Balanced Hyperbolic and Divisorially Hyperbolic Compact Complex Manifolds

${}_{\rm joint \ work \ with} \ Samir \ Marouani$

arXiv e-print CV 2107.08972v1, to appear in Mathematical Research Letters arXiv e-print CV 2107.09522v1, to appear in International Journal of Mathematics

> Dan Popovici Université Paul Sabatier, Toulouse, France

Workshop "SCV, CR Geometry and Dynamics" Université Côte d'Azur, Nice 6-10 December 2021

(I) Background

X compact complex manifold, $n = \dim_{\mathbb{C}} X$

(1) • Kobayashi (1970)

X is Kobayashi hyperbolic $\stackrel{def}{\iff}$

the Kobayashi pseudo-distance of X is a distance

• Brody (1978)

X is Brody hyperbolic $\stackrel{def}{\iff}$

 $\nexists f: \mathbb{C} \longrightarrow X$ non-constant holomorphic map

(Such a map is called an entire curve.)

Theorem (Brody 1978) When X is compact, one has:

X is Kobayashi hyperbolic \iff X is Brody hyperbolic.

• For a possibly non-compact X, one always has:

X is Kobayashi hyperbolic $\implies X$ is Brody hyperbolic

but the converse fails in general.

Question 1 (Marouani-P. 2021) What is the relevant analogue of the Brody hyperbolicity when entire curves $f : \mathbb{C} \longrightarrow X$ are replaced by divisors $f : \mathbb{C}^{n-1} \longrightarrow X$, where $n = \dim_{\mathbb{C}} X$?

(2) Gromov (1991)

• Let $\pi_X : \widetilde{X} \longrightarrow X$ be the universal cover of X.

- If ω is a Hermitian metric on X, we put $\widetilde{\omega} := \pi_X^* \omega$ its lift to \widetilde{X} . (So, $\widetilde{\omega}$ is a Hermitian metric on \widetilde{X} .)
- Let α be a C^{∞} k-form on X.

 $\alpha \text{ is } \widetilde{d}(\text{bounded}) \text{ w.r.t. } \omega \stackrel{def}{\iff} \pi_X^{\star} \alpha = d\beta \text{ on } \widetilde{X} \text{ for some } C^{\infty}$ (k-1)-form β on \widetilde{X} that is bounded w.r.t. $\widetilde{\omega}$.

• X is Kähler hyperbolic $\stackrel{def}{\iff}$

 $\exists \omega \text{ K\"ahler metric on } X \text{ such that } \omega \text{ is } \tilde{d}(\text{bounded}) \text{ w.r.t. } \omega.$

Fact (Gromov 1991) If X is compact, one has:

X is Kähler hyperbolic \implies X is Kobayashi hyperbolic.

However, the converse fails in general.

Question 2 (Marouani-P. 2021) What is the relevant analogue of the Kähler hyperbolicity when X is not Kähler?

(3) Fact (Gromov 1991 + Chen-Yang 2017)If X is compact, one has:

X is Kähler hyperbolic \implies K_X is ample (\implies X is projective).

Gromov proved that K_X is big. The reinforcement of the result to ample may have been known before Chen-Yang 2017.

Conjecture (Kobayashi)

If X is compact, one expects to have:

X is Kobayashi hyperbolic $\stackrel{?}{\Longrightarrow}$ K_X is ample

$$\implies X \text{ is projective}).$$

So, the standard notions of hyperbolicity can only occur in the **pro-jective** context.

Question 3 (Marouani-P. 2021) Do any hyperbolicity phenomena occur outside the projective or even outside the Kähler context?

(4) Definition (Gauduchon 1977)

Let X be a complex manifold with $\dim_{\mathbb{C}} X = n$.

A balanced metric on X is any C^{∞} positive definite (1, 1)form $\omega > 0$ on X (i.e. any Hermitian metric ω) such that

$$d\omega^{n-1} = 0.$$

The manifold X is **balanced** $\iff \exists \omega$ balanced metric on X.

Examples of balanced manifolds include:

(a) all complex parallelisable compact complex manifolds X:

 $T^{1,0}X$ is holomorphically trivial.

Fact (Wang 1954) A compact complex manifold X is complex parallelisable $\iff X = G/\Gamma$ for some simply connected, connected complex Lie group G and some discrete subgroup Γ .

(b) all Calabi-Eckmann manifolds: $X = S^{2n+1} \times S^{2m+1}$ equipped with the Calabi-Eckmann complex structure;

(c) all twistor spaces (Penrose 1976, Atiyah-Hitchin-Singer 1978, Gauduchon 1991);

(d) many nilmanifolds and solvmanifolds: $X = G/\Gamma$ with G a (real) nilpotent or solvable Lie group endowed with an invariant complex structure and Γ a lattice therein.

(II) Our two hyperbolicity notions

(1) Answering Question 2

Definition (Marouani-P. 2021)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. X is **balanced hyperbolic** $\stackrel{def}{\Leftrightarrow}$ $\exists \omega$ balanced metric on X such that ω^{n-1} is \tilde{d} (bounded) w.r.t. ω .

