# Intersection of entire curves with very generic hypersurfaces 

## Duc-Viet Vu

University of Cologne

## Entire curves

- $X$ smooth projective variety.
- $L \rightarrow X$ a very ample line bundle. $D$ a divisor of $L$.
- $f: \mathbb{C} \rightarrow X$ a non-constant holomorphic curve with $f(\mathbb{C}) \not \subset \operatorname{supp} D(f$ is called an entire curve).
- Nevanlinna's theory: study the intersection of $f$ with $D$ (counting the number of points $f(C) \cap D)$.
very related to the question of Kobayashi hyperbolicity.
- If $f$ is algebraic, the number of intersection points (counted with multiplicity) of $f$ and $D$ is equal to the product of the degrees of $f$ and $D$.
- Moreover, for $D$ generic, the number of intersection points (without counting multiplicity) of $f$ and $D$ is also equal to the product of the degrees of $f$ and $D$.
- We only consider from now on $f$ non-algebraic: the cardinality of $f(\mathbb{C}) \cap D$ is infinite in general.

Counting functions


## Counting function

- $\mathbb{D}_{r}$ : the disk of radius $r$ of center 0 in $\mathbb{C}$.
- We count the number of points in $f\left(\mathbb{D}_{r}\right) \cap D$. Let $k \in \mathbb{N} \cup\{\infty\}$ :

$$
n_{f}^{[k]}(t, D):=\sum_{z \in \mathbb{D}_{t}} \min \left\{k, \operatorname{ord}_{z} f^{*} D\right\}
$$

- The counting function of truncation level $k$ of $f(k \in \mathbb{N} \cup\{\infty\})$ with respect to $D$ is

$$
N_{f}^{[k]}(r, D):=\int_{1}^{r} \frac{n_{f}^{[k]}(t, D)}{t} d t
$$

- The most interesting case is $N_{f}^{[1]}(r, D)$ (without counting multiplicity). We denote by $N_{f}(r, D)$ for $N_{f}^{[\infty]}(r, D)$.
- $\omega$ a Chern form of $L$ (Kähler). The characteristic function of $f$ is

$$
T_{f}(r, L):=\int_{1}^{r} \frac{d t}{t} \int_{\mathbb{D}_{t}} f^{*} \omega
$$

- Why logarithmic average? By the Lelong-Jensen formula

$$
N_{f}^{[1]}(r, D) \leq N_{f}(r, D) \leq T_{f}(r, L)+O(1)
$$

## Main conjecture

- $T_{f}(r, L)=O(\log r)$ if and only if $f$ is algebraic ([Stoll]).
- The defect of $f$ of truncation $k$ with respect to $D$ :

$$
0 \leq \delta_{f}^{[k]}(D):=\liminf _{r \rightarrow \infty}\left(1-\frac{N_{f}^{[k]}(r, D)}{T_{f}(r, D)}\right) \leq 1 .
$$

Casorati-Weierstrass Theorem. For almost everywhere $D$, we have $\delta_{f}(r, D)=0$, in other words, there is a sequence $\left(r_{k}\right)_{k} \subset \mathbb{R}$ converging to $\infty$ such that $N_{f}\left(r_{k}, D\right)=T_{f}\left(r_{k}, D\right)+O(1)$ as $k \rightarrow \infty$.

## Conjecture

(Griffiths, Noguchi-Winkelmann) Suppose that $D$ is simple normal crossing and $f$ is algebraically non-degenerate. Then

$$
T_{f}\left(r, L \otimes K_{X}\right) \leq N_{f}^{[1]}(r, D)+o\left(T_{f}(r, L)\right)
$$

for $r \rightarrow \infty$ outside a Borel subset of $\mathbb{R}$ of finite Lebesgue measure.

- Known for $X$ (semi-)abelian ([Noguchi-Winkelmann-Yamanoi]).
- Partial results: [Duval-Huynh], [McQuillan], [Eremenko-Sodin], [Ru], ...


