On the Ohsawa-Takegoshi extension theorem

Junyan CAO, Université Côte d'Azur, Nice

Conference "Dynamics, SCV and CR geometry", Nice, 06/12/2021

I. Motivation

Setting :

- X is a projective manifold (or more generally weakly pseudoconvex Kähler manifolds). $K_{X}:=\operatorname{det} \Omega_{X}$ canonical bundle.
- $Y \subset X$ be a simple normal crossing ("SNC" for short) divisor. Let $\mathcal{O}_{X}(Y)$ be the natural holomorphic line bundle associated to Y. Fix a smooth metric h_{Y} on $\mathcal{O}_{X}(Y)$
- $\left(L, h_{L}\right)$ be a holomorphic line bundle on X satisfying certain curvature conditions

such that $\left.F\right|_{Y}=f$
- Question 2 : If Question 1 holds, could we control the norm of

I. Motivation

Setting :

- X is a projective manifold (or more generally weakly pseudoconvex Kähler manifolds). $K_{X}:=\operatorname{det} \Omega_{X}$ canonical bundle.
- $Y \subset X$ be a simple normal crossing ("SNC" for short) divisor. Let $\mathcal{O}_{X}(Y)$ be the natural holomorphic line bundle associated to Y. Fix a smooth metric h_{Y} on $\mathcal{O}_{X}(Y)$.
- $\left(L, h_{L}\right)$ be a holomorphic line bundle on X satisfying certain
curvature conditions
- Question 1 : Could we find a $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$
- Question 2 : If Question 1 holds, could we control the norm of

I. Motivation

Setting :

- X is a projective manifold (or more generally weakly pseudoconvex Kähler manifolds). $K_{X}:=\operatorname{det} \Omega_{X}$ canonical bundle.
- $Y \subset X$ be a simple normal crossing ("SNC" for short) divisor. Let $\mathcal{O}_{X}(Y)$ be the natural holomorphic line bundle associated to Y. Fix a smooth metric h_{Y} on $\mathcal{O}_{X}(Y)$.
- (L, h_{L}) be a holomorphic line bundle on X satisfying certain curvature conditions.
- Question 1 : Could we find a $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$
- Question 2 : If Question 1 holds, could we control the norm of

I. Motivation

Setting :

- X is a projective manifold (or more generally weakly pseudoconvex Kähler manifolds). $K_{X}:=\operatorname{det} \Omega_{X}$ canonical bundle.
- $Y \subset X$ be a simple normal crossing ("SNC" for short) divisor. Let $\mathcal{O}_{X}(Y)$ be the natural holomorphic line bundle associated to Y. Fix a smooth metric h_{Y} on $\mathcal{O}_{X}(Y)$.
- $\left(L, h_{L}\right)$ be a holomorphic line bundle on X satisfying certain curvature conditions.
Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$.
- Question 1: Could we find a $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$.
- Question 2 : If Question 1 holds, could we control the norm of F ?

I. Motivation

If Y is smooth, there are affirmative (practically optimal) answers to the above questions :

Theorem (Ohsawa-Takegoshi 87)

Let Ω be a weakly pseudoconvex bounded domain in \mathbb{C}^{n}. Let H be an affine subspace in \mathbb{C}^{n} and φ be a plurisubharmonic function on Ω, i.e., φ is upper semi-continuous and the restriction on any complex line is subharmonic.

I. Motivation

If Y is smooth, there are affirmative (practically optimal) answers to the above questions :

Theorem (Ohsawa-Takegoshi 87)

Let Ω be a weakly pseudoconvex bounded domain in \mathbb{C}^{n}. Let H be an affine subspace in \mathbb{C}^{n} and φ be a plurisubharmonic function on Ω, i.e., φ is upper semi-continuous and the restriction on any complex line is subharmonic.
Then $\forall f \in H^{0}\left(H \cap \Omega, \mathcal{O}_{H \cap \Omega}\right)$ with $\int_{H \cap \Omega}|f|^{2} e^{-\varphi}<+\infty$,

Here $C(\Omega, H)$ is a constant independent of φ and f.

I. Motivation

If Y is smooth, there are affirmative (practically optimal) answers to the above questions :

Theorem (Ohsawa-Takegoshi 87)

Let Ω be a weakly pseudoconvex bounded domain in \mathbb{C}^{n}. Let H be an affine subspace in \mathbb{C}^{n} and φ be a plurisubharmonic function on Ω, i.e., φ is upper semi-continuous and the restriction on any complex line is subharmonic.
Then $\forall f \in H^{0}\left(H \cap \Omega, \mathcal{O}_{H \cap \Omega}\right)$ with $\int_{H \cap \Omega}|f|^{2} e^{-\varphi}<+\infty$, $\exists F \in H^{0}\left(\Omega, \mathcal{O}_{\Omega}\right)$ such that $\left.F\right|_{H \cap \Omega}=f$ and

$$
\int_{\Omega}|F|^{2} e^{-\varphi} \leq C(\Omega, H) \int_{H \cap \Omega}|f|^{2} e^{-\varphi}
$$

Here $C(\Omega, H)$ is a constant independent of φ and f.

I. Motivation

Global version : X projective manifold, $Y \subset X$ a smooth divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle. We assume that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{1}
\end{equation*}
$$

for some constant $\delta>0$.

Theorem (Manivel 93)

In the above setting, let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that

Then $\exists F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$ and

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L},}^{2},
$$

where s_{Y} is the canonical section of $\mathcal{O}_{X}(Y)$ such that $\left|s_{Y}\right|_{h_{Y}} \leq e^{-\frac{1}{\delta}}$ and C is a constant independent of h_{L} and δ.