Recall: this means that

$$\pi_X^\star \omega^{n-1} = d\Gamma \quad \text{on } \widetilde{X}$$

for some $\widetilde{\omega}$ -bounded $C^{\infty}(2n-3)$ -form Γ on \widetilde{X} , where $\pi_X : \widetilde{X} \longrightarrow X$ is the universal cover of X.

Balanced hyperbolic manifolds generalise both

-Gromov's Kähler hyperbolic manifolds;

and

-degenerate balanced manifolds.

Definition (P. 2015 for the name – the notion predates this) Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. X is degenerate balanced $\stackrel{def}{\iff}$

 $\exists \omega \text{ Hermitian metric on } X \text{ such that } \omega^{n-1} \in Imd.$

• There is no analogous phenomenon in the Kähler case:

if X is *compact*, no C^{∞} (1, 1)-form $\omega > 0$ on X can be such that $\omega \in \operatorname{Im} d$.

• Two known classes of degenerate balanced manifolds: (a) the connected sums

$$X_k = \sharp_k(S^3 \times S^3)$$

of k copies (with $k \ge 2$) of $S^3 \times S^3$ endowed with the Friedman-Lu-Tian complex structure J_k constructed via conifold transitions, where S^3 is the 3-sphere; Fu-Li-Yau (2012): $\exists \omega$ balanced metric on (X_k, J_k) . Moreover, $H_{DR}^4(X_k, \mathbb{C}) = \{0\}$, so for any balanced metric ω , $H_{DR}^4(X_k, \mathbb{C})$ $\{\omega^2\}_{DR} = 0$, hence ω is *degenerate balanced*.

(b) the Yachou manifolds (1998)

$$X = G/\Gamma$$

arising as the quotient of any **semi-simple** complex Lie group G by a lattice $\Gamma \subset G$.

Obvious fact

Every degenerate balanced manifold is balanced hyperbolic.

(2) Answering Question 1

Observation (trivial)

For any complex Lie group G with $\dim_{\mathbb{C}} G = n$ and any lattice $\Gamma \subset G$, there exists a holomorphic map

$$f: \mathbb{C}^{n-1} \longrightarrow X := G/\Gamma$$

that is non-degenerate at some point $x \in \mathbb{C}^{n-1}$.

Reason. There are non-degenerate holomorphic maps:

$$\mathbb{C}^{n-1} \longrightarrow T_e^{1,\,0}G = \mathfrak{g} \xrightarrow{\exp} G \longrightarrow G/\Gamma,$$

where the exponential map $\exp : \mathfrak{g} \longrightarrow G$ is holomorphic (and immersive at least at $0 \in \mathfrak{g}$ since $d_0\mathfrak{g} = \mathrm{id}_{\mathfrak{g}}$) since the Lie group G is complex.

However, the Friedman-Lu-Tian and the Yachou manifolds deserve to be called hyperbolic.

Notation. • For any integer $n \ge 2$ and any r > 0, let

$$B_r := \{ z \in \mathbb{C}^{n-1} \mid |z| < r \}$$

and

$$S_r := \{ z \in \mathbb{C}^{n-1} \mid |z| = r \}$$

be the open ball, resp. the sphere, of radius r centred at $0 \in \mathbb{C}^{n-1}$.

For any (1, 1)-form $\gamma \ge 0$ on a complex manifold and any positive integer p, we use the notation:

$$\gamma_p := \frac{\gamma^p}{p!}.$$

• For any compact Hermitian manifold (X, ω) with $\dim_{\mathbb{C}} X = n \ge 2$ and any holomorphic map

$$f: \mathbb{C}^{n-1} \longrightarrow X$$

that is *non-degenerate* at some point $x \in \mathbb{C}^{n-1}$ (i.e. its differential map $d_x f : \mathbb{C}^{n-1} \longrightarrow T_{f(x)} X$ at x has maximal rank):

• there exists a proper analytic subset $\Sigma \subset \mathbb{C}^{n-1}$ such that f is *non-degenerate* at every point $z \in \mathbb{C}^{n-1} \setminus \Sigma$;

· $f^{\star}\omega \ge 0$ on \mathbb{C}^{n-1} and $f^{\star}\omega > 0$ on $\mathbb{C}^{n-1} \setminus \Sigma$ (i.e. $f^{\star}\omega$ is a *degenerate metric* on \mathbb{C}^{n-1} and a genuine metric on $\mathbb{C}^{n-1} \setminus \Sigma$)

Definition (Marouani-P. 2021)

(i) For every r > 0, the (ω, f) -volume of the ball $B_r \subset \mathbb{C}^{n-1}$ is $\operatorname{Vol}_{\omega, f}(B_r) := \int_{B_r} f^* \omega_{n-1} > 0.$

(ii) For $z \in \mathbb{C}^{n-1}$, let $\tau(z) := |z|^2$ be its squared Euclidean norm. At every point $z \in \mathbb{C}^{n-1} \setminus \Sigma$, we have:

$$\frac{d\tau}{|d\tau|_{f^{\star}\omega}} \wedge \star_{f^{\star}\omega} \left(\frac{d\tau}{|d\tau|_{f^{\star}\omega}}\right) = f^{\star}\omega_{n-1},\tag{1}$$

where $\star_{f^{\star}\omega}$ is the Hodge star operator induced by $f^{\star}\omega$.

