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1A framing device: The Wolff–Denjoy Theorem
The behaviour of geodesics [or appropriate substitutes thereof], for the Kobayashi
distance, shall be our synthetic definition of negative curvature. But why?

Turns out that this notion underlies various results. E.g., the Wolff–
Denjoy Theorem; the “−ve curvature viewpoint” enables generalizations in
many directions.

Theorem (Denjoy, Wolff, 1926)

Let f : D→ D be a holomorphic map. Either:

f has a fixed point in D [“rotation” / attracting fixed point case], or

there exists a point p ∈ ∂D s.t. f◦ν(z) −→ p as ν → +∞ ∀z ∈ D.

In the latter case, convergence is uniform on compact subsets of D.

Analogues are known for non-expansive self-maps of a proper Gromov
hyperbolic metric space.

Beardon’s work among the earliest to clarify the purely metrical aspects of
the above.
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2Generalizations: higher dimensions

Precisely the same dichotomy is obtained for a holomorphic f : Ω→ Ω, Ω ⊂ Cn,
n ≥ 2, when Ω is (selected examples):

Contractible and strongly Huang (1994)

pseudoconvex, Ω b Cn, n ≥ 2 [uses the estimate X.H. presented yesterday!]

Strictly convex, Ω b Cn Budzyńska (2012),

Abate–Raissy (2014)

Strict convexity provides various advantages.

Recall the classical proof of Wolff–Denjoy. . . A key step is to show that if

f : D→ D is fixed-point-free, then ∃! p ≡ p(f) ∈ ∂D such that ∀R > 0, f maps

the horodisc at p of radius R into itself. Beyond D, convexity is very useful. . .
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3Usefulness and limitations of convexity

. . . because:

If Ω is convex then, for f : Ω→ Ω holomorphic, convexity enables
something similar involving objects determined by the Kobayashi distance.

Strict convexity ensures that the above-mentioned “generalized horoballs”
meet ∂Ω at precisely one point.

All of this provides no clue as to what to do if we drop convexity.

The proof of the following turns out to be very insightful (in which convexity is
somewhat incidental, but “−ve curvature” is all important):

Theorem (Beardon, 1997)

Let Ω be a strictly convex domain, Ω b Rn, and let f : Ω→ Ω be a (strict)
contraction w.r.t. the Hilbert distance. Then, there exists a point p ∈ Ω
s.t. f◦ν(z) −→ p as ν → +∞ for each z ∈ Ω. This convergence is uniform on
compact subsets of Ω.
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4Geometric requirements: Beardon vs. holomorphic

Requirements Adjustments in our scenario

A metric space (X, d) & a “good”
compactification X∞ ←↩ X s.t. X∞

is Hausdorff. Writing ∂X := X∞\X,
Card(∂X) ≥ 2.

We’ll take Ω∞ := Ω
End

, Ω Kobayashi
hyperbolic. Cond’ns.on Ω will ensure
“goodness” of this compactification

Good: Let η 6= ξ ∈ ∂X, X ⊃ {xν},
{yν} s.t. xν → ξ and yν → η. Then,
for some (hence every) o ∈ X,

d(xν , yν)−max
(
d(xν , o), d(yν , o)

)
→ +∞.

for some (hence every) o ∈ X,

d(xν , yν)−max
(
d(xν , o), d(yν , o)

)
→ +∞.

Our d will be the Kobayashi dis-
tance KΩ. Then, we can’t assume
the cond’n. on the left because it is
unknown, in general, if KΩ(o, ·) is
proper!∗

f : X → X s.t.

d
(
f(x), f(y)

)
< d(x, y) ∀x, y

(plus a technical condition).

f : Ω→ Ω holomorphic(
KΩ

(
f(x), f(y)

)
≤ KΩ(x, y) ∀x, y

)
.

∗ Our set-up differs from much of the literature; (Ω,KΩ) can’t be assumed to be geodesic.
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5The Hilbert geometry on convex domains
Consider a convex domain Ω b Rn, n ≥ 2.

In the Hilbert geometry, “lines”

are straight lines (shown in red.)

Metrically, this means that:

the distance in this geometry

between p & q → +∞ if

p→ p∞ or q → q∞.

the triangle inequality

between three points on a

“line” be an equality (which

the cross-ratio enables).

Hilbert showed that the

following is indeed a metric (where p∞, q∞ are the points of the line through p
and q on ∂Ω):

dHΩ (p, q) =

∣∣∣∣log
(‖p− q∞‖ ‖q − p∞‖
‖p− p∞‖ ‖q − q∞‖

)∣∣∣∣ , p 6= q

(limits to 0 as ‖p− q‖ → 0). Note the similarity with the Poincaré distance!
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6Visibility w.r.t. the Kobayashi distance: motivation
Consider the 2 pictures, one for the classical W–DT & the other for
Beardon’s theorem:

Given ξ 6= η ∈ R & Uξ 3 ξ (resp.