I. Motivation

Global version : X projective manifold, $Y \subset X$ a smooth divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle. We assume that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{1}
\end{equation*}
$$

for some constant $\delta>0$.

Theorem (Manivel 93)

In the above setting, let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$.

where s_{Y} is the canonical section of $\mathcal{O}_{X}(Y)$ such that
$\left|s_{Y}\right|_{h_{V}} \leq e^{-\frac{1}{\delta}}$ and C is a constant independent of h_{L} and δ.

I. Motivation

Global version : X projective manifold, $Y \subset X$ a smooth divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle. We assume that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{1}
\end{equation*}
$$

for some constant $\delta>0$.

Theorem (Manivel 93)

In the above setting, let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$.
Then $\exists F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$ and

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

where s_{Y} is the canonical section of $\mathcal{O}_{X}(Y)$ such that $\left|s_{Y}\right|_{h_{Y}} \leq e^{-\frac{1}{\delta}}$ and C is a constant independent of h_{L} and δ.

I. Motivation

Many applications in complex geometry :

- Analytic appriximation of closed positive currents (Demailly);
- Invariance of plurigenera (Siu, Păun);
- Positivity of direct images (Guan-Zhou, Deng-Wang-Zhang-Zhou)
We are now interested in the case when Y is not smooth. It is
closely related to the abundance conjecture.
Abundance conjecture : 'et X be a projective manifold and K_{X} is numerically effective, i.e., $c_{1}\left(K_{X}\right) \cdot \mathcal{C} \geq 0$ for any projective curve $\mathcal{C} \subset X$. Then K_{X} is semi-ample

I. Motivation

Many applications in complex geometry :

- Analytic appriximation of closed positive currents (Demailly);
- Invariance of plurigenera (Siu, Păun);
- Positivity of direct images (Guan-Zhou, Deng-Wang-Zhang-Zhou)
We are now interested in the case when Y is not smooth. It is closely related to the abundance conjecture.

Abundance conjecture : let X be a projective manifold and K_{X} is numerically effective, i.e., $c_{1}\left(K_{X}\right) \cdot \mathcal{C} \geq 0$ for any projective curve $\mathcal{C} \subset X$. Then K_{X} is semi-ample

I. Motivation

Many applications in complex geometry :

- Analytic appriximation of closed positive currents (Demailly);
- Invariance of plurigenera (Siu, Păun);
- Positivity of direct images (Guan-Zhou, Deng-Wang-Zhang-Zhou)
We are now interested in the case when Y is not smooth. It is closely related to the abundance conjecture.

Abundance conjecture : let X be a projective manifold and K_{X} is numerically effective, i.e., $c_{1}\left(K_{X}\right) \cdot \mathcal{C} \geq 0$ for any projective curve $\mathcal{C} \subset X$. Then K_{X} is semi-ample.

I. Motivation

The abundance conjecture can be split into two sub-conjectures : a non-vanishing conjecture and an extension conjecture.

Conjecture (Non vanishing conjecture)
Let X be a projective manifold and K_{X} is numerically effective. Then for $m \in \mathbb{N}^{*}$ sufficiently divisible, we have


```
Conjecture (Extension conjecture (simplified version))
Let X be a projective manifold with KX numerically effective. Let
s\in\mp@subsup{H}{}{0}(X,mKX). We suppose for simplicity that }Y:=\operatorname{Div}(s)\mathrm{ is
SNC.Then the restriction map
```

$$
H^{0}\left(X, m_{1} K_{X}\right) \rightarrow H^{0}\left(Y, m_{1} K_{X}\right)
$$

is surjective for m_{1} sufficiently divisible.

I. Motivation

The abundance conjecture can be split into two sub-conjectures : a non-vanishing conjecture and an extension conjecture.

Conjecture (Non vanishing conjecture)

Let X be a projective manifold and K_{X} is numerically effective. Then for $m \in \mathbb{N}^{*}$ sufficiently divisible, we have

$$
H^{0}\left(X, m K_{X}\right) \neq 0 .
$$

Conjecture (Extension conjecture (simplified version))

Let X be a projective manifold with K_{x} numerically effective. Let $s \in H^{0}\left(X, m K_{X}\right)$. We suppose for simplicity that $Y:=\operatorname{Div}(s)$ is SNC. Then the restriction map

$$
H^{0}\left(X, m_{1} K_{X}\right) \rightarrow H^{0}\left(Y, m_{1} K_{X}\right)
$$

is surjective for m_{1} sufficiently divisible.

I. Motivation

The abundance conjecture can be split into two sub-conjectures : a non-vanishing conjecture and an extension conjecture.

Conjecture (Non vanishing conjecture)

Let X be a projective manifold and K_{X} is numerically effective. Then for $m \in \mathbb{N}^{*}$ sufficiently divisible, we have

$$
H^{0}\left(X, m K_{X}\right) \neq 0
$$

Conjecture (Extension conjecture (simplified version))

Let X be a projective manifold with K_{X} numerically effective. Let $s \in H^{0}\left(X, m K_{X}\right)$. We suppose for simplicity that $Y:=\operatorname{Div}(s)$ is SNC. Then the restriction map

I. Motivation

The abundance conjecture can be split into two sub-conjectures: a non-vanishing conjecture and an extension conjecture.

