Obstruction flat rigidity of the standard CR 3-sphere

Peter Ebenfelt¹

University of California at San Diego

December 6, 2021

¹DMS-1600701 and DMS-1900955

Peter Ebenfelt¹ (UCSD)

December 6, 2021 1 / 14

• Joint work with Sean Curry, Oklahoma State University.

Introduction.

- Let Ω be a bounded strictly pseudoconvex domain in \mathbb{C}^n , $n \geq 2$.
- Assume Ω has a smooth (C^{∞}) boundary $M = M^{2n-1} := \partial \Omega$.
- Consider the complex Monge-Ampère operator

$$J(u) := (-1)^n \det \begin{pmatrix} u & u_{\overline{z}_k} \\ u_{z_j} & u_{z_j \overline{z}_k} \end{pmatrix},$$

and the Dirichlet problem

$$J(u)=1, \quad u|_M=0.$$

• Solution produces a complete Kähler–Einstein metric in Ω:

$$g_{j\bar{k}} := -\partial^2/\partial z_j \partial \bar{z}_k \log H, \quad H = u^{-(n+1)}$$

• Cheng-Yau: \exists unique solution $u \ge 0$ in $C^{\infty}(\Omega) \cap C^{n+2-\epsilon}(\overline{\Omega})$.

Approximate Solutions and the Obstruction Function.

• Fefferman: $\exists r \in C^{\infty}(\overline{\Omega})$ such that

$$J(r) = 1 + O(r^{n+1}), \quad r|_M = 0,$$

and r is unique mod $O(r^{n+2})$.

• For any such Fefferman defining function r, we have

$$J(r) = 1 + \mathcal{O}r^{n+1} + \mathcal{O}(r^{n+2}), \quad \mathcal{O} \in C^{\infty}(M).$$

- \mathcal{O} is called the *obstruction function/density*.
- Graham: \mathcal{O} is a *local* CR invariant. The Cheng-Yau solution is C^{∞} -smooth up to $U \subset M \iff \mathcal{O} = 0$ in $U \iff \exists$ a Fefferman defining function r with J(r) = 1 near U.
- A strictly pseudoconvex CR manifold M is obstruction flat if $\mathcal{O} = 0$.

The unit ball in \mathbb{C}^n .

- In the unit ball \mathbb{B}^n , the Cheng-Yau solution is given by $u(z) = 1 |z|^2$.
- Since u ∈ C[∞](Bⁿ), it follows that the unit sphere S²ⁿ⁻¹ is obstruction flat (i.e., O = 0).
- Since \mathcal{O} is a local CR invariant, any CR manifold *M* that is (locally) spherical is also obstruction flat.
- Converse is not true. A strictly pseudoconvex CR manifold can be obstruction flat on an open set *U* without being locally spherical.
- Q: Are there smoothly bounded strictly pseudoconvex domains in Cⁿ with obstruction flat but not spherical boundaries? Q': Compact strictly pseudoconvex CR manifolds more generally?
- In \mathbb{C}^2 , the obstruction function \mathcal{O} coincides with the boundary trace of the log-term in the Bergman kernel.
- Strong Ramadanov Conjecture. No to Q (in \mathbb{C}^2).

Obstruction flat CR manifolds of higher (\geq 5) dimension.

- Let (M^n, g) be a compact Kähler manifold.
- Let (L, h) → M be a Hermitian line bundle whose curvature form = the Kähler form ω_g. Let (L*, h*) be its dual.
- The unit circle bundle S(L*) = {v ∈ L*: h*(v, v̄) = 1} is a compact strictly pseudoconvex CR manifold of dimension 2n + 1.
- $\operatorname{Ric}(g)$ induces an endomorphism $\operatorname{RicOp}(g) \colon TM \to TM$.

Theorem 0 (E.–M. Xiao–H. Xu, in prep.)

If $\operatorname{RicOp}(g)$ has constant eigenvalues, then $S(L^*)$ is obstruction flat.