## A theorem of Cartan

## Theorem

(Cartan) $X=\mathbb{P}^{n}, D=\cup_{j=1}^{q} H_{j}$ in general position, and $f$ is linearly non-degenerate. Then

$$
(q-n-1) T_{f}\left(r, \omega_{F S}\right) \leq \sum_{j=1}^{q} N_{f}^{[n]}\left(r, H_{j}\right)+o\left(T_{f}\left(r, \omega_{F S}\right)\right)
$$

for $r$ outside a subset of $\mathbb{R}$ of finite Lebesgue measure.
Reformulation:

$$
T_{f}\left(r, D \otimes K_{X}\right) \leq N_{f}^{[n]}(r, D)+o\left(T_{f}(r, L)\right)
$$

Example of a linearly non-degenerate $f$ (but algebraically degenerate) ([Duval-Huynh]): the truncation $n$ cannot be replaced by 1 in general.

## Corollary

$X=\mathbb{P}^{n}, D=\cup_{j=1}^{q} H_{j}$ in general position, and $f$ linearly non-degenerate. Then

$$
\sum_{j=1}^{q} \delta_{f}^{[n]}\left(r, H_{j}\right) \leq n+1
$$

In particular, for very generic hyperplane $H$, we have $\delta_{f}^{[n]}(r, H)=0$.

## Defect with respect to very generic hypersurfaces

## Theorem

(Theorem A) ([Huynh-V]) Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ be a non-constant holomorphic curve. Then for a very generic hyperplane $H$, we have

$$
\delta_{f}^{[1]}(r, H)=0
$$

(i.e., the number of intersection points without counting multiplicity of $f\left(\mathbb{D}_{r_{k}}\right)$ and $H$ is of the maximal growth)

- being very generic $=$ outside the union of a countable number of proper subvarities (à priori depending on $f$ ) in the space of hyperplanes.
- The result is optimal for $n=1$ (a classical example of Drasin: a curve $f$ in $\mathbb{P}^{1}$ has defect $>0$ for a given arbitrary countable number of points in $\mathbb{P}^{1}$ ).

For $X, L$ as before and a very generic divisor $D$ of $L$, by embedding $X$ to $\mathbb{P}^{N}$ we also have $\delta_{f}^{[1]}(r, D)=0$.

- A usual approach (construction of suitable jet differentials associated to the curve) does not work: it only gives sth like $\delta_{f}^{[1]}(r, D) \leq 1-1 / \operatorname{deg} D$, for $D$ generic (independent de $f$ ) of sufficiently large degree $\operatorname{deg} D$ ([Brotbek-Deng], [Huynh-V-Xie]).


## Defect with respect to very generic hypersurfaces

Recall: (Theorem A) For every non-constant entire curve $f$, and for a very generic hyperplane $H$, we have

$$
\delta_{f}^{[1]}(r, H)=0
$$

## Question

Does there exist a proper subvariety $\mathcal{E}$ of the space of hypersurfaces of a given fixed degree in $\mathbb{P}^{n}$ such that for $H \notin \mathcal{E}$ and for every non-constant curve $f$ in $\mathbb{P}^{n}$, we have

$$
\delta_{f}^{[1]}(r, H)=0
$$

## Question

(Stronger version) Does there exist a proper subvariety $\mathcal{E}$ of the space of hypersurfaces of a given fixed degree in $\mathbb{P}^{n}$ such that for $H \notin \mathcal{E}$ and for every non-constant curve $f$ in $\mathbb{P}^{n}$, we have

$$
N_{f}^{[1]}(r, D)=T_{f}(r, D)+O(1)
$$

as $r \rightarrow \infty$ outside a subset of $\mathbb{R}$ of finite Lebesgue measure.

## Intersection of $f$ with a subvariety of codimension at least 2

- $V$ an algebraic subset in $X$ : we can define the counting function $N_{f}(r, V)$ for $f(\mathbb{C}) \cap V$ even when codim $V \geq 2$ ([Noguchi]).


## Theorem

(Theorem B) ([Huynh-V]) Let $Z$ be a complex manifold. Let $X$ be a compact Kähler manifold, and $\omega$ a Kähler form on $X$. Let $f: \mathbb{C} \rightarrow X$ be a non-constant holomorphic curve. Let $\left(\mathcal{V}_{a}\right)_{a \in Z}$ be a "family" of analytic subsets of codimension $s \geq 2$ in $X$. Then for very generic point $a \in Z$, we have

$$
\liminf _{r \rightarrow \infty} \frac{N_{f}\left(r, \mathcal{V}_{a}\right)}{T_{f}(r, \omega)}=0
$$

Example: $X=\mathbb{P}^{n}$, and $\mathcal{V}$ is the family of linear subspaces of codimension $s$ in $\mathbb{P}^{n}$.
If $X$ is (semi-)abelian, by [Noguchi-Winkelmann-Yamanoi], we know

$$
\liminf _{r \rightarrow \infty} \frac{N_{f}(r, V)}{T_{f}(r, \omega)}=0
$$

for every $V$ of codimension $\geq 2$.