Conjecture (Non vanishing conjecture)

Let X be a projective manifold and K_{X} is numerically effective. Then for $m \in \mathbb{N}^{*}$ sufficiently divisible, we have

$$
H^{0}\left(X, m K_{X}\right) \neq 0
$$

Conjecture (Extension conjecture (simplified version))

Let X be a projective manifold with K_{X} numerically effective. Let $s \in H^{0}\left(X, m K_{X}\right)$. We suppose for simplicity that $Y:=\operatorname{Div}(s)$ is SNC. Then the restriction map

$$
H^{0}\left(X, m_{1} K_{X}\right) \rightarrow H^{0}\left(Y, m_{1} K_{X}\right)
$$

is surjective for m_{1} sufficiently divisible.

I. Motivation

- Demailly-Hacon-Păun : the extension conjecture holds when Y is smooth.
Methods: Ohsawa-Takegoshi extension, the techniques of invariance of plurigenera.
- If we can generalize the Ohsawa-Takegoshi extension theorem to the case when Y is SNC, it will imply the full extension conjecture.

I. Motivation

- Demailly-Hacon-Păun : the extension conjecture holds when Y is smooth.
Methods: Ohsawa-Takegoshi extension, the techniques of invariance of plurigenera.
- If we can generalize the Ohsawa-Takegoshi extension theorem to the case when Y is SNC, it will imply the full extension conjecture.

II. Main results

Theorem (Demailly, Demailly-C. -Matsumura, Zhou-Zhu)

Let X be a projective manifold and $Y \subset X$ be a SNC divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle such that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{2}
\end{equation*}
$$

for some $\delta>0$. Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes O_{X}(Y)\right)$ such that

extension.

Then $\exists F \in H^{0}\left(X, K_{X} \otimes L \otimes O_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$ and

II. Main results

Theorem (Demailly, Demailly-C. -Matsumura, Zhou-Zhu)

Let X be a projective manifold and $Y \subset X$ be a SNC divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle such that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{2}
\end{equation*}
$$

for some $\delta>0$. Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$ and admits a local L^{2}-holomorphic extension.

Local L^{2}-holomorphic extension: \exists covering $\cup U_{i}=X$ such that $\left.f\right|_{U_{i} \cap Y}$ admits an extension $F_{i} \in H^{0}\left(U_{i}, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ with $\int_{U_{i}}\left|F_{i}\right|_{h_{L}, h_{Y}}^{2}$

II. Main results

Theorem (Demailly, Demailly-C. -Matsumura, Zhou-Zhu)

Let X be a projective manifold and $Y \subset X$ be a SNC divisor. Let $\left(L, h_{L}\right)$ be a holomorphic line bundle such that

$$
\begin{equation*}
\Theta_{h_{L}}(L) \geq 0 \text { and } \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right) \tag{2}
\end{equation*}
$$

for some $\delta>0$. Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$ and admits a local L^{2}-holomorphic extension.
Then $\exists F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ such that $\left.F\right|_{Y}=f$ and

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2}<+\infty
$$

Local L^{2}-holomorphic extension : \exists covering $\cup U_{i}=X$ such that $\left.f\right|_{U_{i} \cap Y}$ admits an extension $F_{i} \in H^{0}\left(U_{i}, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ with $\int_{U_{i}}\left|F_{i}\right|_{h_{L}, h_{Y}}^{2}<+\infty$.

II. Main results

Remark:

- If $\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$, by Manivel's theorem, we can find a holomorphic extension F such that

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

non-zero

II. Main results

Remark:

- If $\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$, by Manivel's theorem, we can find a holomorphic extension F such that

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- If Y is not smooth, $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$ will not imply that $\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$!
For example, if $Y=\left\{z_{1} \cdot z_{2}=0\right\}$ and $|f|_{h_{L}, h_{Y}}((0,0))$ is
non-zero

II. Main results

Remark:

- If $\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$, by Manivel's theorem, we can find a holomorphic extension F such that

$$
\int_{X}|F|_{h_{L}, h_{Y}}^{2} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- If Y is not smooth, $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$ will not imply that $\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$!
For example, if $Y=\left\{z_{1} \cdot z_{2}=0\right\}$ and $|f|_{h_{L}, h_{Y}}((0,0))$ is non-zero :

$$
\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{Y}}^{2} \sim \int_{Y} \frac{|f|_{\omega_{X}, h_{L}, h_{Y}}^{2}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}} d V_{\omega_{Y}}=+\infty
$$

II. Main results

Important Example (Ohsawa) : Let Δ be a small neighboord of $(0,0) \in \mathbb{C}^{2}$ and $Y=\left\{z_{1} \cdot z_{2}=0\right\} . \varphi_{L}:=\log \left|z_{1}-z_{2}\right|^{2}$ and $h_{L}:=e^{-\varphi_{L}}$.

II. Main results

Important Example (Ohsawa) : Let Δ be a small neighboord of $(0,0) \in \mathbb{C}^{2}$ and $Y=\left\{z_{1} \cdot z_{2}=0\right\} . \varphi_{L}:=\log \left|z_{1}-z_{2}\right|^{2}$ and $h_{L}:=e^{-\varphi_{L}}$.
Let $f \in H^{0}\left(Y, \mathcal{O}_{Y}\right)$:

$$
f \equiv 0 \text { on }\left\{z_{1}=0\right\} \quad \text { and } \quad f=z_{1} \text { on }\left\{z_{2}=0\right\}
$$

Then $\int_{Y}|f|^{2} e^{-\varphi_{L}}<+\infty$.
However, if $\exists F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ such that $\left.F\right|_{Y}=f$ and

