Distribution of scattering resonances for generic Schrödinger operators

Tien-Cuong Dinh (joint with Viet-Anh Nguyen and Duc-Viet Vu)

Conference "SCV, CR geometry and Dynamics" on the occasion of Montel Chair awarded to Xiaojun Huang

- 2 Scattering matrix
- 3 Radial potentials
- 4 Upper bound for the number of resonances
- **5** Generic potentials
- 6 Distribution of resonances

- Consider the Schrödinger operator $-\Delta + V : L^2(\mathbb{R}^d, \mathbb{C}) \dots \to L^2(\mathbb{R}^d, \mathbb{C})$ with $d \ge 3$ odd.
- The potential V is a bounded function supported by $\overline{\mathbb{B}}_a := \{ \|x\| \leq a \}.$
- For $\lambda \in \mathbb{C}$ with Im(λ) large enough, $R_V(\lambda) := (-\Delta + V \lambda^2)^{-1}$ is well-defined and is a bounded operator.
- If ρ is smooth with compact support and equal to 1 on $\overline{\mathbb{B}}_{\mathfrak{a}}$, then

$$\mathbf{R}_{\mathbf{V}}(\lambda) = \mathbf{R}_{\mathbf{0}}(\lambda)(\mathbf{I} + \mathbf{V}\mathbf{R}_{\mathbf{0}}(\lambda)\rho)^{-1}(\mathbf{I} - \mathbf{V}\mathbf{R}_{\mathbf{0}}(\lambda)(1-\rho)).$$

- We can extend $R_{\mathbf{V}}(\lambda): L^2_{\text{compact}} \to L^2_{\text{loc}}$ to a meromorphic family for $\lambda \in \mathbb{C}$.
- The poles are called the resonances of $-\Delta + V$.

Problem (main problem, Melrose, Zworski..., similar to Weyl's law)

Study the distribution of the resonances, in particular, the growth of the number $n_V(r)$ of resonances in $\overline{\mathbb{D}(0,r)}$ with $r \to \infty$.

Remark

Dimension d = 1: Melrose and Zworski.

Recall that $n_V(r)$ is the number of resonances in $\overline{\mathbb{D}(0,r)}$. Define

$$N_V(r) := \int_1^r \frac{n_V(t)}{t} dt.$$

Theorem (Zworski, Stefanov, D-Vu)

There is an explicit dimensional constant $c_d > 0$ such that

$$\mathsf{N}_V(r) \leqslant \frac{c_d \mathfrak{a}^d r^d}{d} + O(r^{d-1} \log r) \qquad \textit{and} \qquad \mathfrak{n}_V(r) \leqslant c_d \mathfrak{a}^d r^d + O(r^{d-1/2+\varepsilon}).$$

Define

$$\mathfrak{M}_{\mathfrak{a}} := \left\{ V \in L^{\infty}(\mathbb{B}_{\mathfrak{a}}, \mathbb{C}) : \ \mathfrak{n}_{V}(r) - \mathfrak{c}_{\mathfrak{d}}\mathfrak{a}^{\mathfrak{d}}r^{\mathfrak{d}} = \mathfrak{o}(r^{\mathfrak{d}}) \right\}$$

$$\mathfrak{M}_{\mathfrak{a}}^{\delta} := \Big\{ V \in L^{\infty}(\mathbb{B}_{\mathfrak{a}},\mathbb{C}): \ n_{V}(r) - c_{\mathfrak{d}}\mathfrak{a}^{d}r^{d} = O(r^{d-\delta+\varepsilon}) \text{ for every } \varepsilon > 0 \Big\}.$$

Theorem (Christiansen, complex potentials without resonances)

There is $V \notin \mathfrak{M}_{\alpha}$ smooth, not real, non-vanishing on the boundary of \mathbb{B}_{α} .

Problem (self-adjoint case)

The question is open for potentials V with real values.

Theorem (Zworski, Stefanov, D-Vu, the only known explicit examples)

Assume that V is smooth, real-valued, radial, non-vanishing on the boundary of \mathbb{B}_{α} . Then $V \in \mathfrak{M}_{\alpha}^{3/4}$.

Theorem (D-Vu)

We have $V \in \mathfrak{M}_{\mathfrak{a}}^{3/8}$ for generic V in $L^{\infty}(\mathbb{B}_{\mathfrak{a}}, \mathbb{C})$ or $L^{\infty}(\mathbb{B}_{\mathfrak{a}}, \mathbb{R})$.