Remarks.

- The condition on $\operatorname{RicOp}(g)$ holds if, e.g., (M,g) is Kähler-Einstein.
- If n ≥ 2, then S(L*) is spherical ⇔ M is Bochner flat. These are classified in a explicit list of compact quotients of Hermitian symmetric spaces. ⇒ Yes to Q'.

• If n = 1, then $S(L^*)$ obstruction flat $\implies S(L^*)$ spherical.

Theorem 1 (Curry-E., 2019)

Let $\Omega \subset \mathbb{C}^2$ be a bounded domain with a smooth strictly pseudoconvex boundary $M = \partial \Omega$ and assume that M has an approximate^{*} infinitesimal symmetry. If M is obstruction flat, then M is spherical.

As a result, we obtain obstruction flat rigidity of the unit sphere in \mathbb{C}^2 with respect to deformations inside \mathbb{C}^2 . Note that most deformations of the standard CR 3-sphere are *not* embeddable.

Corollary 1 (Curry-E., 2019)

Let $\Omega \subset \mathbb{C}^2$ be a bounded domain with a smooth strictly pseudoconvex boundary $M = \partial \Omega$ and assume that M is a small^{*} deformation of the unit sphere. If M is obstruction flat, then Ω is biholomorphic to \mathbb{B}^2 .

The analogous result in Cⁿ with n ≥ 3 is due to Hirachi (2019). Note that, in this case, there is no difference between embeddable and non-embeddable deformations.

- Obstruction flat rigidity of the standard CR 3-sphere under *general* deformations of the CR structure?
- When the CR structure is non-embeddable, the interpretation as the obstruction problem for the Cheng-Yau solution is no longer valid but the question can be thought of as an analogous obstruction problem in conformal geometry on the 4-dimensional Fefferman space.
- The obstruction flat equation corresponds to the Bach flat equation (equations of motion) in conformal gravity on the Fefferman space.

- Let (S^3, H, J_0) denote the standard CR 3-sphere, identified with $\partial \mathbb{B}^2 \subset \mathbb{C}^2$ and equipped with the (1, 0)-vector field $Z_1 = \bar{w}\partial/\partial z \bar{z}\partial/\partial w$ tangent to $\partial \mathbb{B}^2$.
- We shall keep the contact structure (S^3, H) with contact form $\theta = -i(\bar{z}dz + \bar{w}dw)$ fixed and deform the CR structure on (S^3, H) .
- Any* CR structure on S^3 is equivalent to (S^3,H,J_{φ}) given $\varphi_1{}^{\bar{1}}\in C^\infty(S^3)$ via

$$Z_1^{\varphi} = Z_1 + \varphi_1^{\overline{1}} Z_{\overline{1}} \qquad (Z_{\overline{1}} = \overline{Z_1}).$$

• The equation $\mathcal{O} = 0$ is a 6th order nonlinear PDE for $\varphi = \varphi_1^{\overline{1}}$.

Spherical harmonics, a slice theorem, and embeddability.

- Denote the space of spherical harmonics of bidegree (p, q) by $H_{p,q}$. These form eigenspaces for the sub-Laplacian $\Delta_b = Z_1 Z_{\overline{1}} + Z_{\overline{1}} Z_1$ and give an orthogonal decomposition of $L^2(S^3)$.
- Given a deformation tensor φ = φ₁¹, consider its spherical harmonic decomposition φ = Σ_{p,q} φ_{p,q} and define
 D[⊥]₀ = {φ: φ_{p,q} = 0 if q ≥ 2};
 D'_{BE} = {φ: φ_{p,q} = 0 if q 1</sub>)²φ_{p,p+4} = 0}.