Thus, the
$$(2n-3)$$
-form
$$d\sigma_{\omega,f} := \star_{f^{\star}\omega} \left(\frac{d\tau}{|d\tau|_{f^{\star}\omega}} \right)$$

on $\mathbb{C}^{n-1} \setminus \Sigma$ is the area measure induced by $f^*\omega$ on the spheres of \mathbb{C}^{n-1} . This means that its restriction

$$d\sigma_{\omega,f,t} := \left(\star_{f^{\star}\omega} \left(\frac{d\tau}{|d\tau|_{f^{\star}\omega}} \right) \right)_{|S_t} \tag{2}$$

is the area measure induced by the degenerate metric $f^*\omega$ on the sphere $S_t = \{\tau(z) = t^2\} \subset \mathbb{C}^{n-1}$ for every t > 0. In particular, the area of the sphere $S_r \subset \mathbb{C}^{n-1}$ w.r.t. $d\sigma_{\omega, f, r}$ is

$$A_{\omega,f}(S_r) = \int_{S_r} d\sigma_{\omega,f,r} > 0, \quad r > 0.$$

Definition (Marouani-P. 2021) Let (X, ω) be a compact Hermitian manifold with $\dim_{\mathbb{C}} X = n \ge 2$ and let

$$f: \mathbb{C}^{n-1} \longrightarrow X$$

be a holomorphic map, non-degenerate at some point $x \in \mathbb{C}^{n-1}$.

f has subexponential growth if the following two conditions are satisfied:

(i) there exist constants $C_1 > 0$ and $r_0 > 0$ such that $\int_{S_t} |d\tau|_{f^*\omega} d\sigma_{\omega, f, t} \leq C_1 t \ Vol_{\omega, f}(B_t), \quad t > r_0;$ (ii) for every constant C > 0, we have:

$$\limsup_{b \to +\infty} \left(\frac{b}{C} - \log F(b) \right) = +\infty,$$

where

$$F(b) := \int_{0}^{b} \operatorname{Vol}_{\omega, f}(B_t) dt = \int_{0}^{b} \left(\int_{B_t} f^* \omega_{n-1} \right) dt, \quad b > 0.$$

Observation Any holomorphic map $f : \mathbb{C}^{n-1} \longrightarrow (X, \omega)$ such that

$$f^{\star}\omega = \beta := (1/2) \sum_{j=1}^{n-1} i dz_j \wedge d\bar{z}_j$$

(the standard Kähler metric, i.e. the Euclidean metric)

has subexponential growth.

Observation The following identities hold for all
$$t > 0$$
:
$$\int_{S_t} |d\tau|_{f^{\star}\omega} d\sigma_{\omega, f, t} = 2 \int_{B_t} i\partial\bar{\partial}\tau \wedge f^{\star}\omega_{n-2} - \int_{B_t} i(\bar{\partial}\tau - \partial\tau) \wedge d(f^{\star}\omega_{n-2})$$

 $= 2\int_{B_t} \Lambda_{f^\star \omega} (i\partial \bar{\partial} \tau) f^\star \omega_{n-1} - \int_{B_t} i(\bar{\partial} \tau - \partial \tau) \wedge d(f^\star \omega_{n-2}) df^\star \omega_{n-2}$

where $\Lambda_{f^{\star}\omega}$ is the trace w.r.t. $f^{\star}\omega$ or, equivalently, the pointwise adjoint of the operator of multiplication by $f^{\star}\omega$, while

$$i\partial\bar{\partial}\tau = i\partial\bar{\partial}|z|^2 = \sum_{j=1}^{n-1} idz_j \wedge d\bar{z}_j := \beta$$

is the standard metric of \mathbb{C}^{n-1} .

Observation (trivial)

The subexponential growth condition on f is independent of the choice of Hermitian metric ω on X.

Proof. Let ω_1 and ω_2 be arbitrary Hermitian metrics on X. Since X is compact, there exists a constant A > 0 such that

 $(1/A)\,\omega_2 \le \omega_1 \le A\,\omega_2$

on X. Hence,

$$(1/A) f^{\star} \omega_2 \le f^{\star} \omega_1 \le A f^{\star} \omega_2$$

on \mathbb{C}^{n-1} .

Standard definition

A holomorphic map $f : \mathbb{C}^{n-1} \to (X, \omega)$ is of finite order if there exist constants $C_1, C_2, r_0 > 0$ such that $Vol_{\omega, f}(B_r) \leq C_1 r^{C_2}$ for all $r \geq r_0$.

• By the above proof, f being of finite order does not depend on the choice of Hermitian metric ω on X.