## The strategy

- Step 1. To detect asymptotically the tangent points of $f$ and the hyperplane $H$, Use an idea of Dinh and Dinh-Sibony in complex dynamics: look at the tangent bundles of $f$ and $H$ in a suitable bigger space $\widehat{X}$.
- Step 2. Lift $f, H$ to the space $\widehat{X}$. Obtain $\widehat{f}, \widehat{H}: \operatorname{codim} \widehat{H}=2(E x: n=2$, $\operatorname{dim} \widehat{X}=3, \operatorname{dim} \widehat{H}=1$ ).
- Step 3. Study the intersection of $\widehat{f}$ with $\widehat{H}$ (Ex: $n=2$, two curves on a 3-fold).
- Point of view. There are closed positive currents of bi-dimension $(1,1)$ (the Nevanlinna or Ahlfors currens) associated to entire curves (there are curves $f, \widehat{f}$ ).
- Shift focus from the intersection of curves with hypersurfaces to that of currents with subvarieties.
- The classical theory of intersection of currents of bi-degre $(1,1)$
([Bedford-Taylor], [Demailly], [Fornaess-Sibony],...) does not work in this setting:

$$
d d^{c} u \wedge T:=d d^{c}(u T), \quad d d^{c}:=i \partial \bar{\partial}
$$

## The strategy

Reason why the classical theory of intersection of (1,1)-currents fails here: our currents are of bi-degree $(\hat{n}-1, \widehat{n}-1)$ and of bi-degree $(2,2)$, where $\widehat{n}=\operatorname{dim} \widehat{X}$.

- We use the theory of tangent currents (density currents) introduced by Dinh-Sibony.
- $T$ a closed positive current, $V$ a smooth complex submanifold.
- The tangent currents to $T$ along $V$ are limits of dilation of $T$ along fibers of the normal bundle of $V$ in $X$.

Example 1. $V$ is a point, $T$ an irreducible analytic subset: The only tangent current to $T$ at $V$ is the tangent cone of $T$ at $V$.

- Formal intersection of currents $T_{1}, T_{2}$ are encoded on the tangent currents of $T_{1} \otimes T_{2}$ along the diagonal of $X \times X$ (these currents are called density currents associated to $T_{1}, T_{2}$ ).

Example 2. $T_{1}, T_{2}$ are smooth submanifolds of complementary dimension: $T_{1} \cap T_{2}=$ the unique density currents associated to $T_{1}, T_{2}$.

## Nevanlinna's currents

Let $\mu_{r}$ the Haar measure on the circle $\partial \mathbb{D}_{r}$ of $\mathbb{D}_{r}$.
Observation:

$$
\begin{equation*}
d d^{c} \int_{1}^{r} \frac{d t}{t}\left[\mathbb{D}_{t}\right]=\mu_{r}-\mu_{1} \tag{1}
\end{equation*}
$$

where $d d^{c}=\frac{i}{2 \pi} \partial \bar{\partial}$.
Put

$$
\begin{gather*}
c_{r}:=T_{f}(r, \omega), \quad S_{r}:=c_{r}^{-1} \int_{1}^{r} \frac{d t}{t} f_{*}\left[\mathbb{D}_{t}\right] \\
\left\|d d^{c} S_{r}\right\| \lesssim c_{r}^{-1} . \tag{2}
\end{gather*}
$$

Every limit current of the family $\left(S_{r}\right)_{r \in \mathbb{R}^{+}}$as $r \rightarrow \infty$ is $d d^{c}$-closed.
It is well-known that there exists $\left(r_{k}\right)_{k} \subset \mathbb{R} \rightarrow \infty$ such that $\left(S_{k}\right)_{k \in \mathbb{N}} \rightarrow S$ closed positive (a Nevanlinna's current).