Theorem 2 (Slice and Embeddability Theorem; Curry-E., 2020)

Any CR structure on S^3 sufficiently close to (S^3, H, J_0) is equivalent to (S^3, H, J_{φ}) with $\varphi \in \mathfrak{D}'_{BE} \oplus \mathfrak{D}_0^{\perp}$ and φ is unique up to the action of $\operatorname{Aut}_{CR}(S^3, H, J_0)$. The structure is embeddable $\iff \varphi \in \mathfrak{D}'_{BE}$.

- Credits: Cheng-Lee, Burns-Epstein, Bland, Lempert.
- Separate slide.

Obstruction flat rigidity of the standard CR 3-sphere under general deformations.

Theorem 3 (Obstruction Flat Rigity; Curry–E., 2020)

The standard CR 3-sphere is rigid under obstruction flat deformations. I.e., \exists an open neighborhood \mathcal{U} of CR structures on S^3 near the standard CR 3-sphere (S^3, H, J_0) such that any obstruction flat CR structure in \mathcal{U} is equivalent to (S^3, H, J_0) .

By Theorem 2, it suffices to prove the following PDE result.

Theorem 4 (Curry–E., 2020)

There is an open neighborhood $\mathcal V$ of 0 in $\mathfrak D_{\mathit{BE}}^\prime\oplus\mathfrak D_0^\perp$ such that

$$\mathcal{O}(\varphi) = 0 \iff \varphi = 0.$$

 \mathcal{V} given by norm in the Folland–Stein space H_{FS}^3 .

Main idea and outline of proof of Theorem 4.

Fix the standard contact form θ on $(S^3, H) \rightarrow$ pseudohermitian structures on (S^3, H, J_{φ}) . The map (6th order PDO) $\varphi \mapsto \mathcal{O}$ can be broken up as

$$\varphi \longrightarrow Q_{11}, A_{11}, \nabla \longrightarrow \mathcal{O} = \nabla^1 \nabla^1 Q_{11} - i A^{11} Q_{11},$$

where φ → Q = Q₁₁ is a 4th order PDO. The proof hinges on a carefully analysis of the linearized operators DQ and DO as well as exploiting certain homogeneities of the nonlinear parts. Assume ∃φ^(k) = ε_kφ̂^(k) such that ||φ̂^(k)||_{H³_{FS}} = 1, ε_k → 0, and O^(k) = 0. Write φ̂^(k) = φ̂^(k)_{D_{BE}} + φ̂^(k)_{D¹₀}.
(1) Show ||φ̂^(k)_{D_{BE}}||_{H³_{FS}} = O(ε^{1/2}_k) → 0. This is tricky. Even though we understand the linear part of O^(k) = 0, the nonlinear terms involve up to 6 derivatives and we are only controlling the H³_{FS}-norm.
(2) Integrate the equation O^(k) = 0 and use (1):

$$0 = \int_{S^3} \mathcal{O}^{(k)} \theta \wedge d\theta = \ldots = \epsilon_k^2 \int_{S^3} DQ(\hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}) \cdot i \overline{\nabla_0 \hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}} \theta \wedge d\theta + O(\epsilon_k^{5/2})$$

Main idea of proof continued.

(2) It follows that

$$\lim_{k\to\infty}\int_{S^3} DQ(\hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}) \cdot i\overline{\nabla_0\hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}} \theta \wedge d\theta = \lim_{k\to\infty} \frac{1}{\epsilon_k^2} \int_{S^3} \mathcal{O}^{(k)} \theta \wedge d\theta = 0.$$
(1)

(3) Next, one shows that

$$\int_{S^3} DQ(\hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}) \cdot i \overline{\nabla_0 \hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)}} \, \theta \wedge d\theta \ge C \| \hat{\varphi}_{\mathfrak{D}_0^{\perp}}^{(k)} \|_{H^3_{FS}}.$$
(2)

(4) Part (1) implies that $\|\hat{\varphi}_{\mathfrak{D}_{0}^{\perp}}^{(k)}\|_{H^{3}_{FS}} \to 1$ and, hence, (2) contradicts (1). The proof is complete.

Thank You!

