Hyperbolic Cauchy-Riemann singularities and KAM-like theory for holomorphic involutions

Zhiyan ZHAO Université Côte d'Azur

zhiyan.zhao@univ-cotedazur.fr

joint work with L. Stolovitch SCV, CR geometry and Dynamics

December 9 2021

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(二)、(四)、(三)、(三)、

Bishop 1965: elliptic quadric

$$Q_\gamma \subset \mathbb{C}^2: z_2=z_1ar{z}_1+\gamma(z_1^2+ar{z}_1^2), \quad 0<\gamma<rac{1}{2}$$

₹

590

Surface with Cauchy-Riemann singularity

Surface with Cauchy-Riemann singularity: real-analytic surface $M \subset (\mathbb{C}^2, 0)$:

$$M: z_2 = z_1 \bar{z}_1 + \gamma (z_1^2 + \bar{z}_1^2) + O^3(z_1, \bar{z}_1), \quad \gamma \ge 0$$

•
$$Q_{\gamma}: z_2 = z_1 \overline{z}_1 + \gamma (z_1^2 + \overline{z}_1^2)$$
 — Bishop quadric

γ — Bishop invariant

The origin is a stable isolated *Cauchy-Riemann singularity* if $\gamma \neq \frac{1}{2}$:

- the tangent space $T_0M = \{z_2 = 0\}$
- $\forall \ p \neq 0, \ \mathbb{C} \not\subset T_p M$ (i.e., totally real at $p \neq 0$)

M (or the complex tangent T_0M) is called:

- *elliptic* if $0 \le \gamma < \frac{1}{2}$
- hyperbolic if $\gamma > \frac{1}{2}$
- parabolic if $\gamma = \frac{1}{2}$

SQ (V

Question.

- Holomorphic flattening: $\phi(M) \subset \{\Im(z_2) = 0\}$ for some biholomorphic ϕ ?
- Local hull of holomorphy

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Э

SQ P

Theorem (Moser-Webster 1983, normalization of elliptic surface)

For $0 < \gamma < \frac{1}{2}$, there exists a change of coordinates, holomorphic on a neighborhood of the origin, such that, in the new coordinates, M is presented by

$$\begin{cases} x_2 = z_1 \bar{z}_1 + (\gamma + \delta x_2^s)(z_1^2 + \bar{z}_1^2) \\ y_2 = 0 \end{cases}, \quad z_2 = x_2 + iy_2$$

with $\delta = \pm 1$ ($s \in \mathbb{N}^*$) or $\delta = 0$ ($s = \infty$).

Remark. In "right" coordinates, M is "flat" and is still a collection of ellipes.

SOC

<ロト < 同ト < 三ト < 三ト

A real-analytic family of ellipses

An ellipse for c > 0 $\mathcal{E}_{c}: c = z_{1}\bar{z}_{1} + (\gamma + c^{s})(z_{1}^{2} + \bar{z}_{1}^{2})$ χ, Μ ٤ holom. X2=C

 $c \mapsto \mathcal{E}_c$ is real-analytic in]0, r[, with r sufficiently small

SQ (V

< ロ > < 団 > < 巨 > < 巨</p>

Complexification of M

$$M \subset \mathbb{C}^2 : \begin{cases} z_2 = z_1 \bar{z}_1 + \gamma(z_1^2 + \bar{z}_1^2) + H(z_1, \bar{z}_1) \\ \bar{z}_2 = \bar{z}_1 z_1 + \gamma(\bar{z}_1^2 + z_1^2) + \bar{H}(\bar{z}_1, z_1) \end{cases}$$

Complexification of *M*: $(z_1, z_2, \overline{z}_1, \overline{z}_2) \leftarrow (z_1, z_2, w_1, w_2) =: (z, w) \in \mathbb{C}^4$

$$\mathcal{M} \subset \mathbb{C}^4 : \begin{cases} z_2 = z_1 w_1 + \gamma (z_1^2 + w_1^2) + H(z_1, w_1) \\ w_2 = z_1 w_1 + \gamma (z_1^2 + w_1^2) + \bar{H}(w_1, z_1) \end{cases}$$

Invariant projections: $\pi_1(z, w) = z$ and $\pi_2(z, w) = w$ for $(z, w) \in \mathcal{M}$.