## Proof of Theorem B: Intersection of $S$ and $\mathcal{V}_{a}$

Theorem B: For $Z$ a complex manifold, $f: \mathbb{C} \rightarrow X$ a non-constant holomorphic curve, $\left(\mathcal{V}_{a}\right)_{a \in Z}$ a "family" of analytic subsets of codimension $s \geq 2$ in $X$, for very generic point $a \in Z$, we have

$$
\liminf _{r \rightarrow \infty} \frac{N_{f}\left(r, \mathcal{V}_{a}\right)}{T_{f}(r, \omega)}=0
$$

## Proposition

There exists a countable union $\mathcal{A}$ of proper analytic subsets of $Z$ such that for $a \in Z \backslash \mathcal{A}$, we have that $\mathcal{V}_{a}$ is smooth and

$$
S \curlywedge\left[\mathcal{V}_{a}\right]=0 .
$$

The equality means that the intersection of $S$ and $\mathcal{V}_{a}$ is well-defined in the sens of theory of density currents, in which case, it must be zero by a bi-dimension reason $\left(\operatorname{dim} S+\operatorname{dim} V_{a}<\operatorname{dim} X\right)$.

Remark: Siu's semi-continuity of Lelong numbers is essential here.

- [Continuity of the cohomology classes of density currents+ counting functions] gives Theorem B: $f$ avoid asymptotically $\mathcal{V}_{a}$ for every $\left.a \in Z \backslash \mathcal{A}\right)$.


## Proof of Theorem A: Lifting of Nevanlinna's currents

Let $\mathrm{T} X$ be the tangent bundle of $X=P^{n}$, and $\widehat{X}:=\mathbb{P}(\mathrm{T} X)$ the projectivisation of $\mathrm{T} X$ and $\pi: \widehat{X} \rightarrow X$ the natural projection.

The curve $f$ lifts to an entire curve $\widehat{f}$ in $\widehat{X}$ defined by

$$
\widehat{f}(z):=\left(f(z),\left[f^{\prime}(z)\right]\right)
$$

where $f^{\prime}$ is the differential of $f$ and $z \in \mathbb{C}$.
For $a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}$, put $\sigma_{a}(x):=\sum_{j=0}^{n} a_{j} x_{j}$, where $x=\left[x_{0}: \ldots: x_{n}\right] \in X=\mathbb{P}^{n}$.

Denote by $D_{a}$ the hyperplane defined by $\sigma_{a}$. Let $\widehat{D}_{a}:=\mathbb{P}\left(T D_{a}\right)$.
We obtain a family $\left(\widehat{D}_{a}\right)_{a \in \mathbb{P}^{n}}$ of submanifolds of codimension 2 in $\widehat{X}$.
By Theorem B, $\widehat{f}$ avoid asymptotically $\widehat{D}_{a}$ for a very generic $a$ :

$$
\liminf _{r \rightarrow \infty} \frac{N_{\widehat{f}}\left(r, \widehat{D}_{a}\right)}{T_{\widehat{f}}(r, \widehat{\omega})}=0
$$

Lifting of Nevanlinna's currents


## Proof of Theorem A

Let $\omega_{\mathcal{O}_{\widehat{\chi}}(1)}$ a Chern form of $\mathcal{O}_{\widehat{x}}(1)$. Observe

$$
\widehat{\omega}=\omega+c \omega_{\mathcal{O}_{\widehat{\chi}}(1)}
$$

is a Kähler form on $\widehat{X}$ (for some constant $c>0$ sufficiently small).

## Lemma

(more or less the lemma on logarithmic derivative) We have

$$
T_{\widehat{f}}(r, \widehat{\omega})=T_{f}(r, \omega)+o\left(T_{f}(r, \omega)\right)
$$

as $r \rightarrow \infty$ outside of subset of finite Lebesgue measure on $\mathbb{R}$.

## Lemma

For a generic a, we have

$$
N_{\widehat{f}}\left(r, \widehat{D}_{a}\right)=N_{f}\left(r, D_{a}\right)-N_{f}^{[1]}\left(r, D_{a}\right) .
$$

These two above results+ $\liminf _{r \rightarrow \infty} \frac{N_{\hat{f}}\left(r, \widehat{D}_{a}\right)}{T_{\hat{f}}(r, \widehat{\omega})}=0$ gives Theorem A.