II. Main results

Important Example (Ohsawa) : Let Δ be a small neighboord of $(0,0) \in \mathbb{C}^{2}$ and $Y=\left\{z_{1} \cdot z_{2}=0\right\} . \varphi_{L}:=\log \left|z_{1}-z_{2}\right|^{2}$ and $h_{L}:=e^{-\varphi_{L}}$.
Let $f \in H^{0}\left(Y, \mathcal{O}_{Y}\right)$:

$$
f \equiv 0 \text { on }\left\{z_{1}=0\right\} \quad \text { and } \quad f=z_{1} \text { on }\left\{z_{2}=0\right\}
$$

Then $\int_{Y}|f|^{2} e^{-\varphi_{L}}<+\infty$.
However, if $\exists F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ such that $\left.F\right|_{Y}=f$ and

$$
\int_{\Delta}|F|^{2} e^{-\varphi_{L}}=\int_{\Delta} \frac{|F|^{2}}{\left|z_{1}-z_{2}\right|^{2}}<+\infty
$$

II. Main results

Important Example (Ohsawa) : Let Δ be a small neighboord of $(0,0) \in \mathbb{C}^{2}$ and $Y=\left\{z_{1} \cdot z_{2}=0\right\} . \varphi_{L}:=\log \left|z_{1}-z_{2}\right|^{2}$ and $h_{L}:=e^{-\varphi_{L}}$.
Let $f \in H^{0}\left(Y, \mathcal{O}_{Y}\right)$:

$$
f \equiv 0 \text { on }\left\{z_{1}=0\right\} \quad \text { and } \quad f=z_{1} \text { on }\left\{z_{2}=0\right\}
$$

Then $\int_{Y}|f|^{2} e^{-\varphi L}<+\infty$.
However, if $\exists F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ such that $\left.F\right|_{Y}=f$ and

$$
\int_{\Delta}|F|^{2} e^{-\varphi_{L}}=\int_{\Delta} \frac{|F|^{2}}{\left|z_{1}-z_{2}\right|^{2}}<+\infty
$$

Then $\frac{F}{z_{1}-z_{2}} \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$. We have $\frac{F}{z_{1}-z_{2}} \equiv 0$ on $\left\{z_{1}=0\right\}$ and $\frac{F}{z_{1}-z_{2}} \equiv 1$ on $\left\{z_{2}=0\right\}$. Impossible !

II. Main results

Let $\varphi_{\epsilon}:=\log \left(\left|z_{1}-z_{2}\right|^{2}+\epsilon\right)$. Then $\varphi_{\epsilon} \rightarrow \varphi_{L}=\log \left|z_{1}-z_{2}\right|^{2}$. If \exists an extension $F_{\epsilon} \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with a uniform control

by letting $\epsilon \rightarrow 0$, we get an extension $F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with $\int_{\Delta}|F|^{2} e^{-\varphi_{L}} \leq C \int_{Y}|f|^{2} e^{-\varphi_{L}}$. Contradiction.
Remark: It is easy to construct a compact analogue of Ohsawa's example.

II. Main results

Let $\varphi_{\epsilon}:=\log \left(\left|z_{1}-z_{2}\right|^{2}+\epsilon\right)$. Then $\varphi_{\epsilon} \rightarrow \varphi_{L}=\log \left|z_{1}-z_{2}\right|^{2}$.
If \exists an extension $F_{\epsilon} \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with a uniform control

$$
\int_{\Delta}\left|F_{\epsilon}\right|^{2} e^{-\varphi_{\epsilon}} \leq C \int_{Y}|f|^{2} e^{-\varphi_{\epsilon}}
$$

by letting $\epsilon \rightarrow 0$, we get an extension $F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with $\int_{\Delta}|F|^{2} e^{-\varphi_{L}} \leq C \int_{Y}|f|^{2} e^{-\varphi_{L}}$. Contradiction.

Remark: It is easy to construct a compact analogue of Ohsawa's example.

II. Main results

Let $\varphi_{\epsilon}:=\log \left(\left|z_{1}-z_{2}\right|^{2}+\epsilon\right)$. Then $\varphi_{\epsilon} \rightarrow \varphi_{L}=\log \left|z_{1}-z_{2}\right|^{2}$.
If \exists an extension $F_{\epsilon} \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with a uniform control

$$
\int_{\Delta}\left|F_{\epsilon}\right|^{2} e^{-\varphi_{\epsilon}} \leq C \int_{Y}|f|^{2} e^{-\varphi_{\epsilon}}
$$

by letting $\epsilon \rightarrow 0$, we get an extension $F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with $\int_{\Delta}|F|^{2} e^{-\varphi L} \leq C \int_{Y}|f|^{2} e^{-\varphi L}$. Contradiction. Remark: It is easy to construct a compact analogue of Ohsawa's example.

II. Main results

Let $\varphi_{\epsilon}:=\log \left(\left|z_{1}-z_{2}\right|^{2}+\epsilon\right)$. Then $\varphi_{\epsilon} \rightarrow \varphi_{L}=\log \left|z_{1}-z_{2}\right|^{2}$.
If \exists an extension $F_{\epsilon} \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with a uniform control

$$
\int_{\Delta}\left|F_{\epsilon}\right|^{2} e^{-\varphi_{\epsilon}} \leq C \int_{Y}|f|^{2} e^{-\varphi_{\epsilon}}
$$

by letting $\epsilon \rightarrow 0$, we get an extension $F \in H^{0}\left(\Delta, \mathcal{O}_{\Delta}\right)$ with $\int_{\Delta}|F|^{2} e^{-\varphi L} \leq C \int_{Y}|f|^{2} e^{-\varphi L}$. Contradiction.