Uη 3 η) H2-open nbhds.with Uξ∩
Uη = ∅:

(∗) ∃K ⊂cpt. H2 s.t. every
geodesic originating in Uξ &
ending in Uη intersects K.

In the strictly convex case, exactly
the same thing happens.

Owing to strictness, a point
in Uξ and a point in Uη has
a unique geodesic joining
them.

Shape of ∂Ω gives existence
of K!
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7The Kobayashi pseudodistance and pseudometric

Let Ω ⊆ Cn be a domain and (z, v) ∈ Ω×Cn. Recall that the Kobayashi–Royden
pseudometric on Ω is defined by:

κΩ(z, V ) := inf
{
λ > 0 : ∃ f : (D, 0)→ (Ω, z) holo. and λf ′(0) = V

}
.

Three facts for future reference:

p = KD;

KΩ is the integrated pseudodistance associated with κΩ; and

Don’t know, in general (for Ω Kobayashi hyp.), whether (Ω,KΩ) is Cauchy
complete — even for Ω b Cn, pseudoconvex and of finite type when n ≥ 3!

By Hopf–Rinow, not knowing whether (Ω,KΩ) is Cauchy⇒ existence of
KΩ-geodesics is unclear! Rectify this by defining:

Definition 1. Let Ω ⊂ Cn be a Kobayashi hyperbolic domain. Let λ ≥ 1,
κ ≥ 0. An absolutely continuous path σ : [a, b] −→ Ω is called a
(λ, κ)-almost-geodesic if

λ−1|s− t| − κ ≤ KΩ(σ(s), σ(t)) ≤ λ|s− t|+ κ ∀s, t : a ≤ s, t ≤ b.

and κΩ

(
σ(t);σ′(t)

)
≤ λ for a.e. t.
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κΩ(z, V ) := inf
{
λ > 0 : ∃ f : (D, 0)→ (Ω, z) holo. and λf ′(0) = V

}
.

Three facts for future reference:

p = KD;

KΩ is the integrated pseudodistance associated with κΩ; and

Don’t know, in general (for Ω Kobayashi hyp.), whether (Ω,KΩ) is Cauchy
complete — even for Ω b Cn, pseudoconvex and of finite type when n ≥ 3!

By Hopf–Rinow, not knowing whether (Ω,KΩ) is Cauchy⇒ existence of
KΩ-geodesics is unclear! Rectify this by defining:

Definition 1. Let Ω ⊂ Cn be a Kobayashi hyperbolic domain. Let λ ≥ 1,
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8Existence of (λ, κ)-almost-geodesics

Proposition. Let Ω ⊂ Cn be Kobayashi hyperbolic. For any κ > 0 and any
x, y ∈ Ω, there exists a (1, κ)-almost-geodesic σ : [0, T ]→ Ω with σ(0) = x and
σ(T ) = y.

Sketch of proof. Fix x, y ∈ Ω and κ > 0.

By the relationship between κΩ and KΩ, ∃γ ∈ C1
(
[0, T ]; Ω

)
joining x & y

s.t. γ′(t) 6= 0 ∀t and `Ω(γ) ≤ KΩ(x, y) + κ.

Write

ϕ(t) :=

∫ t

0

κΩ(γ(s), γ′(s)) ds.

Kobayashi hyperbolicity confers on κΩ enough regularity that
‖γ′(t)‖ ≈γ κΩ(γ(t), γ′(t)) ∀t. So, ϕ is a strictly increasing and bi-Lipschitz.

Expectedly, σ := γ ◦
(
ϕ−1

)
works [we need the Lebesgue Diff. Thm. to estimate

σ′ a.e.]. �
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9Visibility w.r.t. the Kobayashi distance: definitions
Let X be a locally compact space that admits an exhaustion by compacts and let
{Kν} be an ascending seq. of compact subsets s.t. X = ∪∞ν=1K◦ν .

An end, say α, of X is a descending seq. of connected open sets {U (α)
ν } s.t.

U (α)
ν := some conn. component of X \ Kν , ν = 1, 2, 3, . . . .

The topology of the end compactification of X, denoted XEnd, is such that

U
(α)
ν ∪ {α} is an open nbhd. of α [reg. well-definedness, there is a natural bijection

between the set of ends given by {K1
ν} and {K2

ν}].

