Distribution of scattering resonances for generic Schrödinger operators

Tien-Cuong Dinh (joint with Viet-Anh Nguyen and Duc-Viet Vu)

Conference "SCV, CR geometry and Dynamics" on the occasion of Montel Chair awarded to Xiaojun Huang

Singapore
Mathematical
Society

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

- Consider the Schrödinger operator $-\Delta+\mathrm{V}: \mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}, \mathbb{C}\right) \cdots \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}, \mathbb{C}\right)$ with $\mathrm{d} \geqslant 3$ odd.
- The potential V is a bounded function supported by $\overline{\mathbb{B}}_{\mathrm{a}}:=\{\|x\| \leqslant a\}$.
- For $\lambda \in \mathbb{C}$ with $\operatorname{Im}(\lambda)$ large enough, $\mathrm{R}_{\mathrm{V}}(\lambda):=\left(-\Delta+\mathrm{V}-\lambda^{2}\right)^{-1}$ is well-defined and is a bounded operator.
- If ρ is smooth with compact support and equal to 1 on $\overline{\mathbb{B}}_{\mathrm{a}}$, then

$$
R_{V}(\lambda)=R_{0}(\lambda)\left(I+V R_{0}(\lambda) \rho\right)^{-1}\left(I-V R_{0}(\lambda)(1-\rho)\right) .
$$

■ We can extend $\mathrm{R}_{\mathrm{V}}(\lambda): \mathrm{L}_{\text {compact }}^{2} \rightarrow \mathrm{~L}_{\text {loc }}^{2}$ to a meromorphic family for $\lambda \in \mathbb{C}$.

- The poles are called the resonances of $-\Delta+\mathrm{V}$.

Problem (main problem, Melrose, Zworski..., similar to Weyl's law)

Study the distribution of the resonances, in particular, the growth of the number $n_{V}(r)$ of resonances in $\overline{\mathbb{D}(0, r)}$ with $r \rightarrow \infty$.

Remark

Dimension $\mathrm{d}=1$: Melrose and Zworski.

Recall that $n_{V}(r)$ is the number of resonances in $\overline{\mathbb{D}(0, r)}$. Define

$$
\mathrm{N}_{\mathrm{V}}(\mathrm{r}):=\int_{1}^{\mathrm{r}} \frac{\mathrm{n}_{\mathrm{V}}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} .
$$

Theorem (Zworski, Stefanov, D-Vu)

There is an explicit dimensional constant $\mathrm{c}_{\mathrm{d}}>0$ such that
$N_{V}(r) \leqslant \frac{c_{d} a^{d} r^{d}}{d}+O\left(r^{d-1} \log r\right) \quad$ and $\quad n_{V}(r) \leqslant c_{d} a^{d} r^{d}+O\left(r^{d-1 / 2+\epsilon}\right)$.

Define

$$
\mathfrak{M}_{\mathrm{a}}:=\left\{\mathrm{V} \in \mathrm{~L}^{\infty}\left(\mathbb{B}_{\mathrm{a}}, \mathbb{C}\right): \mathrm{n}_{\mathrm{V}}(\mathrm{r})-\mathrm{c}_{\mathrm{d}} \mathrm{a}^{\mathrm{d}} \mathrm{r}^{\mathrm{d}}=\mathrm{o}\left(\mathrm{r}^{\mathrm{d}}\right)\right\}
$$

$$
\mathfrak{M}_{\mathrm{a}}^{\delta}:=\left\{\mathrm{V} \in \mathrm{~L}^{\infty}\left(\mathbb{B}_{\mathrm{a}}, \mathbb{C}\right): \mathrm{n}_{\mathrm{V}}(\mathrm{r})-\mathrm{c}_{\mathrm{d}} \mathrm{a}^{\mathrm{d}} \mathrm{r}^{\mathrm{d}}=\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-\delta+\epsilon}\right) \text { for every } \epsilon>0\right\} .
$$

Theorem (Christiansen, complex potentials without resonances)
There is $\mathrm{V} \notin \mathfrak{M}_{\mathrm{a}}$ smooth, not real, non-vanishing on the boundary of \mathbb{B}_{a}.

Problem (self-adjoint case)

The question is open for potentials V with real values.

Theorem (Zworski, Stefanov, D-Vu, the only known explicit examples)
Assume that V is smooth, real-valued, radial, non-vanishing on the boundary of \mathbb{B}_{a}. Then $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}^{3 / 4}$.