• If f has *finite order*, then f satisfies part (ii) of the *subexponential* growth condition.

Definition (Marouani-P. 2021)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. X is divisorially hyperbolic if there is no holomorphic map $f: \mathbb{C}^{n-1} \longrightarrow X$

such that f is non-degenerate at some point $x \in \mathbb{C}^{n-1}$ and f has subexponential growth.

Question What about the case where X is **non-compact**?

For all compact complex manifolds X, we get the following picture:

 $\begin{array}{c} X \text{ is K\"ahler hyperbolic} & \Longrightarrow X \text{ is Brody hyperbolic} \\ \downarrow \\ X \text{ is balanced hyperbolic} & \Longrightarrow X \text{ is divisorially hyperbolic} \\ \uparrow \end{array}$

X is degenerate balanced

The only implication that has yet to be proved is

Theorem (Marouani-P. 2021)

Every balanced hyperbolic *compact complex manifold is* divisorially hyperbolic.

Proof. Let X be a balanced hyperbolic compact complex manifold, $\dim_{\mathbb{C}} X = n$. Let ω be a balanced hyperbolic metric on X. Thus, if $\pi_X : \widetilde{X} \longrightarrow X$ is the universal cover of X, we have $\pi_X^{\star} \omega^{n-1} = d\Gamma$ on \widetilde{X} , where Γ is an $\widetilde{\omega}$ -bounded C^{∞} (2n-3)-form on \widetilde{X} and $\widetilde{\omega} = \pi_X^{\star} \omega$ is the lift of the metric ω to \widetilde{X} . Suppose there exists a holomorphic map

$$f:\mathbb{C}^{n-1}\longrightarrow X$$

that is non-degenerate at some point $x \in \mathbb{C}^{n-1}$ and has subexponential growth. We will prove that

$$f^{\star}\omega^{n-1} = 0$$

on \mathbb{C}^{n-1} , in contradiction to the non-degeneracy assumption.

Since \mathbb{C}^{n-1} is simply connected, there exists a lift \tilde{f} of f to \tilde{X} , namely a holomorphic map

$$\widetilde{f}: \mathbb{C}^{n-1} \longrightarrow \widetilde{X}$$

such that $f = \pi_X \circ \tilde{f}$. In particular, $d_x \tilde{f}$ is injective since $d_x f$ is.

We have:

$$\begin{split} f^{\star} \omega^{n-1} &= \tilde{f}^{\star}(\pi_X^{\star} \omega^{n-1}) = d(\tilde{f}^{\star} \Gamma) \geq 0 \quad \text{ on } \mathbb{C}^{n-1} \\ &> 0 \quad \text{ on } \mathbb{C}^{n-1} \setminus \Sigma, \end{split}$$

where $\Sigma \subset \mathbb{C}^{n-1}$ is the proper analytic subset of all points $z \in \mathbb{C}^{n-1}$ such that $d_z f$ is not of maximal rank.

Claim. The (2n-3)-form $\tilde{f}^{\star}\Gamma$ is $(f^{\star}\omega)$ -bounded on \mathbb{C}^{n-1} .

Proof of Claim. For any tangent vectors v_1, \ldots, v_{2n-3} in \mathbb{C}^{n-1} , we have:

$$|(\tilde{f}^{\star}\Gamma)(v_1,\ldots,v_{2n-3})|^2 = |\Gamma(\tilde{f}_{\star}v_1,\ldots,\tilde{f}_{\star}v_{2n-3})|^2$$

$$\stackrel{(a)}{\leq} C |\tilde{f}_{\star}v_1|^2_{\widetilde{\omega}}\ldots|\tilde{f}_{\star}v_{2n-3}|^2_{\widetilde{\omega}}$$

$$= C |v_1|^2_{\tilde{f}^{\star}\widetilde{\omega}}\ldots|v_{2n-3}|^2_{\tilde{f}^{\star}\widetilde{\omega}}$$

$$\stackrel{(b)}{=} C |v_1|^2_{f^{\star}\omega}\ldots|v_{2n-3}|^2_{f^{\star}\omega},$$

where C > 0 is a constant independent of the v_j 's that exists such that inequality (a) holds thanks to the $\tilde{\omega}$ -boundedness of Γ on \tilde{X} , while (b) follows from $\tilde{f}^*\tilde{\omega} = f^*\omega$.

End of Proof of Theorem.