Remark : It is easy to construct a compact analogue of Ohsawa's example.

II. Main results

Conjecture (C. -Păun)

Let X be a projective manifold and $Y=\cup Y_{i}$ be a SNC divisor in X. Let L be a holomorphic line bundle on X such that

$$
i \Theta_{h_{L}}(L) \geq 0 \quad \text { and } \quad i \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right)
$$

for some $\delta>0$. Let $V_{\text {sing }}$ be a neighborhood of the singular locus

and admits a local L^{2}-holomorphic extension. There exists an extension $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ s.t

where $h_{Y}=e^{-\varphi L}$. Here C depends only on X and $V_{\text {sing }}$.

II. Main results

Conjecture (C. -Păun)

Let X be a projective manifold and $Y=\cup Y_{i}$ be a SNC divisor in X. Let L be a holomorphic line bundle on X such that

$$
i \Theta_{h_{L}}(L) \geq 0 \quad \text { and } \quad i \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right)
$$

for some $\delta>0$. Let V_{sing} be a neighborhood of the singular locus of Y.
Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ s.t. $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}} d V_{\omega_{Y}}<+\infty$
and admits a local L^{2}-holomorphic extension. There exists an
extension $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ s.t
$\frac{1}{C} \int_{X \backslash V_{\text {sing }}}|F|_{h_{Y}, h_{L}}^{2} \leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}+\left(\int_{Y \cap V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right| e^{-\varphi L d V_{\omega}}\right.$
\square

II. Main results

Conjecture (C. -Păun)

Let X be a projective manifold and $Y=\cup Y_{i}$ be a SNC divisor in X. Let L be a holomorphic line bundle on X such that

$$
i \Theta_{h_{L}}(L) \geq 0 \quad \text { and } \quad i \Theta_{h_{L}}(L) \geq \delta \Theta_{h_{Y}}\left(\mathcal{O}_{X}(Y)\right)
$$

for some $\delta>0$. Let $V_{\text {sing }}$ be a neighborhood of the singular locus of Y.
Let $f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ s.t. $\int_{Y}|f|_{\omega_{X}, h_{L}, h_{Y}}^{2} d V_{\omega_{Y}}<+\infty$ and admits a local L^{2}-holomorphic extension. There exists an extension $F \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ s.t
$\frac{1}{C} \int_{X \backslash V_{\text {sing }}}|F|_{h_{Y}, h_{L}}^{2} \leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}+\left(\int_{Y \cap V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right| e^{-\varphi_{L}} d V_{\omega_{Y}}\right)^{2}$.
where $h_{Y}=e^{-\varphi L}$. Here C depends only on X and $V_{\text {sing }}$.

II. Mains results

- This conjecture implies the DLT-extension conjecture.
- For applications, we can suppose that φ_{L} is of analytic singularity.

II. Mains results

- This conjecture implies the DLT-extension conjecture.
- For applications, we can suppose that φ_{L} is of analytic singularity.

II. Mains results

- This conjecture implies the DLT-extension conjecture.
- For applications, we can suppose that φ_{L} is of analytic singularity.

Theorem (C. -Păun)

The conjecture holds if φ_{L} on $V_{\text {sing }}$ is of type

$$
\varphi_{L}=\log |s|^{2}+\sum_{j}\left(1-\frac{1}{k_{j}}\right) \log \left|z_{j}\right|^{2}+\tau_{L} \quad \text { on } V_{\text {sing }}
$$

for some holomorphic functions and a bounded function τ_{L}, and $i \Theta_{h_{L}}(L) \geq C \omega_{\mathcal{C}}$ on $V_{\text {sing }}$ for some $C>0$. Here $\omega_{\mathcal{C}}$ is a metric on $V_{\text {sing }}$ of conic singularity with respect to $\sum_{j}\left(1-\frac{1}{k_{j}}\right) \operatorname{Div}\left(z_{j}\right)$.

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth $(n, 1)$-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to
($n-1,0$)-forms. Then

$$
\int_{Y} \star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}} \leq C \int_{X} \log ^{2}\left|s_{Y}\right|\left(|\overline{\partial \star} \xi|_{h_{L}}^{2}+|\bar{\partial} \xi|_{h_{L}}^{2}\right) d V_{\omega_{X}} .
$$

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}}$, is a $(n-1, n-1)$-form. We have
$i \partial \bar{\partial} T_{\xi}=\left(|\bar{\partial}(\star \xi)|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}-|\bar{\partial} \xi|_{h_{L}}^{2}-2 R e<\overline{\partial \partial}^{\star} \xi, \xi>\right) d V_{\omega}$

We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h_{Y}}^{2}$. The residue part gives the LHS. Stokes, curvature conditions and the above equality imply the RHS.

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth ($n, 1$)-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to ($n-1,0$)-forms.

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}}$, is a $(n-1, n-1)$-form. We have $i \partial \bar{\partial} T_{\xi}=\left(|\bar{\partial}(\star \xi)|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}-|\bar{\partial} \xi|_{h_{L}}^{2}-2 R e<\overline{\partial \partial}{ }^{\star} \xi, \xi>\right) d V$ We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h Y}$. The residue part gives the LHS. Stokes, curvature conditions and the above equality imply the RHS.

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth ($n, 1$)-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to ($n-1,0$)-forms. Then

$$
\int_{Y} \star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}} \leq C \int_{X} \log ^{2}\left|s_{Y}\right|\left(\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}+|\bar{\partial} \xi|_{h_{L}}^{2}\right) d V_{\omega_{X}} .
$$

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi L}$, is a $(n-1, n-1)$-form. We have

We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h Y}$. The residue part gives the LHS. Stokes, curvature conditions and the above equality imply the RHS.

