Hyperbolic Cauchy-Riemann singularities and KAM-like theory for holomorphic involutions

Zhiyan ZHAO
Université Côte d'Azur

zhiyan.zhao@univ-cotedazur.fr
joint work with L. Stolovitch
SCV, CR geometry and Dynamics

December 92021

Bishop quadric

Bishop 1965: elliptic quadric

$$
Q_{\gamma} \subset \mathbb{C}^{2}: z_{2}=z_{1} \bar{z}_{1}+\gamma\left(z_{1}^{2}+\bar{z}_{1}^{2}\right), \quad 0<\gamma<\frac{1}{2}
$$

ellipse $c=z_{1} \bar{z}_{1}+\gamma\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)$

Surface with Cauchy-Riemann singularity

Surface with Cauchy-Riemann singularity: real-analytic surface $M \subset\left(\mathbb{C}^{2}, 0\right)$:

$$
M: z_{2}=z_{1} \bar{z}_{1}+\gamma\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)+O^{3}\left(z_{1}, \bar{z}_{1}\right), \quad \gamma \geq 0
$$

- $Q_{\gamma}: z_{2}=z_{1} \bar{z}_{1}+\gamma\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)$ - Bishop quadric
- γ - Bishop invariant

The origin is a stable isolated Cauchy-Riemann singularity if $\gamma \neq \frac{1}{2}$:

- the tangent space $T_{0} M=\left\{z_{2}=0\right\}$
- $\forall p \neq 0, \mathbb{C} \not \subset T_{p} M$ (i.e., totally real at $p \neq 0$)
M (or the complex tangent $T_{0} M$) is called:
- elliptic if $0 \leq \gamma<\frac{1}{2}$
- hyperbolic if $\gamma>\frac{1}{2}$
- parabolic if $\gamma=\frac{1}{2}$

Questions

Question.

- Holomorphic flattening: $\phi(M) \subset\left\{\Im\left(z_{2}\right)=0\right\}$ for some biholomorphic ϕ ?
- Local hull of holomorphy

$\exists P$ polynomial st. $\sup _{k}|P(z)|<\left|P\left(z_{0}\right)\right|$

$$
f(z)=\frac{1}{p(z)-p\left(z_{0}\right)}
$$

Geometry near an elliptic CR singularity

Theorem (Moser-Webster 1983, normalization of elliptic surface)

For $0<\gamma<\frac{1}{2}$, there exists a change of coordinates, holomorphic on a neighborhood of the origin, such that, in the new coordinates, M is presented by

$$
\left\{\begin{array}{l}
x_{2}=z_{1} \bar{z}_{1}+\left(\gamma+\delta x_{2}^{5}\right)\left(z_{1}^{2}+\bar{z}_{1}^{2}\right) \\
y_{2}=0
\end{array}, \quad z_{2}=x_{2}+\mathrm{i} y_{2}\right.
$$

with $\delta= \pm 1\left(s \in \mathbb{N}^{*}\right)$ or $\delta=0(s=\infty)$.

Remark. In "right" coordinates, M is "flat" and is still a collection of ellipes.

A real-analytic family of ellipses

An ellipse for $c>0$

$$
\mathcal{E}_{c}: c=z_{1} \bar{z}_{1}+\left(\gamma+c^{s}\right)\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)
$$

$$
\xrightarrow{\text { holom. }}
$$

$c \mapsto \mathcal{E}_{c}$ is real-analytic in $] 0, r[$, with r sufficiently small

Complexification of M

$$
M \subset \mathbb{C}^{2}:\left\{\begin{array}{l}
z_{2}=z_{1} \bar{z}_{1}+\gamma\left(z_{1}^{2}+\bar{z}_{1}^{2}\right)+H\left(z_{1}, \bar{z}_{1}\right) \\
\bar{z}_{2}=\bar{z}_{1} z_{1}+\gamma\left(\bar{z}_{1}^{2}+z_{1}^{2}\right)+\bar{H}\left(\bar{z}_{1}, z_{1}\right)
\end{array}\right.
$$

Complexification of $M:\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right) \leftarrow\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=:(z, w) \in \mathbb{C}^{4}$

$$
\mathcal{M} \subset \mathbb{C}^{4}:\left\{\begin{array}{l}
z_{2}=z_{1} w_{1}+\gamma\left(z_{1}^{2}+w_{1}^{2}\right)+H\left(z_{1}, w_{1}\right) \\
w_{2}=z_{1} w_{1}+\gamma\left(z_{1}^{2}+w_{1}^{2}\right)+\bar{H}\left(w_{1}, z_{1}\right)
\end{array}\right.
$$

Invariant projections: $\pi_{1}(z, w)=z$ and $\pi_{2}(z, w)=w$ for $(z, w) \in \mathcal{M}$.
According to [Moser-Webster 1983], π_{1} and π_{2} are two-to-one branched covering maps:

- $\pi_{2}(z, w)=\pi_{2}\left(z^{\prime}, w\right),(z, w),\left(z^{\prime}, w\right) \in \mathcal{M}$ \Longrightarrow a unique solution $\left(z^{\prime}, w\right)$ with $z^{\prime} \neq z$
- $\pi_{1}(z, w)=\pi_{1}\left(z, w^{\prime}\right),(z, w),\left(z, w^{\prime}\right) \in \mathcal{M}$ \Longrightarrow a unique solution $\left(z, w^{\prime}\right)$ with $w^{\prime} \neq w$

Moser-Webster involutions

A pair of holomorphic involutions: for $\gamma>0$

$$
\begin{gathered}
\tau_{1}:\left\{\begin{array}{l}
z_{1}^{\prime}=-z_{1}-\frac{1}{\gamma} w_{1}+O^{2}\left(z_{1}, w_{1}\right) \\
w_{1}^{\prime}=w_{1}
\end{array}\right. \\
\tau_{2}:\left\{\begin{array}{l}
z_{1}^{\prime}=z_{1} \\
w_{1}^{\prime}=--\frac{1}{\gamma} z_{1}-w_{1}+O^{2}\left(z_{1}, w_{1}\right) \quad------\tau_{2} \circ \tau_{2}=I d
\end{array}\right. \\
\tau_{2}=\rho \circ \tau_{1} \circ \rho, \quad \rho(z, w):=(\bar{w}, \bar{z})
\end{gathered}
$$

Proposition (Moser-Webster 1983)

Holomorphic classification of $\mathcal{M} \in \mathbb{C}^{4} \longleftrightarrow$ Holomorphic classification of $\left(\tau_{1}, \tau_{2}\right)$

Remark. Normal form of $M \subset \mathbb{C}^{2} \sim$ Normal form of (τ_{1}, τ_{2})

Appropriate change of coordinates

$$
\begin{gathered}
\tau_{1}:\left\{\begin{array}{l}
\xi^{\prime}=\lambda \eta+O^{2}(\xi, \eta) \\
\eta^{\prime}=\lambda^{-1} \xi+O^{2}(\xi, \eta)
\end{array}, \quad \tau_{2}:\left\{\begin{array}{l}
\xi^{\prime}=\lambda^{-1} \eta+O^{2}(\xi, \eta) \\
\eta^{\prime}=\lambda \xi+O^{2}(\xi, \eta)
\end{array}\right.\right. \\
\tau_{1} \circ \tau_{2}:\left\{\begin{array}{l}
\xi^{\prime}=\lambda^{2} \xi+O^{2}(\xi, \eta) \\
\eta^{\prime}=\lambda^{-2} \eta+O^{2}(\xi, \eta)
\end{array}\right.
\end{gathered}
$$

λ is a root of $\gamma \lambda^{2}-\lambda+\gamma=0$

- For elliptic Bishop surface $M, 0<\gamma<\frac{1}{2} \Longrightarrow \lambda=\bar{\lambda}$ and $|\lambda| \neq 1$ \Longrightarrow The origin is a hyperbolic fixed point of $\tau_{1} \circ \tau_{2}$
- For hyperbolic Bishop surface $M, \gamma>\frac{1}{2} \Longrightarrow|\lambda|=1$
\Longrightarrow The origin is an elliptic fixed point of $\tau_{1} \circ \tau_{2}$

Formal normal form and convergence in elliptic case

Theorem (Moser-Webster 1983, Formal normal form)

For holomorphic involutions τ_{1}, τ_{2}, if λ is not a root of unity, then there exists a formal transformation ψ such that

$$
\psi^{-1} \circ \tau_{1} \circ \psi:\left\{\begin{array}{l}
\xi^{\prime}=\Lambda(\xi \eta) \eta \\
\eta^{\prime}=\Lambda^{-1}(\xi \eta) \xi
\end{array} \quad, \quad \psi^{-1} \circ \tau_{2} \circ \psi:\left\{\begin{array}{l}
\xi^{\prime}=\Lambda^{-1}(\xi \eta) \eta \\
\eta^{\prime}=\Lambda(\xi \eta) \xi
\end{array}\right.\right.
$$

where $\Lambda(t) \in \mathbb{C} \llbracket t \rrbracket$, and

- $\Lambda(t)=\bar{\Lambda}(t)$ in the elliptic case
- $\Lambda(t) \bar{\Lambda}(t)=1$ in the hyperbolic case

Theorem (Moser-Webster 1983, convergence in elliptic surface)

If $\lambda=\bar{\lambda}$ and $|\lambda| \neq 1$, then Λ and ψ are holomorphic in a neighborhood of the origin.
\Longrightarrow Holomorphic equivalence of initial manifold M and NF manifold.