According to [Moser-Webster 1983], π_1 and π_2 are two-to-one branched covering maps:

•
$$\pi_2(z, w) = \pi_2(z', w), (z, w), (z', w) \in \mathcal{M}$$

 \implies a unique solution (z', w) with $z' \neq z$
• $\pi_1(z, w) = \pi_1(z, w'), (z, w), (z, w') \in \mathcal{M}$
 \implies a unique solution (z, w') with $w' \neq w$

A pair of holomorphic involutions: for $\gamma > 0$

$$\tau_1: \begin{cases} z_1' = -z_1 - \frac{1}{\gamma}w_1 + O^2(z_1, w_1) \\ w_1' = w_1 \end{cases} \quad ---- \tau_1 \circ \tau_1 = Id$$

$$\tau_{2}: \begin{cases} z_{1}' = z_{1} \\ w_{1}' = -\frac{1}{\gamma}z_{1} - w_{1} + O^{2}(z_{1}, w_{1}) \\ \tau_{2} = \rho \circ \tau_{1} \circ \rho, \quad \rho(z, w) := (\bar{w}, \bar{z}) \end{cases}$$

Proposition (Moser-Webster 1983)

Holomorphic classification of $\mathcal{M} \in \mathbb{C}^4 \longleftrightarrow$ Holomorphic classification of (τ_1, τ_2)

Remark. Normal form of $M \subset \mathbb{C}^2 \sim$ Normal form of (τ_1, τ_2)

~ a ~

<ロ> < □ > < □ > < □ > < Ξ > < Ξ

$$\tau_{1}: \begin{cases} \xi' = \lambda \eta + O^{2}(\xi, \eta) \\ \eta' = \lambda^{-1}\xi + O^{2}(\xi, \eta) \end{cases}, \quad \tau_{2}: \begin{cases} \xi' = \lambda^{-1}\eta + O^{2}(\xi, \eta) \\ \eta' = \lambda\xi + O^{2}(\xi, \eta) \end{cases}$$
$$\tau_{1} \circ \tau_{2}: \begin{cases} \xi' = \lambda^{2}\xi + O^{2}(\xi, \eta) \\ \eta' = \lambda^{-2}\eta + O^{2}(\xi, \eta) \end{cases}$$

 λ is a root of $\gamma \lambda^2 - \lambda + \gamma = 0$

- For elliptic Bishop surface M, $0 < \gamma < \frac{1}{2} \implies \lambda = \overline{\lambda}$ and $|\lambda| \neq 1$ \implies The origin is a hyperbolic fixed point of $\tau_1 \circ \tau_2$
- For hyperbolic Bishop surface M, $\gamma > \frac{1}{2} \implies |\lambda| = 1$ \implies The origin is an elliptic fixed point of $\tau_1 \circ \tau_2$

S a A

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Moser-Webster 1983, Formal normal form)

For holomorphic involutions τ_1 , τ_2 , if λ is not a root of unity, then there exists a formal transformation ψ such that

$$\psi^{-1} \circ \tau_1 \circ \psi : \left\{ \begin{array}{l} \xi' = \Lambda(\xi\eta) \eta \\ \eta' = \Lambda^{-1}(\xi\eta) \xi \end{array} \right\}, \quad \psi^{-1} \circ \tau_2 \circ \psi : \left\{ \begin{array}{l} \xi' = \Lambda^{-1}(\xi\eta) \eta \\ \eta' = \Lambda(\xi\eta) \xi \end{array} \right\},$$

where $\Lambda(t) \in \mathbb{C}\llbracket t
rbracket$, and

- $\Lambda(t) = \overline{\Lambda}(t)$ in the elliptic case
- $\Lambda(t)\overline{\Lambda}(t) = 1$ in the hyperbolic case

Theorem (Moser-Webster 1983, convergence in elliptic surface)

If $\lambda = \overline{\lambda}$ and $|\lambda| \neq 1$, then Λ and ψ are holomorphic in a neighborhood of the origin.

 \implies Holomorphic equivalence of initial manifold M and NF manifold.

SOR

Non-exceptional degenerate hyperbolic surface

 λ is not a root of unity and $|\lambda| = 1$ (non-exceptional hyperbolic case) Moser-Webster: the formal normalizing transformation ψ might not converge in any neighborhood of the origin.