• On the one hand, we have $d\tau = 2t dt$ and

$$\operatorname{Vol}_{\omega,f}(B_r) = \int_{B_r} f^* \omega_{n-1} = \int_0^r \left(\int_{S_t} d\mu_{\omega,f,t} \right) dt = \int_{B_r} d\mu_{\omega,f,t} \wedge \frac{d\tau}{2t},$$

where $d\mu_{\omega, f, t}$ is the positive measure on S_t defined by

$$\frac{1}{2t}d\mu_{\omega,f,t} \wedge (d\tau)_{|S_t} = (f^*\omega_{n-1})_{|S_t}, \quad t > 0.$$

Thus, the measures $d\mu_{\omega, f, t}$ and $d\sigma_{\omega, f, t}$ on S_t are related by

$$\frac{1}{2t}d\mu_{\omega,f,t} = \frac{1}{|d\tau|_{f^{\star}\omega}}d\sigma_{\omega,f,t}, \quad t > 0.$$

Now, the Hölder inequality yields:

$$\int_{S_t} \frac{1}{|d\tau|_{f^{\star}\omega}} \, d\sigma_{\omega,\,f,\,t} \geq \frac{A_{\omega,\,f}^2(S_t)}{\int_{S_t} |d\tau|_{f^{\star}\omega} \, d\sigma_{\omega,\,f,\,t}}.$$

This leads to:

$$\operatorname{Vol}_{\omega,f}(B_r) = \int_{0}^{r} \left(\int_{S_t} \frac{1}{2t} d\mu_{\omega,f,t} \right) d\tau = \int_{0}^{r} \left(\int_{S_t} \frac{1}{|d\tau|_{f^{\star}\omega}} d\sigma_{\omega,f,t} \right) d\tau$$
$$\geq 2 \int_{0}^{r} \frac{A_{\omega,f}^2(S_t)}{\int_{S_t} |d\tau|_{f^{\star}\omega} d\sigma_{\omega,f,t}} t \, dt, \quad r > 0.$$

• On the other hand, for every r > 0, we have:

$$\operatorname{Vol}_{\omega,f}(B_r) = \int_{B_r} f^* \omega_{n-1} = \int_{B_r} d(\tilde{f}^* \Gamma) = \int_{S_r} \tilde{f}^* \Gamma$$

$$\stackrel{(a)}{\leq} C \int_{S_r} d\sigma_{\omega,f} = C A_{\omega,f}(S_r),$$

where C > 0 is a constant that exists such that inequality (a) holds thanks to the boundedness of $\tilde{f}^{\star}\Gamma$. Putting the above inequalities together, we get for every $r > r_0$:

$$\operatorname{Vol}_{\omega,f}(B_r) \geq \frac{2}{C^2} \int_{0}^{r} \operatorname{Vol}_{\omega,f}(B_t) \frac{t \operatorname{Vol}_{\omega,f}(B_t)}{\int_{S_t} |d\tau|_{f^{\star}\omega} d\sigma_{\omega,f,t}} dt$$
$$\stackrel{(a)}{\geq} \frac{2}{C_1 C^2} \int_{r_0}^{r} \operatorname{Vol}_{\omega,f}(B_t) dt \stackrel{(b)}{\coloneqq} C_2 F(r),$$

where (a) follows from assumption (i) in the subexponential growth condition and (b) is the definition of a function $F : (r_0, +\infty) \longrightarrow (0, +\infty)$ with $C_2 := 2/(C_1 C^2)$.

Deriving F, we get for every r > 0:

$$F'(r) = \operatorname{Vol}_{\omega, f}(B_r) \ge C_2 F(r).$$

This amounts to

$$\frac{d}{dt}\left(\log F(t)\right) \ge C_2, \quad t > r_0.$$

Integrating this over $t \in [a, b]$, with $r_0 < a < b$ arbitrary, we get:

$$-\log F(a) \ge -\log F(b) + C_2(b-a), \quad r_0 < a < b.$$

Now, fix an arbitrary $a > r_0$ and let $b \to +\infty$. Thanks to the *subexponential growth* assumption made on f, there exists a sequence of reals $b_j \to +\infty$ such that the right-hand side of the above inequality for $b = b_j$ tends to $+\infty$ as $j \to +\infty$.

This forces F(a) = 0 for every a > 0, hence

$$\operatorname{Vol}_{\omega,f}(B_r) \left(= \int_{B_r} f^* \omega_{n-1} \right) = 0$$

for every $r > r_0$. This amounts to $f^* \omega^{n-1} = 0$ on \mathbb{C}^{n-1} , contradicting the non-degeneracy assumption on f.

Examples

(1) Consider the semi-simple complex Lie group $G = SL(2, \mathbb{C})$. Its complex structure is described by three holomorphic (1, 0)-forms α, β, γ that satisfy the structure equations:

$$d\alpha = \beta \wedge \gamma, \quad d\beta = \gamma \wedge \alpha, \quad d\gamma = \alpha \wedge \beta.$$

Moreover, the dual of the Lie algebra $\mathfrak{g} = T_e G$ of G is generated, as an \mathbb{R} -vector space, by these forms and their conjugates:

$$(T_eG)^{\star} = \langle \alpha, \beta, \gamma, \overline{\alpha}, \overline{\beta}, \overline{\gamma} \rangle.$$

The C^{∞} positive definite (1, 1)-form

$$\omega:=\frac{i}{2}\alpha\wedge\overline{\alpha}+\frac{i}{2}\beta\wedge\overline{\beta}+\frac{i}{2}\gamma\wedge\overline{\gamma}$$

defines a left-invariant (under the action of G on itself) Hermitian metric on G. We get

$$\omega^2 = \frac{1}{2} d(\alpha \wedge d\overline{\alpha} + \beta \wedge d\overline{\beta} + \gamma \wedge d\overline{\gamma}) \in \operatorname{Im} d.$$

So, ω is a *degenerate balanced* metric on G.