Definition 2. Let Ω ⊂ Cn be a Kobayashi hyperbolic domain. We call Ω

a visibility domain w.r.t. the Kobayashi distance if, for each λ ≥ 1 and

κ ≥ 0, for each pair of points ξ 6= η ∈ ∂Ω
End

, and for each pair of

clos(Ω
End

)-open nbhds.Uξ 3 ξ & Uη 3 η s.t. clos(Uξ) ∩ clos(Uη) = ∅,
there exists a compact K  Ω with the following property:

(?) for any (λ, κ)-almost-geodesic σ : [0, T ] −→ Ω with σ(0) ∈ Uξ &
σ(T ) ∈ Uη, 〈σ〉 ∩K 6= ∅.

a weak visibility domain w.r.t. the Kobayashi distance if we consider just
λ = 1 in the last definition.
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10Questions & answers

Q.1: Why have two notions of visibility?

V. domains and w.v. domains regulate boundary behaviour of embeddings
into them to a different extent.

I V. in the codomain controls cont. quasi-isometric embeddings (w.r.t. Kobayashi dist.)

of Gromov hyperbolic spaces, enabling cont. extensions to Gromov boundaries.

I W.v. in the target domain achieves the same, in general, only for isometries.∗

Q. 2: Why all the effort to construct absolutely continuous quasi-geodesics?

Part I: Control of “nice” quasi-geodesics (as opposed to merely cont. quasi-geodesics,

which are wilder) is a less restrictive cond’n., so is good!

Part II: The extra degree of regularity of quasi-geodesics is very useful for
proofs. E.g., this degree of regularity produces a very useable sufficient
cond’n. for a domain to be a v. domain.

∗ There is a notion of visibility that Bracci–Nikolov–Thomas have recently worked with. This

coincides substantively with the notion of weak visibility.
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11Sufficient condition to be a visibility domain
Some notation:

δΩ(z) := distEuc(z, ∂Ω)

MΩ(r) := sup {1/κΩ(z;V ) : δΩ(z) ≤ r, ‖V ‖ = 1}.

General Visibility Lemma (Zimmer–B., Maitra–B.). Let Ω ⊂ Cn be a
Kobayashi hyperbolic domain. Suppose there exists a C1-smooth strictly
increasing function f : (0,+∞)→ R such that

f(t)→ +∞ as t→ +∞; and

for some z0, we have KΩ(z0, z) ≤ f
(
1/δΩ(z)

)
∀z ∈ Ω.

Assume that MΩ(t)→ 0 as t→ 0 and that ∃r0 > 0 such that∫ r0

0

MΩ(r)

r2
f ′
(

1

r

)
dr < +∞.

Then, Ω is a visibility domain with respect to the Kobayashi distance.

Remark: To prove this, assume that Ω is a not a visibility domain. Getting to a

contradiction is a giant exercise of the Arzelà–Ascoli Theorem! A (Euclidean)

Lipschitz cond’n., coming from the bound on κΩ

(
σ(t), σ′(t)

)
for a.e. t, is used.
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Lipschitz cond’n., coming from the bound on κΩ

(
σ(t), σ′(t)

)
for a.e. t, is used.

Gautam Bharali Visibility w.r.t. the Kobayashi distance



11Sufficient condition to be a visibility domain
Some notation:

δΩ(z) := distEuc(z, ∂Ω)

MΩ(r) := sup {1/κΩ(z;V ) : δΩ(z) ≤ r, ‖V ‖ = 1}.

General Visibility Lemma (Zimmer–B., Maitra–B.). Let Ω ⊂ Cn be a
Kobayashi hyperbolic domain. Suppose there exists a C1-smooth strictly
increasing function f : (0,+∞)→ R such that

f(t)→ +∞ as t→ +∞; and

for some z0, we have KΩ(z0, z) ≤ f
(
1/δΩ(z)

)
∀z ∈ Ω.

Assume that MΩ(t)→ 0 as t→ 0 and that ∃r0 > 0 such that∫ r0

0

MΩ(r)

r2
f ′
(

1

r

)
dr < +∞.

Then, Ω is a visibility domain with respect to the Kobayashi distance.

Remark: To prove this, assume that Ω is a not a visibility domain. Getting to a

contradiction is a giant exercise of the Arzelà–Ascoli Theorem! A (Euclidean)
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12Examples of visibility domains
Recall the condition: ∫ r0

0

MΩ(r)

r2
f ′
(

1

r

)
dr < +∞.