Theorem (D-Vu)

We have $V \in \mathfrak{M}_{a}^{3 / 8}$ for generic V in $L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$ or $L^{\infty}\left(\mathbb{B}_{a}, \mathbb{R}\right)$.
Define

$$
\mu_{\mathrm{V}, \mathrm{r}}:=\frac{1}{\mathrm{c}_{\mathrm{d}} \mathrm{a}^{\mathrm{d} \mathrm{r}^{\mathrm{d}}}} \sum_{z \text { resonance }} \delta_{z / \mathrm{r}}
$$

Theorem (D-Nguyen)

There is an explicit positive measure $\mu_{M z}$ supported by $\{\operatorname{Im}(z) \leqslant 0\}$, independent of a, V, such that

■ if $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}$ then $\mu_{\mathrm{V}, \mathrm{r}} \rightarrow \mu_{\mathrm{MZ}}$;
■ if $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}^{\delta}$ then the speed of convergence is $\mathrm{O}\left(\mathrm{r}^{-\delta+\epsilon}\right)$.

Remark

The mass on the unit disc is 1 . On both \mathbb{R} and $\{\operatorname{Im}(z)<0\}$, the mass is positive and the density is smooth. Invariant by $\lambda^{d}\left(A_{\lambda}\right)_{*}$ for $A_{\lambda}(z):=\lambda z$.

- In infinite dimension, G_{δ}-density is often used as a notion of genericity. However, such a set may be very small. In dimension 1, such a set may have length 0 .
- $L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$ can be seen as a complex manifold of infinite dimension.
- A subset A is almost full if there is V_{0} such that for any holomorphic map $f: D \rightarrow L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$, with $f(0)=V_{0}$, we have $D \backslash f^{-1}(A)$ is pluripolar. Here, D is a neighbourhood of 0 in some \mathbb{C}^{N}.

Lemma (D-Nguyen-Sibony, Vu, Monge-Ampère measures of Hölder potentials)

Let A be as above with $V_{0} \in L^{\infty}\left(\mathbb{B}_{a}, \mathbb{R}\right)$. Then $A \cap L^{\infty}\left(\mathbb{B}_{a}, \mathbb{R}\right)$ is almost full in the sense that if the above map f is real, then $D_{\mathbb{R}} \backslash f^{-1}(A)$ is of Lebesgue measure 0 .

- Thus, we have a notion of genericity for $L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$ and $L^{\infty}\left(\mathbb{B}_{a}, \mathbb{R}\right)$.
- In the above definition, we can consider f linear.

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

- Let $\theta \in \mathbb{S}^{d-1}$ and $x \in \mathbb{R}^{d}$.
- Consider the solution of the equation $\left(-\Delta+\mathrm{V}-\lambda^{2}\right) \psi=0$ with Sommerfeld condition

$$
(\partial / \partial r-i \lambda)\left(\psi-e^{i \lambda \theta \cdot x}\right)=O\left(r^{-(d+1) / 2}\right)
$$

- One has

$$
\psi=e^{i \lambda \theta \cdot x}+\frac{e^{i \lambda r}}{r^{(d-1) / 2}} a(x / r, \theta, \lambda)+\text { h.o.t. }
$$

- Let $A(\lambda): L^{2}\left(\mathbb{S}^{d-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right)$ be the operator with Schwartz's kernel $a(\omega, \theta, \lambda)$.
- Define the scattering operator and its determinant by

$$
S_{V}(\lambda):=I+A(\lambda) \quad \text { and } \quad s_{V}(\lambda):=\operatorname{det} S_{V}(\lambda)
$$

- We have

$$
s_{V}(\lambda) s_{V}(-\lambda)=1
$$

- The poles of s_{V} are exactly the resonances except for finitely many points.
- So the problem is reduced to study the zeros on s_{V} on the upper half-plane and we can use $\mathrm{dd}^{\mathrm{c}} \log \left|\mathrm{s}_{\mathrm{V}}\right|$.

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

Theorem (Zworski, Stefanov, D-Vu, the only known explicit examples)

Assume that V is smooth, real-valued, radial, non-vanishing on the boundary of \mathbb{B}_{a}. Then $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}^{3 / 4}$ (good asymptotic number of resonances with error $\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-3 / 4+\epsilon}\right)$).

- Assume that V is radial. Consider the space of spherical harmonics H_{\imath} of harmonic homogeneous polynomials of degree l restricted to \mathbb{S}^{d-1}.
- $S_{V}(\lambda)$ acts on each H_{l} as the multiplication by a number which depends meromorphically on λ.
- The problem is to estimate the numbers of zeros of these meromorphic functions in λ.
- We use some good change of variable, leading terms of those functions and Rouché's theorem.