- no holomorphic equivalence
- no holomorphic flattening

Theorem (Gong 1994, Non-exceptional degenerate hyperbolic case)

If M (equipped with τ_1 , τ_2) satisfies that

• $|\lambda| = 1$ and λ verifies the Diophantine condition:

$$|\lambda^n-1|>rac{c}{n^\delta},\qquad \delta>0,\quad c>1,$$

2 *M* is formally equivalent to the quadratic Q_{γ} (i.e., τ_1 , τ_2 are formally linearisable with $\Lambda(\xi\eta) = \lambda$)

then M is holomorphically equivalent to Q_{γ} (i.e., ψ is a transformation holomorphic in a neighborhood of the origin).

Zhiyan ZHAO, L.J.A.D., U.C.A.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> < 四> < 四> < 回> < 回>

$$\tau_1: \left\{ \begin{array}{l} \xi' = e^{\frac{i}{2}\alpha}\eta + O^2(\xi,\eta) \\ \eta' = e^{-\frac{i}{2}\alpha}\xi + O^2(\xi,\eta) \end{array} \right., \quad \tau_2: \left\{ \begin{array}{l} \xi' = e^{-\frac{i}{2}\alpha}\eta + O^2(\xi,\eta) \\ \eta' = e^{\frac{i}{2}\alpha}\xi + O^2(\xi,\eta) \end{array} \right., \quad \frac{\alpha}{\pi} \in \mathbb{R} \setminus \mathbb{Q}$$

Non-degeneracy assumption: $\Lambda(\xi\eta) = e^{\frac{i}{2}\alpha} + \sum_{n\geq 1} c_n(\xi\eta)^n$, c_n not all vanishing

Theorem (Stolovitch-Z. 2020)

For r > 0 small enough, there exists an "asymptotically full-measure" * $\mathcal{O}_r \subset] - r^2, r^2[$ such that $\forall \ \omega \in \mathcal{O}_r$, one has $\mu_{\omega} \in \mathbb{R}$ and a holomorphic transformation Ψ_{ω} , Whitney smooth in ω , on $\mathcal{C}^r_{\omega} := \{\xi\eta = \omega, \ |\xi|, |\eta| < r\}$, such that

$$\Psi_{\omega}^{-1} \circ \tau_1 \circ \Psi_{\omega} : \left\{ \begin{array}{l} \xi' = e^{\frac{i}{2}\mu_{\omega}}\eta \\ \eta' = e^{-\frac{i}{2}\mu_{\omega}}\xi \end{array} \right., \quad \Psi_{\omega}^{-1} \circ \tau_2 \circ \Psi_{\omega} : \left\{ \begin{array}{l} \xi' = e^{-\frac{i}{2}\mu_{\omega}}\eta \\ \eta' = e^{\frac{i}{2}\mu_{\omega}}\xi \end{array} \right.$$

Remark. $\Psi_{\omega}(\mathcal{C}_{\omega}^{r})$ is a homomorphic invariant set of τ_{1} and τ_{2} and their restrictions are conjugated to a linear map. *asymptotically full-measure: $\frac{|\mathcal{O}_{r}|}{2r^{2}} \longrightarrow 1$, $r \to 0$

Zhiyan ZHAO, L.J.A.D., U.C.A.

Hyperbolic Bishop Surface

Theorem (Stolovitch-Z. 2020)

For the hyberbolic surface $M \subset \mathbb{C}^2$, non-exceptional and not formally equivalent to a quadric, there exists a neighborhood of the origin (of radius r) and a Whitney smooth family of holomorphic surfaces $\{S_{\omega}\}_{\omega \in \mathcal{O}_r}$, which intersect M along holomorphic hyperbolas, i.e., two real curves which can be holomorphically conjugated to two branches of hyperbolas $\xi \eta = \omega, \omega \neq 0$.

< □ > < □ > < □ > < □ >

Theorem (Klingenberg 1985)

For the hyberbolic Bishop surface M, if $\lambda = e^{\frac{i}{2}\alpha}$ verifies the Diophantine condition, then there exists a unique surface, holomorphic on a neighborhood of the origin, intersecting M in two real curves crossing transversely the origin. These two curves can be conjugated holomorphically to two straight lines $\xi \eta = 0$.

Idea of proof

Kolmogorov-Arnold-Moser (KAM) scheme for holomorphic involutions:

Thanks!

E

590

< □ > < □ > < □ > < □ > < □ > < □ >