Define

$$\mu_{V,r} := \frac{1}{c_d a^d r^d} \sum_{z \text{ resonance}} \delta_{z/r}.$$

Theorem (D-Nguyen)

There is an explicit positive measure μ_{MZ} supported by $\{Im(z)\leqslant 0\}$, independent of a, V, such that

- if $V \in \mathfrak{M}_{\mathfrak{a}}$ then $\mu_{V,r} \to \mu_{MZ}$;
- if $V \in \mathfrak{M}^{\delta}_{\mathfrak{a}}$ then the speed of convergence is $O(r^{-\delta+\varepsilon})$.

Remark

The mass on the unit disc is 1. On both \mathbb{R} and $\{\text{Im}(z) < 0\}$, the mass is positive and the density is smooth. Invariant by $\lambda^d(A_\lambda)_*$ for $A_\lambda(z) := \lambda z$.

- In infinite dimension, G_{δ} -density is often used as a notion of genericity. However, such a set may be very small. In dimension 1, such a set may have length 0.
- $L^{\infty}(\mathbb{B}_{\mathfrak{a}},\mathbb{C})$ can be seen as a complex manifold of infinite dimension.
- A subset A is almost full if there is V_0 such that for any holomorphic map $f: D \to L^\infty(\mathbb{B}_\alpha, \mathbb{C})$, with $f(0) = V_0$, we have $D \setminus f^{-1}(A)$ is pluripolar. Here, D is a neighbourhood of 0 in some \mathbb{C}^N .

Lemma (D-Nguyen-Sibony, Vu, Monge-Ampère measures of Hölder potentials)

Let A be as above with $V_0 \in L^{\infty}(\mathbb{B}_{\mathfrak{a}}, \mathbb{R})$. Then $A \cap L^{\infty}(\mathbb{B}_{\mathfrak{a}}, \mathbb{R})$ is almost full in the sense that if the above map f is real, then $D_{\mathbb{R}} \setminus f^{-1}(A)$ is of Lebesgue measure 0.

- Thus, we have a notion of genericity for $L^{\infty}(\mathbb{B}_{a},\mathbb{C})$ and $L^{\infty}(\mathbb{B}_{a},\mathbb{R})$.
- In the above definition, we can consider f linear.

2 Scattering matrix

- 3 Radial potentials
- 4 Upper bound for the number of resonances
- 5 Generic potentials
- 6 Distribution of resonances

- Let $\theta \in \mathbb{S}^{d-1}$ and $x \in \mathbb{R}^d$.
- \blacksquare Consider the solution of the equation $(-\Delta+V-\lambda^2)\psi=0$ with Sommerfeld condition

$$(\partial/\partial r - i\lambda)(\psi - e^{i\lambda\theta \cdot x}) = O(r^{-(d+1)/2}).$$

One has

$$\psi = e^{i\lambda\theta\cdot x} + \frac{e^{i\lambda r}}{r^{(d-1)/2}} \mathfrak{a}(x/r,\theta,\lambda) + h.o.t.$$

- Let $A(\lambda): L^2(\mathbb{S}^{d-1}) \to L^2(\mathbb{S}^{d-1})$ be the operator with Schwartz's kernel $a(\omega, \theta, \lambda).$
- Define the scattering operator and its determinant by

 $S_{\mathbf{V}}(\lambda):=I+A(\lambda)\qquad\text{and}\qquad s_{\mathbf{V}}(\lambda):=\det S_{\mathbf{V}}(\lambda).$

We have

$$s_V(\lambda)s_V(-\lambda) = 1.$$

- The poles of s_V are exactly the resonances except for finitely many points.
- So the problem is reduced to study the zeros on s_V on the upper half-plane and we can use dd^c log |s_V|.

- 2 Scattering matrix
- 3 Radial potentials
- 4 Upper bound for the number of resonances
- 5 Generic potentials
- 6 Distribution of resonances

Theorem (Zworski, Stefanov, D-Vu, the only known explicit examples)

Assume that V is smooth, real-valued, radial, non-vanishing on the boundary of \mathbb{B}_{α} . Then $V \in \mathfrak{M}_{\alpha}^{3/4}$ (good asymptotic number of resonances with error $O(\mathfrak{r}^{d-3/4+\varepsilon})$).

- Assume that V is radial. Consider the space of spherical harmonics H_l of harmonic homogeneous polynomials of degree l restricted to S^{d-1}.
- \blacksquare $S_V(\lambda)$ acts on each H_1 as the multiplication by a number which depends meromorphically on $\lambda.$
- The problem is to estimate the numbers of zeros of these meromorphic functions in λ .
- We use some good change of variable, leading terms of those functions and Rouché's theorem.