Class The function f Upper-bound

on MΩ

A class of weakly convex C + α log(r), α ≥ 1/2 MΩ is Dini

‘Goldilocks’ domains∗ [Zimmer–B.] (∂Ω admits mildly

infinite-type points)

Weakly pseudoconvex domains of C + 2−1 log(r) ≈ rε, 0 < ε� 1

finite type [Cho, 1992]

‘Goldilocks’ domains [Zimmer–B.] C + α log(r), α ≥ 1/2 MΩ is Dini

∗ Roughly, ∃C > 0, α ∈ (0, 1) s.t. for each p ∈ ∂Ω there is an R > 0, a unitary change of
coords. (Z1, . . . , Zn) with centre p w.r.t. which Z(∂Ω) ∩Bn(0, R) is a graphed over
{Im(Zn) = 0} and

Z(Ω) ∩Bn(0, R) ⊂ {(Z′, Zn) : Im(Zn) ≥ Ce−1/‖Z′‖α , ‖Z′‖ < R}.
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13An application of visibility – I

Theorem (Zimmer–B., Maitra–B.). Let Ω ⊂ Cn be a taut bounded visibility
domain, and let f : Ω→ Ω be a holomorphic map. Either:

for every z ∈ Ω the orbit {f◦ν(z)} is relatively compact in Ω, or

there exists p ∈ ∂Ω s.t. f◦ν(z)→ p as ν → +∞ for each z ∈ Ω.

In the latter case, convergence is uniform on compact subsets of Ω.

Remark: If a non-rel. compact orbit exists, tautness and visibility gives us that
the set on the left is a non-empty set of points in ∂Ω. If

]
(
{f◦ν : ν ∈ N}

compact-open
\{f◦ν : n ∈ N}

)
> 1.

then, whenever f◦µi(o)→ ξ, f◦νj (o)→ η, ξ 6= η, we have

KΩ(o, f◦µi(o)) +KΩ(o, f◦νj (o)) ≈ KΩ(f◦µi(o), f◦νj (o)), µi > νj � 1

(which would be easy if Ω were “good” in Beardon’s meaning). This contradicts

a decrease-in-KΩ estimate!
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14An application of visibility – II

Theorem (Zimmer–B.). Let D ⊂ Ck and Ω ⊂ Cn.

Suppose (D,KD) is a
Cauchy-complete Gromov hyperbolic space, and suppose Ω is a visibility domain.
Then, any continuous quasi-isometric embedding f : D → Ω w.r.t. the Kobayashi

distances extends continuously to a map f̃ : (D ∪ ∂GD)→ Ω
End

.

Sketch of proof. Fix some o ∈ D and x ∈ ∂GD.

We have a type of shadowing of quasi-geodesics in Ω: given λ0 ≥ 1, κ0 ≥ 0,
∃λ ≥ 1, κ ≥ 0 & R > 0, depending only on (λ0, κ0), s.t. any
(λ0, κ0)-quasi-geodesic γ in Ω admits a (λ, κ)-almost-geodesic with the
same endpoints as γ and within Hausdorff distance R of γ.

Let (zj), (wj) ⊂ D s.t. zj
G→ x and wj

G→ x. Let τj be a KD-geodesic
joining zj to wj . Then f ◦ τj is a cont. (λ0, κ0)-quasi-geodesic for some
λ0 ≥ 1 and κ0 ≥ 0.

Assume (passing to subsequences and relabelling) f(zj)→ ξ, f(wj)→ η,
and η 6= ξ. Let λ, κ,R be as given by our “shadowing lemma” and let σj be
a (λ, κ)-almost geodesic joining f(zj) and f(wj) and shadowing f ◦ τj .
By visibility supKΩ(f(o), f ◦ τj) < +∞, whereby supKD(o, τj) < +∞.

But the latter can’t happen! So, we’ve got a candidate for f̃(x). �
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∃λ ≥ 1, κ ≥ 0 & R > 0, depending only on (λ0, κ0), s.t. any
(λ0, κ0)-quasi-geodesic γ in Ω admits a (λ, κ)-almost-geodesic with the
same endpoints as γ and within Hausdorff distance R of γ.

Let (zj), (wj) ⊂ D s.t. zj
G→ x and wj

G→ x. Let τj be a KD-geodesic
joining zj to wj . Then f ◦ τj is a cont. (λ0, κ0)-quasi-geodesic for some
λ0 ≥ 1 and κ0 ≥ 0.

Assume (passing to subsequences and relabelling) f(zj)→ ξ, f(wj)→ η,
and η 6= ξ. Let λ, κ,R be as given by our “shadowing lemma” and let σj be
a (λ, κ)-almost geodesic joining f(zj) and f(wj) and shadowing f ◦ τj .
By visibility supKΩ(f(o), f ◦ τj) < +∞, whereby supKD(o, τj) < +∞.

But the latter can’t happen! So, we’ve got a candidate for f̃(x). �
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THANK YOU!
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