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth ($n, 1$)-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to ($n-1,0$)-forms. Then

$$
\int_{Y} \star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}} \leq C \int_{X} \log ^{2}\left|s_{Y}\right|\left(\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}+|\bar{\partial} \xi|_{h_{L}}^{2}\right) d V_{\omega_{X}} .
$$

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi L}$, is a $(n-1, n-1)$-form. We have

$$
\begin{gathered}
i \partial \bar{\partial} T_{\xi}=\left(|\bar{\partial}(\star \xi)|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}-|\bar{\partial} \xi|_{h_{L}}^{2}-2 R e<\overline{\partial \partial}{ }^{\star} \xi, \xi>\right) d V_{\omega} \\
+i \Theta_{h_{L}}(L) \wedge T_{\xi}
\end{gathered}
$$

We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h_{Y}}^{2}$. The residue part gives the LHS. Stokes, curvature conditions and the above equality imply

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth ($n, 1$)-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to ($n-1,0$)-forms. Then

$$
\int_{Y} \star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}} \leq C \int_{X} \log ^{2}\left|s_{Y}\right|\left(\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}+|\bar{\partial} \xi|_{h_{L}}^{2}\right) d V_{\omega_{X}} .
$$

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi L}$, is a $(n-1, n-1)$-form. We have

$$
\begin{gathered}
i \partial \bar{\partial} T_{\xi}=\left(|\bar{\partial}(\star \xi)|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}-|\bar{\partial} \xi|_{h_{L}}^{2}-2 R e<\overline{\partial \partial^{\star}} \xi, \xi>\right) d V_{\omega} \\
+i \Theta_{h_{L}}(L) \wedge T_{\xi}
\end{gathered}
$$

We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h_{Y}}^{2}$. The residue part gives the

III. Sketch of the proof

Lemma (Siu, Berndtsson, C.- Păun)

Let $n=\operatorname{dim} X$ and let ξ be a smooth ($n, 1$)-form with values in L. $h_{L}=e^{-\varphi_{L}}$ be a smooth hermitian metric on L satisfies our usual curvature conditions.
Let \star be the Hodge star operator which sends ($n, 1$)-forms to ($n-1,0$)-forms. Then

$$
\int_{Y} \star \xi \wedge \overline{\star \xi} e^{-\varphi_{L}} \leq C \int_{X} \log ^{2}\left|s_{Y}\right|\left(\left|\overline{\partial^{\star}} \xi\right|_{h_{L}}^{2}+|\bar{\partial} \xi|_{h_{L}}^{2}\right) d V_{\omega_{X}} .
$$

Proof: Set $T_{\xi}:=\star \xi \wedge \overline{\star \xi} e^{-\varphi L}$, is a $(n-1, n-1)$-form. We have

$$
\begin{gathered}
i \partial \bar{\partial} T_{\xi}=\left(|\bar{\partial}(\star \xi)|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}-|\bar{\partial} \xi|_{h_{L}}^{2}-2 R e<\overline{\partial \partial^{\star}} \xi, \xi>\right) d V_{\omega} \\
+i \Theta_{h_{L}}(L) \wedge T_{\xi} .
\end{gathered}
$$

We calculate $\int_{X} T_{\xi} \wedge i \partial \bar{\partial} \log \left|s_{Y}\right|_{h_{Y}}^{2}$. The residue part gives the LHS. Stokes, curvature conditions and the above equality imply the RHS.

III. Sketch of the proof

- Let ξ be a smooth ($n, 1$)-form with values in L. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition, where ξ_{1} is $\bar{\partial}$-closed and ξ_{2} is $\bar{\partial}^{\star}$-closed.
- By Demailly-C.-Matsumura, there exists a holomorphic extension F of f. Then $\bar{\partial}\left(\frac{F}{s_{Y}}\right)$ is a current supported in Y

III. Sketch of the proof

- Let ξ be a smooth ($n, 1$)-form with values in L. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition, where ξ_{1} is $\bar{\partial}$-closed and ξ_{2} is $\bar{\partial}^{\star}$-closed.
- By Demailly-C.-Matsumura, there exists a holomorphic extension F of f. Then $\bar{\partial}\left(\frac{F}{s_{Y}}\right)$ is a current supported in Y.

III. Sketch of the proof

- Let ξ be a smooth ($n, 1$)-form with values in L. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition, where ξ_{1} is $\bar{\partial}$-closed and ξ_{2} is $\bar{\partial}^{\star}$-closed.
- By Demailly-C.-Matsumura, there exists a holomorphic extension F of f. Then $\bar{\partial}\left(\frac{F}{s_{Y}}\right)$ is a current supported in Y.
- $\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$.

III. Sketch of the proof

- Let ξ be a smooth ($n, 1$)-form with values in L. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition, where ξ_{1} is $\bar{\partial}$-closed and ξ_{2} is $\bar{\partial}^{\star}$-closed.
- By Demailly-C.-Matsumura, there exists a holomorphic extension F of f. Then $\bar{\partial}\left(\frac{F}{s_{Y}}\right)$ is a current supported in Y.
- $\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$.

$$
\begin{gathered}
\left.\left|\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>\left.\right|^{2} \leq \int_{Y}\right| \frac{f}{d s_{Y}}\right|_{h_{L}} ^{2} \int_{Y} \star \xi_{1} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} \\
\leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}}\left(\left|\bar{\partial} \xi_{1}\right|_{h_{L}}^{2}+\left|\bar{\partial}^{\star} \xi_{1}\right|_{h_{L}}^{2}\right) \\
\quad=\left.\left.C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}}\right|_{\partial^{\star}}\right|_{h_{L}} ^{2} .
\end{gathered}
$$

If Y is smooth, then $C(f):=C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}<+\infty$.