Since it is left-invariant under the G-action, ω descends to a *degenerate balanced metric* on the compact quotient $X = G/\Gamma$ of G by any lattice Γ . In particular, this example illustrates Yachou's result in the special case of $G = SL(2, \mathbb{C})$.

Now, consider the holomorphic map

$$f: \mathbb{C}^2 \to G = SL(2, \mathbb{C}), \quad f(z_1, z_2) = \begin{pmatrix} e^{z_1} & z_2 \\ 0 & e^{-z_1} \end{pmatrix}.$$

This map is non-degenerate at every point $z = (z_1, z_2) \in \mathbb{C}^2$, as can be seen at once.

However, f is not of subexponential growth, as can be checked.

Actually, there is no non-degenerate holomorphic map $g : \mathbb{C}^2 \to X = G/\Gamma$ of subexponential growth thanks to X being *degenerate* balanced (hence also balanced hyperbolic) and to our above theorem.

(2) Any complex torus

$$X = \mathbb{C}^n / \Gamma,$$

where $\Gamma \subset (\mathbb{C}^n, +)$ is any lattice, is *not divisorially hyperbolic*.

Reason. Any Hermitian metric with constant coefficients on \mathbb{C}^n (for example, the Euclidean metric $\beta = (1/2) \sum_j i dz_j \wedge d\overline{z}_j$) defines a Kähler metric ω on X:

$$\pi^{\star}\omega=\beta,$$

where $\pi : \mathbb{C}^n \to X$ is the projection. If $j : \mathbb{C}^{n-1} \longrightarrow \mathbb{C}^n$ is the obvious inclusion $(z_1, \ldots, z_{n-1}) \mapsto (z_1, \ldots, z_n)$, the non-degenerate holomorphic map $f = \pi \circ j : \mathbb{C}^{n-1} \to X$ has subexponential growth because $f^*\omega = j^*\beta = \beta_0$, where β_0 is the Euclidean metric of \mathbb{C}^{n-1} .

(3) The *Iwasawa manifold* $X = G/\Gamma$ is *not divisorially hyperbolic*, where $G = (\mathbb{C}^3, \star)$ is the nilpotent complex Lie group (called the Heisenberg group) whose group operation is defined as

$$(\zeta_1, \zeta_2, \zeta_3) \star (z_1, z_2, z_3) = (\zeta_1 + z_1, \zeta_2 + z_2, \zeta_3 + z_3 + \zeta_1 z_2),$$

while the lattice $\Gamma \subset G$ consists of the elements $(z_1, z_2, z_3) \in G$ with $z_1, z_2, z_3 \in \mathbb{Z}[i]$.

Reason. There is an explicit Hermitian metric ω_0 on X that lifts to the Hermitian metric

$$\omega = \pi^* \omega_0$$

= $i dz_1 \wedge d\bar{z}_1 + (1 + |z_1|^2) i dz_2 \wedge d\bar{z}_2 + i dz_3 \wedge d\bar{z}_3$
- $\bar{z}_1 i dz_3 \wedge d\bar{z}_2 - z_1 i dz_2 \wedge d\bar{z}_3$
on $G = \mathbb{C}^3$, where $\pi : G \to X$ is the projection.

Considering the non-degenerate holomorphic map $f = \pi \circ j : \mathbb{C}^2 \longrightarrow X$, where $j : \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ is the obvious inclusion $(z_1, z_2) \mapsto (z_1, z_2, 0)$, we get

$$f^{\star}\omega_{0} = j^{\star}\omega = \omega_{|\mathbb{C}^{2}} = idz_{1} \wedge d\bar{z}_{1} + (1 + |z_{1}|^{2})idz_{2} \wedge d\bar{z}_{2}$$

on \mathbb{C}^2 . Hence,

$$f^{\star}\omega_0^2 = 2(1+|z_1|^2)\,dV_0$$

on \mathbb{C}^2 , where we put $dV_0 := idz_1 \wedge d\overline{z}_1 \wedge idz_2 \wedge d\overline{z}_2$. Thus, for the ball $B_r \subset \mathbb{C}^2$ of radius r centred at 0, we get

$$\operatorname{Vol}_{\omega_0, f}(B_r) = \frac{1}{2} \int_{B_r} f^* \omega_0^2 = \int_{B_r} (1 + |z_1|^2) \, dV_0 \le c_2 \, r^4 (1 + r^2), \quad r > 0,$$

where $c_2 > 0$ is a constant independent of r. This shows that f is of *finite order*, hence f satisfies property (ii) in the definition of the subexponential growth condition. It also satisfies property (i). (4) No Nakamura manifold $X = G/\Gamma$ is divisorially hyperbolic, where $G = (\mathbb{C}^3, \star)$ is the solvable, non-nilpotent complex Lie group whose group operation is defined as

$$(\zeta_1, \zeta_2, \zeta_3) \star (z_1, z_2, z_3) = (\zeta_1 + z_1, \zeta_2 + e^{-\zeta_1} z_2, \zeta_3 + e^{\zeta_1} z_3),$$

while $\Gamma \subset G$ is a lattice.

