightarrow 1$ and, hence, (2) contradicts (1). The proof is complete.

Thank You!