- 2 Scattering matrix
- 3 Radial potentials
- 4 Upper bound for the number of resonances
- 5 Generic potentials
- 6 Distribution of resonances

Theorem (Zworski, Stefanov, D-Vu)

There is an explicit dimensional constant $c_d > 0$ such that

 $\mathsf{N}_V(r) \leqslant \frac{c_d \mathfrak{a}^d r^d}{d} + O(r^{d-1} \log r) \qquad \textit{and} \qquad \mathfrak{n}_V(r) \leqslant c_d \mathfrak{a}^d r^d + O(r^{d-1/2+\varepsilon}).$

 \blacksquare One can show that $\log |s_V(\lambda)|$ is small on $\mathbb R$ and deduce that

$$\left|\mathsf{N}_{\mathsf{V}}(\mathsf{r}) - \frac{1}{2\pi} \int_{0}^{\pi} \log |s_{\mathsf{V}}(\mathsf{r}e^{\mathrm{i}\theta})| \mathrm{d}\theta \right| = \mathsf{O}(\mathsf{r}^{d-1}).$$

Then we show that for some explicit function $h(\theta)$ on $[0,\pi]$

$$\log |s_V(re^{i\theta})| \leqslant h(\theta)a^d r^d + O(r^{d-1}\log r).$$

• Denote by μ_i the singular values of an operator. Two main ingredients are

$$\mathsf{log}\,|\,\mathsf{det}(I+A_V)|\leqslant \sum \mathsf{log}(1+\mu_j(A_V)) \qquad \mathsf{and} \qquad \mu_j(BC)\leqslant \|B\|\,\mu_j(C).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We also need properties of Bessel functions.

- 2 Scattering matrix
- 3 Radial potentials
- 4 Upper bound for the number of resonances
- 5 Generic potentials
- 6 Distribution of resonances

Theorem (D-Vu)

We have $V \in \mathfrak{M}_{a}^{3/8}$ for generic V in $L^{\infty}(\mathbb{B}_{a}, \mathbb{C})$ or $L^{\infty}(\mathbb{B}_{a}, \mathbb{R})$.

Recall that

$$\left|\mathsf{N}_V(\mathsf{r}) - \frac{1}{2\pi} \int_0^\pi \log |s_V(\mathsf{r} e^{\mathrm{i} \theta})| d\theta \right| = O(\mathsf{r}^{d-1}).$$

• We can replace N_V by the above integral which is p.s.h. in $V \in L^{\infty}(\mathbb{B}_a, \mathbb{C})$.

- Quantitative version: if the hypotheses are quantitative and strong enough, then $u_n \rightarrow c$ pointwise outside a pluripolar set with a speed control.

Fix a good radial potential $V_0 \in L^{\infty}(\mathbb{B}_{\alpha}, \mathbb{C})$ and apply the argument for analytic sets passing through V_0 .

- 2 Scattering matrix
- 3 Radial potentials
- 4 Upper bound for the number of resonances
- **5** Generic potentials
- 6 Distribution of resonances

Theorem (D-Nguyen)

There is an explicit positive measure μ_{MZ} supported by $\{Im(z) \leq 0\}$, independent of a, V, such that

- if $V \in \mathfrak{M}_{\mathfrak{a}}$ then $\mu_{V,r} \to \mu_{MZ}$;
- if $V \in \mathfrak{M}^{\delta}_{a}$ then the speed of convergence is $O(r^{-\delta+\varepsilon})$.

Remark

The mass on the unit disc is 1. On both \mathbb{R} and $\{\text{Im}(z) < 0\}$, the mass is positive and the density is smooth. Invariant by $\lambda^{d}(A_{\lambda})_{*}$ for $A_{\lambda}(z) := \lambda z$.

 \blacksquare Main ingredient: if ν_n is subharmonic on the unit disc $\mathbb{D} \subset \mathbb{C}$ such that

$$u_n\leqslant
u+o(1) \qquad ext{and} \qquad \Big|\int_0^{2\pi}
u_n(ext{t}e^{ ext{i} heta}) ext{d} heta - \int_0^{2\pi}
u(ext{t}e^{ ext{i} heta}) ext{d} heta \Big|=o(1),$$

then $\nu_n \rightarrow \nu$ in L^p_{loc} and $dd^c \nu_n \rightarrow dd^c \nu$ weakly.

- There is a quantitative version. We apply this for the functions $r^{-d} \log |s_V(r^{-1}z)|$ with $r \to \infty$.
- Technical difficulty: these functions are subharmonic only on a half-plane.
 We need a version of Schwarz's reflection.