(III) Positivity properties of balanced or divisorially hyperbolic manifolds

Question 4 (Marouani-P. 2021) Let X be a compact complex manifold. If X is balanced hyperbolic or merely divisorially hyperbolic, does X have any positivity property (e.g. at the level of K_X)?

Recall

- **Bott-Chern** cohomology group:

$$H^{p,q}_{BC}(X,\mathbb{C}) := \frac{\ker \partial \cap \ker \bar{\partial}}{\operatorname{Im}\left(\partial \bar{\partial}\right)}$$

(depends on the complex structure)

- **Aeppli** cohomology group:

 $H_A^{p,q}(X,\mathbb{C}) := \frac{\ker(\partial\bar{\partial})}{\operatorname{Im}\partial + \operatorname{Im}\bar{\partial}} \quad \text{(depends on the complex structure)}$ We will use the Serre-type duality:

$$H^{1,1}_{BC}(X, \mathbb{C}) \times H^{n-1,n-1}_A(X, \mathbb{C}) \longrightarrow \mathbb{C},$$
$$(\{u\}_{BC}, \{v\}_A) \mapsto \{u\}_{BC}.\{v\}_A := \int_X u \wedge v,$$

as well as:

- the *Gauduchon cone* \mathcal{G}_X of X (P. 2015)

$$\mathcal{G}_X := \left\{ \{\omega^{n-1}\}_A \in H_A^{n-1, n-1}(X, \mathbb{R}) \mid \omega \text{ is a Gauduchon metric on } X \right\} \subset H_A^{n-1, n-1}(X, \mathbb{R})$$

-the strongly Gauduchon (sG) cone SG_X of X (P. 2015)

$$\begin{aligned} \mathcal{SG}_X &:= \left\{ \{\omega^{n-1}\}_A \in H^{n-1,\,n-1}_A(X,\,\mathbb{R}) \mid \omega \text{ is an sG metric on } X \right\} \\ &\subset H^{n-1,\,n-1}_A(X,\,\mathbb{R}). \end{aligned}$$

Recall: a Hermitian metric ω on X is said to be a:

-Gauduchon metric (Gauduchon 1077) if $\partial\bar{\partial}\omega^{n-1} = 0$

-strongly Gauduchon (sG) metric (P. 2013) if $\partial \omega^{n-1} \in \operatorname{Im} \bar{\partial}.$

Obviously,

 $\mathcal{SG}_X \subset \mathcal{G}_X.$

Original observation.

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. The map:

$$P = P_{n-1,n-1}^{n-1} : H_{DR}^2(X, \mathbb{R}) \longrightarrow H_A^{n-1,n-1}(X, \mathbb{R})$$
$$\{\alpha\}_{DR} \longmapsto \{(\alpha^{n-1})^{n-1,n-1}\}_A,$$

is well defined in the sense that it is independent of the choice of a C^{∞} representative α of its De Rham cohomology class, where $(\alpha^{n-1})^{n-1, n-1}$ is the component of bidegree (n-1, n-1) of the (2n-2)-form α^{n-1} .

Definition (Marouani-P. 2021)

Let $\{\alpha\} \in H^2_{DR}(X, \mathbb{R})$ be a real De Rham cohomology class (not necessarily of type (1, 1)).

 $\{\alpha\}$ is divisorially Kähler $\stackrel{def}{\iff} P(\{\alpha\}) \in \mathcal{G}_X$

 $\{\alpha\} \text{ is divisorially nef } \stackrel{def}{\iff} P(\{\alpha\}) \in \overline{\mathcal{G}}_X$

(the closure of the Gauduchon cone)

A C^{∞} complex line bundle L on X is **divisorially nef** $\stackrel{def}{\iff}$ its first Chern class $c_1(L)$ is divisorially nef.

Examples of results.

Theorem (Marouani-P. 2021)

Let L be a holomorphic line bundle on an n-dimensional **projective** manifold X. The following equivalence holds:

L is divisorially nef $\implies L^{n-1}.D \ge 0$ for all effective divisors where

$$L^{n-1}.D := \int_{D} \left(\frac{i}{2\pi} \Theta_h(L)\right)^{n-1}$$

and $(i/2\pi) \Theta_h(L)$ is the curvature form of L with respect to any Hermitian fibre metric h.

This is the divisorial analogue of the classical nefness property on projective manifolds X:

 $L \text{ is nef} \iff L.C \ge 0 \text{ for every curve } C \subset X.$

Theorem (Marouani-P. 2021) $A \ class \ \{\alpha\}_{DR} \in H^2_{DR}(X, \mathbb{R}) \ is \ divisorially \ nef$

$$\iff$$

for every constant $\varepsilon > 0$, there exists a representative $\Omega_{\varepsilon} \in C_{n-1,n-1}^{\infty}(X, \mathbb{R})$ of the class $P(\{\alpha\}_{DR})$ such that

$$\Omega_{\varepsilon} \ge -\varepsilon \, \omega^{n-1},$$

where $\omega > 0$ is any pregiven Hermitian metric on X.