Non-exceptional degenerate hyperbolic surface

λ is not a root of unity and $|\lambda|=1$ (non-exceptional hyperbolic case) Moser-Webster: the formal normalizing transformation ψ might not converge in any neighborhood of the origin.

- no holomorphic equivalence
- no holomorphic flattening

Theorem (Gong 1994, Non-exceptional degenerate hyperbolic case)

If M (equipped with τ_{1}, τ_{2}) satisfies that
(1) $|\lambda|=1$ and λ verifies the Diophantine condition:

$$
\left|\lambda^{n}-1\right|>\frac{c}{n^{\delta}}, \quad \delta>0, \quad c>1
$$

(2) M is formally equivalent to the quadratic Q_{γ} (i.e., τ_{1}, τ_{2} are formally linearisable with $\Lambda(\xi \eta)=\lambda)$
then M is holomorphically equivalent to Q_{γ} (i.e., ψ is a transformation holomorphic in a neighborhood of the origin).

Non-degenerate hyperbolic surface

$$
\tau_{1}:\left\{\begin{array}{l}
\xi^{\prime}=e^{\frac{i}{2} \alpha} \eta+O^{2}(\xi, \eta) \\
\eta^{\prime}=e^{-\frac{i}{2} \alpha} \xi+O^{2}(\xi, \eta)
\end{array} \quad, \quad \tau_{2}:\left\{\begin{array}{l}
\xi^{\prime}=e^{-\frac{i}{2} \alpha} \eta+O^{2}(\xi, \eta) \\
\eta^{\prime}=e^{\frac{i}{2} \alpha} \xi+O^{2}(\xi, \eta)
\end{array} \quad, \quad \frac{\alpha}{\pi} \in \mathbb{R} \backslash \mathbb{Q}\right.\right.
$$

Non-degeneracy assumption: $\Lambda(\xi \eta)=e^{\frac{i}{2} \alpha}+\sum_{n \geq 1} c_{n}(\xi \eta)^{n}, c_{n}$ not all vanishing

Theorem (Stolovitch-Z. 2020)

For $r>0$ small enough, there exists an "asymptotically full-measure"* $\left.\mathcal{O}_{r} \subset\right]-r^{2}, r^{2}$ such that $\forall \omega \in \mathcal{O}_{r}$, one has $\mu_{\omega} \in \mathbb{R}$ and a holomorphic transformation Ψ_{ω}, Whitney smooth in ω, on $\mathcal{C}_{\omega}^{r}:=\{\xi \eta=\omega,|\xi|,|\eta|<r\}$, such that

$$
\Psi_{\omega}^{-1} \circ \tau_{1} \circ \Psi_{\omega}:\left\{\begin{array}{l}
\xi^{\prime}=e^{\frac{i}{2} \mu_{\omega}} \eta \\
\eta^{\prime}=e^{-\frac{i}{2} \mu_{\omega}} \xi
\end{array}, \quad \Psi_{\omega}^{-1} \circ \tau_{2} \circ \Psi_{\omega}:\left\{\begin{array}{l}
\xi^{\prime}=e^{-\frac{i}{2} \mu_{\omega}} \eta \\
\eta^{\prime}=e^{\frac{i}{2} \mu_{\omega}} \xi
\end{array} .\right.\right.
$$

Remark. $\Psi_{\omega}\left(\mathcal{C}_{\omega}^{r}\right)$ is a homomorphic invariant set of τ_{1} and τ_{2} and their restrictions are conjugated to a linear map.
*asymptotically full-measure: $\frac{\left|\mathcal{O}_{r}\right|}{2 r^{2}} \longrightarrow 1, r \rightarrow 0$

Signification in CR geometry

Theorem (Stolovitch-Z. 2020)

For the hyberbolic surface $M \subset \mathbb{C}^{2}$, non-exceptional and not formally equivalent to a quadric, there exists a neighborhood of the origin (of radius r) and a Whitney smooth family of holomorphic surfaces $\left\{\mathcal{S}_{\omega}\right\}_{\omega \in \mathcal{O}_{r}}$, which intersect M along holomorphic hyperbolas, i.e., two real curves which can be holomorphically conjugated to two branches of hyperbolas $\xi \eta=\omega, \omega \neq 0$.

Intersection of M by two straight lines at the origin

Theorem (Klingenberg 1985)

For the hyberbolic Bishop surface M, if $\lambda=e^{\frac{i}{2} \alpha}$ verifies the Diophantine condition, then there exists a unique surface, holomorphic on a neighborhood of the origin, intersecting M in two real curves crossing transversely the origin. These two curves can be conjugated holomorphically to two straight lines $\xi \eta=0$.

Idea of proof
Kolmogorov-Arnold-Moser (KAM) scheme for holomorphic involutions:

Thanks!