III. Sketch of the proof

- If $C(f)<+\infty, \exists \mu$ such that $<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and

$$
\int_{X} \frac{|\mu|_{h_{L}}^{2}}{\log ^{2}\left|s_{Y}\right|_{h_{L}}^{2}} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} .
$$

- $\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right)$. Then $\widetilde{F}:=\mu \cdot s_{Y}$ is holomorphic and $\left.\widetilde{F}\right|_{Y}=f$.
- Main difficulty : If Y is not smooth, $C(f)=\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}$ might not be finite!
- Idea Let ξ be a smooth ($n, 1$)-form with values in L and supported in $X \backslash V_{\text {sing }}$. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition. If we could prove that

III. Sketch of the proof

- If $C(f)<+\infty, \exists \mu$ such that $<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and

$$
\int_{X} \frac{|\mu|_{h_{L}}^{2}}{\log ^{2}\left|s_{Y}\right|_{h_{L}}^{2}} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- $\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right)$. Then $\widetilde{F}:=\mu \cdot s_{Y}$ is holomorphic and $\left.\widetilde{F}\right|_{Y}=f$.
- Main difficulty: If Y is not smooth, $C(f)=\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}$ might not be finite!
- Idea: Let ξ be a smooth ($n, 1$)-form with values in L and supported in $X \backslash V_{\text {sing }}$. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition. If we could prove that

III. Sketch of the proof

- If $C(f)<+\infty, \exists \mu$ such that $<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and

$$
\int_{X} \frac{|\mu|_{h_{L}}^{2}}{\log ^{2}\left|s_{Y}\right|_{h_{L}}^{2}} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- $\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right)$. Then $\widetilde{F}:=\mu \cdot s_{Y}$ is holomorphic and $\left.\widetilde{F}\right|_{Y}=f$.
- Main difficulty: If Y is not smooth, $C(f)=\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}$ might not be finite!
supported in $X \backslash V_{\text {sing }}$. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge
decomposition. If we could prove that

III. Sketch of the proof

- If $C(f)<+\infty, \exists \mu$ such that $<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and

$$
\int_{X} \frac{|\mu|_{h_{L}}^{2}}{\log ^{2}\left|s_{Y}\right|_{h_{L}}^{2}} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- $\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right)$. Then $\widetilde{F}:=\mu \cdot s_{Y}$ is holomorphic and $\left.\widetilde{F}\right|_{Y}=f$.
- Main difficulty: If Y is not smooth, $C(f)=\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}$ might not be finite!
- Idea : Let ξ be a smooth $(n, 1)$-form with values in L and supported in $X \backslash V_{\text {sing }}$. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition.

III. Sketch of the proof

- If $C(f)<+\infty, \exists \mu$ such that $<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and

$$
\int_{X} \frac{|\mu|_{h_{L}}^{2}}{\log ^{2}\left|s_{Y}\right|_{h_{L}}^{2}} \leq C \int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}
$$

- $\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right)$. Then $\widetilde{F}:=\mu \cdot s_{Y}$ is holomorphic and $\left.\widetilde{F}\right|_{Y}=f$.
- Main difficulty: If Y is not smooth, $C(f)=\int_{Y}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2}$ might not be finite!
- Idea : Let ξ be a smooth $(n, 1)$-form with values in L and supported in $X \backslash V_{\text {sing }}$. Let $\xi=\xi_{1}+\xi_{2}$ be the Hodge decomposition. If we could prove that

$$
\begin{equation*}
\left.\left|\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>\left.\right|^{2} \leq C(f) \int_{X} \log ^{2}\right| s_{Y}\right|_{h_{Y}} \cdot\left|\overline{\partial^{\star}} \xi\right|_{h_{Y}}^{2} \tag{3}
\end{equation*}
$$

for some constant $C(f)<+\infty$ depending on f.

III. Sketch of the proof

- Then we have $<\bar{\partial}\left(\frac{F}{s Y}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and the L^{2}-norm of μ is controlled by $C(f)$.
- As ξ is supported in $X \backslash V_{\text {sing }}$, we have thus

Then $\mu \cdot s_{Y} \in H^{0}\left(X \backslash V_{\text {sing }}, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ extends f

- By Hartogs, $\left.\mu \cdot s_{Y}\right|_{X \backslash V_{\operatorname{sins}}}$ extends to be a holomorphic section $H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ with a control on its L^{2}-norm over $X \backslash V_{\text {sing }}$. It finishes the proof of the theorem.

III. Sketch of the proof

- Then we have $<\bar{\partial}\left(\frac{F}{s Y}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and the L^{2}-norm of μ is controlled by $C(f)$.
- As ξ is supported in $X \backslash V_{\text {sing }}$, we have thus

$$
\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right) \quad \text { on } X \backslash V_{\text {sing }} .
$$

Then $\mu \cdot s_{Y} \in H^{0}\left(X \backslash V_{\text {sing }}, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ extends f.