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

Theorem (Zworski, Stefanov, D-Vu)

There is an explicit dimensional constant $\mathrm{c}_{\mathrm{d}}>0$ such that

$$
\mathrm{N}_{\mathrm{V}}(\mathrm{r}) \leqslant \frac{\mathrm{c}_{\mathrm{d}} \mathrm{a}^{\mathrm{d}} \mathrm{r}^{\mathrm{d}}}{\mathrm{~d}}+\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-1} \log \mathrm{r}\right) \quad \text { and } \quad \mathrm{n}_{\mathrm{V}}(\mathrm{r}) \leqslant \mathrm{c}_{\mathrm{d}} \mathrm{a}^{\mathrm{d}} \mathrm{r}^{\mathrm{d}}+\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-1 / 2+\epsilon}\right)
$$

- One can show that $\log \left|s_{\mathcal{V}}(\lambda)\right|$ is small on \mathbb{R} and deduce that

$$
\left|\mathrm{N}_{\mathrm{V}}(\mathrm{r})-\frac{1}{2 \pi} \int_{0}^{\pi} \log \right| \mathrm{s}_{\mathrm{V}}\left(\mathrm{re}^{\mathrm{i} \theta}\right)|\mathrm{d} \theta|=\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-1}\right) .
$$

- Then we show that for some explicit function $h(\theta)$ on $[0, \pi]$

$$
\log \left|s_{V}\left(r e^{i \theta}\right)\right| \leqslant h(\theta) a^{d} r^{d}+O\left(r^{d-1} \log r\right) .
$$

- Denote by μ_{j} the singular values of an operator. Two main ingredients are $\log \left|\operatorname{det}\left(I+A_{V}\right)\right| \leqslant \sum \log \left(1+\mu_{j}\left(A_{V}\right)\right) \quad$ and $\quad \mu_{j}(B C) \leqslant\|B\| \mu_{j}(C)$.
- We also need properties of Bessel functions.

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

Theorem (D-Vu)

We have $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}^{3 / 8}$ for generic V in $\mathrm{L}^{\infty}\left(\mathbb{B}_{\mathrm{a}}, \mathbb{C}\right)$ or $\mathrm{L}^{\infty}(\mathbb{B}, \mathbb{R})$.
■ Recall that

$$
\left|\mathrm{N}_{\mathrm{V}}(\mathrm{r})-\frac{1}{2 \pi} \int_{0}^{\pi} \log \right| \mathrm{s}_{\mathrm{V}}\left(\mathrm{re}^{\mathrm{i} \theta}\right)|\mathrm{d} \theta|=\mathrm{O}\left(\mathrm{r}^{\mathrm{d}-1}\right) .
$$

■ We can replace N_{V} by the above integral which is p.s.h. in $V \in L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$.
■ Main ingredient (in finite dimension): if u_{n} p.s.h. such that $u_{n} \leqslant c+o(1)$ and $u_{n}(0) \rightarrow c$, then $u_{n} \rightarrow c$ in $L_{\text {loc }}^{p}$ (maximum principle).

- Quantitative version: if the hypotheses are quantitative and strong enough, then $u_{n} \rightarrow \mathrm{c}$ pointwise outside a pluripolar set with a speed control.
- Fix a good radial potential $V_{0} \in L^{\infty}\left(\mathbb{B}_{a}, \mathbb{C}\right)$ and apply the argument for analytic sets passing through V_{0}.

1 Introduction

2 Scattering matrix

3 Radial potentials

4 Upper bound for the number of resonances

5 Generic potentials

6 Distribution of resonances

Theorem (D-Nguyen)

There is an explicit positive measure $\mu_{M z}$ supported by $\{\operatorname{Im}(z) \leqslant 0\}$, independent of a, V, such that

- if $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}$ then $\mu_{\mathrm{V}, \mathrm{r}} \rightarrow \mu_{\mathrm{Mz}}$;
- if $\mathrm{V} \in \mathfrak{M}_{\mathrm{a}}^{\delta}$ then the speed of convergence is $\mathrm{O}\left(\mathrm{r}^{-\delta+\epsilon}\right)$.

Remark

The mass on the unit disc is 1 . On both \mathbb{R} and $\{\operatorname{Im}(z)<0\}$, the mass is positive and the density is smooth. Invariant by $\lambda^{d}\left(A_{\lambda}\right)_{*}$ for $A_{\lambda}(z):=\lambda z$.

- Main ingredient: if v_{n} is subharmonic on the unit disc $\mathbb{D} \subset \mathbb{C}$ such that

$$
v_{n} \leqslant v+o(1) \quad \text { and } \quad\left|\int_{0}^{2 \pi} v_{n}\left(t e^{i \theta}\right) d \theta-\int_{0}^{2 \pi} v\left(t e^{i \theta}\right) d \theta\right|=o(1)
$$

then $v_{\mathrm{n}} \rightarrow v$ in $\mathrm{L}_{\text {loc }}^{\mathrm{p}}$ and $\mathrm{dd}^{\mathrm{c}} v_{\mathrm{n}} \rightarrow \mathrm{dd}^{\mathrm{c}} v$ weakly.

- There is a quantitative version. We apply this for the functions $r^{-\mathrm{d}} \log \left|s_{V}\left(r^{-1} z\right)\right|$ with $r \rightarrow \infty$.
- Technical difficulty: these functions are subharmonic only on a half-plane. We need a version of Schwarz's reflection.