Question 5 (Marouani-P. 2021) Let X be a compact complex manifold.

X is balanced hyperbolic or divisorially hyperbolic

 K_X is divisorially nef or divisorially Kähler

 $\xrightarrow{?}$

(IV) Properties of balanced hyperbolic manifolds

(1) A Hard Lefschetz-type theorem

Theorem (Marouani-P. 2021)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. (i) If ω is a **balanced** metric on X, the linear map:

$$\{\omega_{n-1}\}_{DR}\wedge \cdot : H^1_{DR}(X, \mathbb{C}) \longrightarrow H^{2n-1}_{DR}(X, \mathbb{C}),$$

 $\{u\}_{DR} \longmapsto \{\omega_{n-1} \wedge u\}_{DR},$

is well defined and depends only on the cohomology class $\{\omega_{n-1}\}_{DR} \in H^{2n-2}_{DR}(X, \mathbb{C}).$

(ii) If, moreover, X has the following additional $\partial \overline{\partial}$ -type property: for every form $v \in C^{\infty}_{1,1}(X, \mathbb{C})$ such that dv = 0, the following implication holds:

$$(\star) \qquad v \in Im\partial \implies v \in Im(\partial\bar{\partial}),$$

the above map is an isomorphism.

As a consequence of this discussion, we obtain the following vanishing properties for the cohomology of degenerate balanced manifolds.

Proposition (Marouani-P. 2021) Let X be a compact degenerate balanced manifold.

(i) The Bott-Chern cohomology groups of types (1, 0) and (0, 1) of X vanish: $H^{1,0}_{BC}(X, \mathbb{C}) = 0$ and $H^{0,1}_{BC}(X, \mathbb{C}) = 0$.

(ii) If, moreover, X satisfies hypothesis (*), its De Rham cohomology group of degree 1 vanishes: $H^1_{DR}(X, \mathbb{C}) = 0$. (2) In the L^2 setting of the universal cover \widetilde{X} , our main result in degree 1 and its dual degree 2n - 1 is

Theorem (Marouani-P. 2021) Let X be a compact complex **balanced hyperbolic** manifold with $\dim_{\mathbb{C}} X = n$. Let $\pi : \widetilde{X} \longrightarrow X$ be the universal cover of X and $\widetilde{\omega} := \pi^* \omega$ the lift to \widetilde{X} of a balanced hyperbolic metric ω on X.

There are no non-zero $\Delta_{\widetilde{\omega}}$ -harmonic $L^2_{\widetilde{\omega}}$ -forms of pure types and of degrees 1 and 2n-1 on \widetilde{X} :

 $\mathcal{H}^{1,\,0}_{\Delta_{\widetilde{\omega}}}(\widetilde{X},\,\mathbb{C}) = \mathcal{H}^{0,\,1}_{\Delta_{\widetilde{\omega}}}(\widetilde{X},\,\mathbb{C}) = 0 \quad and \quad \mathcal{H}^{n,\,n-1}_{\Delta_{\widetilde{\omega}}}(\widetilde{X},\,\mathbb{C}) = \mathcal{H}^{n-1,\,n}_{\Delta_{\widetilde{\omega}}}(\widetilde{X},\,\mathbb{C})$ $where \ \Delta_{\widetilde{\omega}} := dd^{\star}_{\widetilde{\omega}} + d^{\star}_{\widetilde{\omega}}d \text{ is the d-Laplacian induced by the metric}$ $\widetilde{\omega}.$

In the same L^2 setting of the universal cover \widetilde{X} , our main result in degree 2 is

Theorem (Marouani-P. 2021) Let X be a compact complex **balanced hyperbolic** manifold with $\dim_{\mathbb{C}} X = n$. Let $\pi : \widetilde{X} \longrightarrow X$ be the universal cover of X and $\widetilde{\omega} := \pi^* \omega$ the lift to \widetilde{X} of a balanced hyperbolic metric ω on X. There are no non-zero semi-positive $\Delta_{\widetilde{\tau}}$ -harmonic $L^2_{\widetilde{\omega}}$ -forms of pure type (1, 1) on \widetilde{X} :

$$\left\{\alpha^{1,1} \in \mathcal{H}^{1,1}_{\Delta_{\widetilde{\tau}}}(\widetilde{X}, \mathbb{C}) \mid \alpha^{1,1} \ge 0\right\} = \{0\},\$$

where $\widetilde{\tau} = \widetilde{\tau}_{\widetilde{\omega}} := [\Lambda_{\widetilde{\omega}}, \, \partial \widetilde{\omega} \wedge \cdot] \text{ and } \Delta_{\widetilde{\tau}} := [d + \widetilde{\tau}, \, d^{\star} + \widetilde{\tau}^{\star}].$