III. Sketch of the proof

- Then we have $<\bar{\partial}\left(\frac{F}{s Y}\right), \xi>=<\mu, \bar{\partial}^{\star} \xi>$ and the L^{2}-norm of μ is controlled by $C(f)$.
- As ξ is supported in $X \backslash V_{\text {sing }}$, we have thus

$$
\bar{\partial}(\mu)=\bar{\partial}\left(\frac{F}{s_{Y}}\right) \quad \text { on } X \backslash V_{\text {sing }} .
$$

Then $\mu \cdot s_{Y} \in H^{0}\left(X \backslash V_{\text {sing }}, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ extends f.

- By Hartogs, $\left.\mu \cdot s_{Y}\right|_{X \backslash V_{\text {sing }}}$ extends to be a holomorphic section $H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{O}_{X}(Y)\right)$ with a control on its L^{2}-norm over $X \backslash V_{\text {sing }}$. It finishes the proof of the theorem.
III. Sketch of the proof

It remains to prove (3).

- As before, we have

$$
\begin{aligned}
\int_{X} & <\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} \\
& =\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}+\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}
\end{aligned}
$$

- $\left|\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}\right|^{2} \leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{Y} \star \xi_{1} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$
$\leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}} \cdot\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}$.
- To control $\int_{Y \cap V_{\text {sing }}} \frac{f}{d s Y} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$, we recall that ξ is supported in $X \backslash V_{\text {sing }}$, then $\xi_{1}=-\xi_{2}$ on $V_{\text {sing }}$. Therefore $\bar{\partial} \xi_{1}=0$ and $\bar{\partial}^{\star} \xi_{1}=-\bar{\partial}^{\star} \xi_{2}=0$ on $V_{\text {sing }}$.
III. Sketch of the proof

It remains to prove (3).

- As before, we have

$$
\begin{gathered}
\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} \\
=\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}+\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} . \\
\bullet\left|\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}\right|^{2} \leq \int_{Y \backslash V_{\text {sing }}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{Y} \star \xi_{1} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}}^{\leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}} \cdot\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2} .}
\end{gathered}
$$

- To control $\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$, we recall that ξ is supported in $X \backslash V_{\text {sing }}$, then $\xi_{1}=-\xi_{2}$ on $V_{\text {sing }}$. Therefore $\bar{\partial} \xi_{1}=0$ and $\bar{\partial}^{\star} \xi_{1}=-\bar{\partial}^{\star} \xi_{2}=0$ on $V_{\text {sing }}$.
III. Sketch of the proof

It remains to prove (3).

- As before, we have

$$
\begin{gathered}
\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} \\
=\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}+\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} . \\
\bullet\left|\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}\right|^{2} \leq \int_{Y \backslash V_{\text {sing }}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{Y} \star \xi_{1} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}}^{\leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}} \cdot\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2} .}
\end{gathered}
$$

- To control $\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$, we recall that ξ is supported in $X \backslash V_{\text {sing }}$, then $\xi_{1}=-\xi_{2}$ on $V_{\text {sing }}$. Therefore
\qquad
III. Sketch of the proof

It remains to prove (3).

- As before, we have

$$
\begin{gathered}
\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi>=\int_{X}<\bar{\partial}\left(\frac{F}{s_{Y}}\right), \xi_{1}>=\int_{Y} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} \\
=\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}+\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}} . \\
\bullet\left|\int_{Y \backslash V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}\right|^{2} \leq \int_{Y \backslash V_{\text {sing }}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{Y} \star \xi_{1} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}}^{\leq \int_{Y \backslash V_{\text {sing }}}\left|\frac{f}{d s_{Y}}\right|_{h_{L}}^{2} \cdot \int_{X} \log ^{2}\left|s_{Y}\right|_{h_{L}} \cdot\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2} .}
\end{gathered}
$$

- To control $\int_{Y \cap V_{\text {sing }}} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}$, we recall that ξ is supported in $X \backslash V_{\text {sing }}$, then $\xi_{1}=-\xi_{2}$ on $V_{\text {sing }}$. Therefore $\bar{\partial} \xi_{1}=0$ and $\bar{\partial}^{\star} \xi_{1}=-\bar{\partial}^{\star} \xi_{2}=0$ on $V_{\text {sing }}$.

III. Sketch of the proof

- By using the harmonicity of ξ_{1}, we can prove that

$$
\sup _{\frac{1}{2} V_{\text {sing }}}\left|\xi_{1}\right|_{h_{L}}^{2} \leq C \int_{V_{\text {sing }}}\left|\xi_{1}\right|_{h_{L}}^{2} \leq C^{\prime} \int_{X}\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}
$$

The last inequality comes from Bochner equality and the curvature conditions.

III. Sketch of the proof

- By using the harmonicity of ξ_{1}, we can prove that

$$
\sup _{\frac{1}{2} V_{\text {sing }}}\left|\xi_{1}\right|_{h_{L}}^{2} \leq C \int_{V_{\text {sing }}}\left|\xi_{1}\right|_{h_{L}}^{2} \leq C^{\prime} \int_{X}\left|\bar{\partial}^{\star} \xi\right|_{h_{L}}^{2}
$$

The last inequality comes from Bochner equality and the curvature conditions.

- $\left|\int_{Y \cap \frac{1}{2}} V_{\text {sing }} \frac{f}{d s_{Y}} \wedge \overline{\star \xi_{1}} e^{-\varphi_{L}}\right| \leq \int_{Y \cap \frac{1}{2}} V_{\text {sing }}\left|\frac{f}{d s_{Y}}\right|_{h_{L}} \cdot\left(\int_{X}\left|\overline{\partial^{\star}} \xi\right|_{h_{L}}^{2}\right)^{\frac{1}{2}}$

Thanks for your attention!

